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ABSTRACT:

We propose a new algorithm for network segmentation from very high resolution (VHR) remote sensing images. The algorithm

performs this task quasi-automatically, that is, with no human intervention except to fix some parameters. The task is made difficult

by the amount of prior knowledge about network region geometry needed to perform the task, knowledge that is usually provided by

a human being. To include such prior knowledge, we make use of methodological advances in region modelling: a phase field higher-

order active contour of directed networks is used as the prior model for region geometry. By adjoining an approximately conserved

flow to a phase field model encouraging network shapes (i.e. regions composed of branches meeting at junctions), the model favours

network regions in which different branches may have very different widths, but in which width change along a branch is slow; in which

branches do not come to an end, hence tending to close gaps in the network; and in which junctions show approximate ‘conservation

of width’. We also introduce image models for network and background, which are validated using maximum likelihood segmentation

against other possibilities. We then test the full model on VHR optical and multispectral satellite images.

1 INTRODUCTION

In this paper, we address the problem of road and hydrographic

network segmentation from VHR optical and multispectral im-

ages: given an image I , we seek the region R in the image do-

main Ω that contains the network. We would like to perform this

task quasi-automatically, that is, with no human intervention ex-

cept to fix some parameters. Such segmentation problems remain

challenging due to a combination of difficulties. First, the net-

work is usually not distinguishable from the background using

image measurements alone. Rather, knowledge of the geomet-

ric properties of R (e.g. , that it is composed of branches that

meet at junctions) is necessary for successful segmentation. Cur-

rently, this knowledge is provided, in one way or another, by a

human being. Automation of the segmentation process therefore

requires models that incorporate this knowledge of region geom-

etry. This is a nontrivial matter, particularly since the regions

corresponding to networks have huge variability in their topol-

ogy as well as their geometry. Second, there is great variability in

the appearances of network and background from one image to

another. Third, models incorporating the necessary prior knowl-

edge of region geometry are complex, and this leads to efficiency

issues when confronted with the large size and number of images

to be processed.

The contribution of this paper is a new algorithm for road and hy-

drographic network segmentation from VHR remote sensing im-

ages of rural and non-urban areas which present many occluded

parts of the network entity to be extracted. Our new algorithm

uses recent advances in shape modelling allowing the incorpora-

tion of sophisticated prior knowledge about network region ge-

ometry, thereby addressing the first difficulty. A ‘phase field

higher-order active contour’ (‘phase field HOAC’) model of di-

rected networks (El Ghoul et al., 2009b) is used to favour regions

composed of branches that meet at junctions. The network con-

tains a ‘flow’, which is approximately conserved. This means that

the width of each branch changes slowly, while different branches

can have very different widths; that branches tend not to end; and

that, at junctions, there is approximate ‘conservation of width’:

for example, several small incoming branches combining to form

a larger outgoing branch. These characteristic geometric prop-

erties are different from those of road networks in VHR images

of urban areas (Peng et al., 2010), and from those of networks

in medium resolution images (Rochery et al., 2005); the problem

therefore requires the use of a new model.

In (El Ghoul et al., 2009b), the model used here was described,

but the automatic parameter setting described herein was not used,

and the model was not applied to or tested on real images. Real

images generate the second difficulty described above. To ad-

dress it, we also propose generic models for the image in the net-

work region and in the background whose parameters can easily

be learned from examples of these two classes. We test these

models on several VHR images. The image models are com-

pared to other possibilities using maximum likelihood (ML) clas-

sifications. They outperform standard indices, which suggests

that their performance when combined with the region geometry

model will also be superior. We then test the full model, com-

bining the phase field model of directed networks with the image

models, on several satellite images. The segmentation problems

involved are very hard, but the results show that the new algo-

rithm is able to ignore confounding factors in the background

due to the sophisticated knowledge of region geometry it con-

tains, and is able to complete the network over reasonable gaps.

Before going on, it is useful to formalize the problem and our ap-

proach to solving it, and to introduce some notation. We seek to

infer the region R containing the network from the image data I
and our prior knowledge K, e.g. of image formation, network

geometry, and so on. In other words, we wish to construct a

probability distribution P(R|I,K) for the region R containing

the network, given the current image data I and our knowledge

K. As usual, this can be written as the product of a likelihood

P(I |R, K), which models the images we expect to see given that

R ⊂ Ω corresponds to a network, that the image is a VHR op-

tical image, etc.; and a prior P(R|K), which incorporates our



knowledge of network region geometry. We will further factor-

ize the likelihood term into P(IR|R, K) and P(IR̄|R, K), that is

into separate models for the image IR in the network region R
and the image IR̄ in the background R̄. The phase field HOAC

model of directed networks then corresponds to P(R|K), while

our image models correspond to P(IR|R, K) and P(IR̄|R, K).

In practice, we will deal with negative log probabilities, i.e. a

total energy E(R, I) = − ln P(R|I,K) that is the sum of a

likelihood term EI(I,R) = − ln P(I |R,K) and a prior term

EP(R) = − ln P(R|K).) We will then extract a maximum a

posteriori (MAP) estimate for R by minimizing E(R, I) over R.

This will be done using gradient descent.

In section 1.1, we justify our choice of shape modelling frame-

work by surveying the alternatives. In section 2, we recall briefly

the theoretical background of the models used: sections 2.1 and 2.2

recall the undirected and directed phase field HOAC models re-

spectively. In section 3, we describe the test results obtained in

applying the algorithm to VHR images: we compare ML seg-

mentations using different image models, and then test our new

algorithm including the full model. We conclude in section 4.

1.1 Previous work

The models used in most previous work on region segmentation

do not incorporate any nontrivial knowledge about region geom-

etry. For example, standard active contours, introduced by (Kass

et al., 1988), further refined by many authors, and applied in a

huge number of other papers, contain only the prior knowledge

that the region boundary should be smooth. As we have empha-

sized, this degree of prior knowledge is almost never enough for

the automatic solution of segmentation problems on real images,

whatever the domain. As a result, recent work has developed

models incorporating more sophisticated knowledge of region ge-

ometry. Most of this work models an ensemble of regions as per-

turbations of one or more reference regions, for example (Cre-

mers et al., 2003, Paragios and Rousson, 2002, Srivastava et al.,

2003, Foulonneau et al., 2003). This is an intuitive and useful

approach, but it is inappropriate when the region sought can have

arbitrary topology, since such an ensemble of regions cannot be

described as perturbations around a finite number of reference re-

gions. Since networks can have arbitrary topology (i.e. several

connected components, each of which can have loops), the above

work is not applicable to the network segmentation problem.

To model regions with potentially arbitrary topology, higher-order

active contours (HOACs) were introduced by (Rochery et al.,

2006). The HOAC prior energy defined by (Rochery et al., 2006)

was used to model undirected network regions and to extract road

networks from medium resolution optical images. The contour

representation used by (Rochery et al., 2006) suffers from many

drawbacks, however. To overcome these drawbacks, (Rochery et

al., 2005) reformulated HOACs as nonlocal ‘phase field’ mod-

els. This formulation facilitates model analysis and implemen-

tation, allows a ‘neutral’ initialization and complete topological

freedom, and results in reduced execution times, sometimes by

an order of magnitude. Phase field HOAC models of undirected

networks have proved their efficiency for road network segmen-

tation from medium resolution images of rural or semi-rural ar-

eas (Rochery et al., 2005), and high resolution images of urban

areas (Peng et al., 2010), but the models are not well adapted to

non-urban road network segmentation from high resolution im-

ages, nor to hydrographic network segmentation. The main prob-

lem is that the branch width in these models is very tightly con-

strained. This works well for medium resolution where the range

of visible widths is not large, but at high resolution and in hy-

drographic networks, the range of widths is much greater. Naive

attempts to allow a greater range of widths have the unfortunate

side effect of allowing width to vary rapidly along one branch:

the branch sides lose their ‘rigidity’. The second difficulty is that

the early model in (El Ghoul et al., 2009a) had problems closing

large gaps in the network. The work of (Peng et al., 2010) solves

these problems for urban road networks, but the solution involves

favouring long straight branches, which is again not well adapted

to non-urban road and hydrographic networks.

To overcome these difficulties, (El Ghoul et al., 2009b) intro-

duced a phase field HOAC model for directed networks, in order

to capture some of their distinctive geometric properties. Because

these geometric properties are linked to the fact that directed net-

works carry a conserved flow, the model contains, in addition to

the phase field specifying the network region, a vector field rep-

resenting a ‘flow’ in the network. The magnitude of the field

is approximately constant, and the flow is approximately con-

served. As a result, branch width tends to change slowly and

branches tend not to end, as both these would change the flow.

At junctions, there is approximate ‘conservation of width’ so that

incoming flow be approximately equal to outgoing flow. How-

ever, the model was only tested on a synthetic image showing the

shape of a river, albeit with success.

Other attempts to solve the hydrographic network segmentation

problem include the work of (Dillabaugh et al., 2002). This work

uses an interesting multiscale approach, but relies on user input to

specify network endpoints, and is limited in the network topolo-

gies that it can find. The work of (Lacoste et al., 2004) models the

network region using a marked point process of polylines. This

model works well when the network has constant width over sig-

nificant distances, since each polyline has a fixed width. (Lacoste

et al., 2005) uses an initial segmentation by Markov random field

as a seed from which to build a hierarchical model of the network

using a marked point process. This works well when the image

is sufficiently clean for the MRF segmentation to capture most

of the network, and when the network has a tree structure. For

a review of the large number of techniques that have been devel-

oped for road network segmentation, see (Mena, 2003). How-

ever, none of these solve the problem of network segmentation

from high resolution images in a quasi-automatic way.

2 PRIOR MODEL EP

In this section, we present the prior model EP. We begin by re-

calling the simplest phase field HOAC model of an undirected

network (Rochery et al., 2005), since this is the base on which

the model of directed networks is built.

2.1 Undirected network model

A phase field φ is a real-valued function on the image domain

Ω. A phase field determines a region by the thresholding map

ζz(φ) = {x ∈ Ω : φ(x) > z} where z is a given threshold. The

basic phase field energy is

Es
0(φ) =

∫

Ω

d2x

{

D

2
∂φ · ∂φ

+ λ

(

φ4

4
−

φ2

2

)

+ α

(

φ −
φ3

3

)}

. (1)

If (1) is minimized subject to ζz(φ) = R, i.e. for a fixed re-

gion, then away from the boundary, the minimizing function φR

assumes the value 1 inside, and −1 outside R thanks to the ul-

tralocal terms. To guarantee two energy minima (at −1 and 1),



the inequality λ > |α| must be satisfied. We choose α > 0 so

that the energy at −1 is less than that at 1. The derivative term en-

sures the smoothness of φR, producing a narrow interface around

the boundary ∂R interpolating between −1 and +1.

To introduce prior shape information, a nonlocal term is then

added to give an energy Es
P = Es

0 + ENL (Rochery et al., 2005):

ENL(φ) =

−
β

2

∫∫

Ω2

d2x d2x′ ∂φ(x) · ∂φ(x′) Ψ

(

|x − x′|

d

)

, (2)

where d is the interaction range. This term creates long-range in-

teractions between points of ∂R (because ∂φR is zero elsewhere)

using an interaction function, Ψ, which decreases as a function of

the distance between the points.

In this paper, the interaction function Ψ is taken to be the mod-

ified Bessel function of the second kind of order 0, K0. This

choice, as opposed to that used in (Rochery et al., 2005), al-

lows a wide range of stable branch widths. However, it also al-

lows the width of individual branches to fluctuate rapidly, because

it reduces branch ‘rigidity’. To allow a wide range of branch

widths while constraining the rate of change of the widths of

individual branches (without imposing straightness of branches

as in (Rochery et al., 2005)), and also to favour other important

properties of directed networks, it is necessary to augment this

model with an extra field representing a ‘flow’ in the network.

This leads to the phase field HOAC model for directed networks,

to be described next.

2.2 Directed network model

The phase field HOAC model for directed networks was intro-

duced by (El Ghoul et al., 2009b). To model directed networks,

the phase field φ is augmented by a new tangent vector field v
that loosely speaking represents the ‘flow’ in the network.1

The total prior energy EP(φ, v) is then the sum of a local term

E0(φ, v) and the nonlocal term ENL(φ) given by equation (2).

E0 is given by

E0(φ, v) =

∫

Ω

d2x

{

D

2
∂φ · ∂φ +

Dv

2
(∂ · v)2

+
Lv

2
∂v : ∂v + W (φ, v)

}

. (3)

W (φ, v) is a potential with two degenerate sets of minima, at

(φ, |v|) = (−1, 0) and (φ, |v|) = (1, 1). These minima define

the stable phases corresponding to R̄ and R respectively, replac-

ing φ = ±1 in the undirected model. The potential W is a fourth

order polynomial in φ and |v|, constrained to be differentiable:

W (φ, v) =
|v|4

4
+ (λ22

φ2

2
+ λ21φ + λ20)

|v|2

2

+ λ04

φ4

4
+ λ03

φ3

3
+ λ02

φ2

2
+ λ01φ . (4)

1To avoid misunderstanding, we stress that v is not intended to rep-

resent the physical flow of, e.g. water, in the network, nor is the model

intended to model the physical behaviour of the flow. Rather, v is an aux-

iliary variable that acts to favour certain geometric properties of the net-

work. (Since it is not coupled to the image, it is, probabilistically speak-

ing, a ‘hidden variable’.) At the same time, it is not a coincidence that v

shares many of the properties of physical flows, such as smoothness and

conservation, nor that the resulting stable configurations resemble physi-

cal flows in the network.

The second term in equation (3) penalizes the divergence of v.

This represents a soft version of flow conservation, but in prac-

tice the parameter multiplying this term will be large, so that in

general the divergence will be small. The third term is a small

overall smoothing term on v (∂v : ∂v =
∑

m,n
(∂mvn)2, where

m,n ∈ {1, 2} label the two Euclidean coordinates), since con-

straining the divergence is not sufficient to ensure smoothness.

Because of the transition from |v| = 1 to |v| = 0 across the

boundary of the region, the divergence term tends to make v
parallel to the region boundary, since this results in zero diver-

gence. The smoothness and divergence terms then propagate this

parallelism to the interior of the branch, with the result that the

flow tends to be along the branch. This fact, when coupled with

the constraint on |v| inside the channel, means that width vari-

ations are constrained to be slow along a channel, since total

flow is directly related to branch width. At the same time, the

use of Ψ = K0, means that different branches may have very

different widths. At junctions, the conserved flow along each

branch favours ‘conservation of width’: the (soft) constraint that

total incoming flow be approximately equal to total outgoing flow

translates to the sum of the incoming widths being approximately

equal to the sum of the outgoing widths. Thus the introduction of

the new field v can favour network regions with geometric prop-

erties characteristic of directed networks.

2.2.1 Parameter settings Requiring (−1, 0) and (1, 1) to be

extrema of the potential w reduces the number of free parame-

ters of W from seven to four, while requiring these points to be

minima (i.e. the Hessian at these two points should be positive-

definite) generates further lower and upper bounds on the remain-

ing parameter values.

We fix further relations between the parameters by requiring that

the two minima described above be the only local minima; that W
be bounded below; and that the potential energy of the network

region R be greater than of the background R̄, i.e. w(1, 1) >
w(−1, 0). The resulting potential has a saddle point lying be-

tween the two minima at a point (φs, vs). This point plays an

important role: the ‘neutral’ initialization of the gradient descent

algorithm is given by (φ, |v|) = (φs, vs), the direction of v be-

ing random. In addition, we constrain the parameter β in ENL so

that the part of EP containing derivatives, i.e. everything except

W , be positive definite (it is a quadratic form). Since constant

values of φ and v produce zero in these derivative terms, which is

the global minimum value of these terms, and since constant val-

ues of φ and v equal to those at the global minimum of W , which

is W (−1, 0), produce the global minimum of W , the global min-

imum of EP is at (φ, |v|) = (−1, 0).

The energy EP can favour different stable geometric configura-

tions depending on the values of the parameters remaining after

the above constraints have been imposed. Since we are interested

in modelling networks, we need to choose parameter values that

favour networks as stable structures. Such values can be found

using a stability analysis of the model. We assume that network

branches are long enough and straight enough that their stability

can be analysed by considering the limit of a long, straight bar,

whose symmetry facilitates the analysis. We do not detail here

the stability calculations because they are lengthy: they will be

reported elsewhere. The stability analysis of a network branch

places constraints on the parameter values of the model. In all

the experiments, we use these constraints to fix further parame-

ter values, and to replace others with physical parameters such as

average branch width.



3 EXPERIMENTAL RESULTS

Having presented the prior model EP, we are now nearly in a po-

sition to describe experiments testing the properties of the model

and its performance in network segmentation. First, however, we

have to describe the likelihood energy EI(R, I) = − ln P(I |R,K)
that we will use to create the complete model E = EP + θEI

where the parameter θ balances the two terms. Since we test the

model on 0.61m resolution multispectral VHR Quickbird images

with four channels (red (R), green (G), blue (B) and infrared (I)),

and optical colour images, we need a model of such images. As

already stated, we will assume that the likelihood can be factor-

ized as P(I |R,K) = P(IR|R, K)P(IR̄|R, K), and we thus need

models for the image in R and R̄.

3.1 Likelihood energy

In (El Ghoul et al., 2009a), the road network segmentation perfor-

mance of a phase field HOAC model for undirected networks was

tested using two classes of likelihoods (the same class was used

for both R and R̄): a multivariate Gaussian (MG) and a mixture

of two multivariate Gaussians (MMG). In ML segmentations, the

performance was mixed, but when combined with the prior en-

ergy, the MMG model was found to outperform the MG model,

with the improvement being most significant when the image was

very heterogeneous. Here, we test the ML performance of these

two likelihood classes on the images used in this paper, and com-

pare them to segmentations obtained using the normalized differ-

ence vegetation index (NDV I = (I−R)/(I+R)) (Rouse et al.,

1973, Tucker, 1979) and the normalized difference water index

(NDWI = −(I − G)/(I + G)) (McFeeters, 1996). We apply

the former to images of road networks in which the background

is mostly vegetation, and the latter to an image of a hydrographic

network. The 4th, 5th, and 6th rows of figure 1 show ML seg-

mentations using NDVI/NDWI, MG, and MMG respectively.

Table 1 shows quantitative evaluations of the quality of the ML

segmentations using NDVI, MG, and MMG. The bold numbers

show the best ML segmentation method. In all experiments, the

NDVI results show lower performance, according to the quality

measure, compared to the MG and MMG results. The NDVI re-

sults on the first and second images show that most of the hidden

parts of the network are not retrieved because they resemble veg-

etation more than network. The result is the presence of many

lengthy gaps in the ML segmentation. Because these gaps are so

long, it is very unlikely that the prior term would close them. In

contrast, the MG and MMG segmentations include most of the

network, but also many points of the background, which the prior

model should be able to eliminate. When coupled with the results

of (El Ghoul et al., 2009a) showing that MMG outperforms MG,

these results lead us to choose the MMG model to construct the

likelihood energy EI.

3.2 Segmentation results

In order to compute a MAP estimate for P(R|I,K), we use gra-

dient descent to seek minima of E = EP + θEI. To reduce the

computational complexity, we primarily test the model on small

images of size 256 × 256, some of which were obtained by re-

ducing the resolution of the original images. We discuss this point

further in section 4.

Figure 2 shows segmentations of the images shown in figure 1

obtained using the new algorithm.2 The results in the first and

second rows show that most of the gaps present in the original

2Parameter values were, for the 4 images in figure 1 from left to

right: (λ04, λ03, λ22, λ21, D, β, d, Lv, Dv, θ) = (0.3375,−0.1767,

Completeness Correctness Quality

a

NDVI 0.4296 0.3965 0.2598

MG 0.6920 0.3423 0.2970

MMG 0.7510 0.3000 0.2728

b

NDVI 0.4745 0.6536 0.3791

MG 0.7166 0.4958 0.4145

MMG 0.7983 0.3521 0.3233

c

NDWI 0.6280 0.9446 0.6057

MG 0.7835 0.8468 0.6862

MMG 0.8485 0.7424 0.6555

d

NDVI 0.6776 0.4517 0.3718

MG 0.9060 0.4099 0.3932

MMG 0.8634 0.4641 0.4323

Table 1: Quantitative evaluations of the ML segmentations given

in figure 1. a, b, c, and d correspond to the four images in figure 1,

from left to right. Completeness= TP/(TP + FN), correctness=

TP/(TP + FP) and quality = TP/(TP + FP + FN). T, F, P, and N

correspond to true, false, positive, and negative respectively.

images are indeed closed thanks to the contribution of the diver-

gence term: when divergence of the vector field is heavily penal-

ized, network branch extremities prefer to meet and close gaps

because in this way flow can be conserved. This does not oc-

cur using the undirected phase field HOAC model described in

section 2.1, as shown in (El Ghoul et al., 2009a).

The result in the third row emphasize the role of the divergence

term at junctions. The divergence-free property of the vector field

favours junctions where total incoming branch width equals total

outgoing branch width. Figure 3 shows streamline plots of the

final vector field configuration superimposed on the thresholded

φ corresponding to the last two segmentation results in figure 2.

The vector field is indeed of constant (unit) magnitude inside the

network, parallel to the network boundaries, and smooth; the flow

is approximately conserved along network branches and in partic-

ular at junctions, where the total incoming flow is approximately

equal to total outgoing flow.

Figure 4 shows the segmentation of a river network from a colour

optical image.3 The likelihood model used was the same, but with

one less band. The flow conservation property and its geometric

consequences enable the algorithm to avoid confounding factors

in the background and segment the network to a good accuracy.

The results we have shown here still have false positives and false

negatives. The main raison for the former is that the gradient de-

scent algorithm becomes locally stuck in a local minimum, so that

some of the background remains classified as network even if this

is globally energetically unfavourable. The main reason for the

latter are long gaps in the visible network caused by occlusions.

4 CONCLUSION

We have proposed a new algorithm for the segmentation of net-

works from VHR satellite images. Such networks have character-

istic geometric properties: network branch widths change slowly

although different branches may have very different widths; while,

at junctions, there is approximate ‘conservation of width’. To seg-

ment such networks (quasi-)automatically, requires models that

0.2712,−0.6, 0.2645, 0.0629, 1.68, 0.2649, 100, 0.03), (0.1, 0.0164,

0.1162,−0.8, 0.0512, 0.0205, 1.45, 0.0227, 200, 0.01), (0.412,

−0.0008, 0.0022,−0.6, 0.257, 0.0083, 8.33, 0.275, 50, 0.04), and

(0.4,−0.018, 0.15,−0.8, 0.548, 0.0316, 3.45, 0.150, 50, 0.04).
3Parameter values were: (λ04, λ03, λ22, λ21, D, β, d, Lv, Dv, θ) =

(0.25, 0.0323, 0.1138,−0.8, 0.1903, 0.0176, 2.56, 0.0644, 100, 0.07).



Figure 1: Each column corresponds to a multispectral Quickbird

image. The resolution of the first three images is 1/4 the origi-

nal resolution (2.44m) while the fourth image is at full resolution

(0.61m). From top to bottom: RGB channels of the images; GBI

(mapped to RGB) channels of the images; reference segmenta-

tion; segmentations obtained using NDVI (columns 1, 2, and 4)

and NDWI (column 3) and optimal thresholding; ML segmen-

tations using the MG model; and ML segmentations using the

MMG model. (Original images c©DigitalGlobe, CNES process-

ing, images acquired via ORFEO Accompaniment Program).

incorporate this prior knowledge of network region geometry. We

use a phase field HOAC model of directed networks to model

region geometry and incorporate these properties. In addition

to terms favouring network regions, the model contains a vector

field representing a ‘flow’ in the network. This flow has approx-

imately constant speed and is approximately conserved, which

leads the model to favour network regions possessing the above

geometric properties. Coupled with suitable image models, the

model results in a quasi-automatic network segmentation algo-

rithm with good performance, capable of closing many gaps, and

of avoiding confounding factors in the background.

The main difficulties with the current method are computational.

To ensure the necessary geometric properties, the divergence term

must be strong. This implies a small time step in the gradient de-

scent algorithm to avoid the algorithm diverging, which means

long computation times. A second difficulty is that despite the

stability analysis, the model still has several free parameters that

need to be tuned by hand. The use of graph cut algorithms and

parameter learning are possible ways to overcome these difficul-

ties, and we are currently studying them.

Figure 2: Left: RGB channels of multispectral QuickBird im-

ages; right: segmentation results, using the new algorithm, super-

imposed on GBI (mapped to RGB) channels.
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tics in kernel space for variational image segmentation. Pattern
Recognition 36, pp. 1929–1943.

Dillabaugh, C. R., Niemann, K. O. and Richardson, D. E., 2002.
Semi-automated extraction of rivers from digital imagery. Geoin-
formatica 6(3), pp. 263–284.

El Ghoul, A., Jermyn, I. H. and Zerubia, J., 2009a. Inflection
point model under phase field higher-order active contours for
network extraction from vhr satellite images. In: Proc. European
Signal Processing Conference, Glasgow, Scotland.



Figure 3: The final configuration of φ (thresholded) and v corre-

sponding to the images in the third and fourth rows in figure 2.

The vector field is indeed zero outside the network and of con-

stant (unit) magnitude inside, smooth, parallel to branch bound-

aries, and conserved along network branches and at junctions.

El Ghoul, A., Jermyn, I. H. and Zerubia, J., 2009b. A phase field
higher-order active contour model of directed networks. In: 2nd
IEEE Workshop on Non-Rigid Shape Analysis and Deformable
Image Alignment, at ICCV, Kyoto, Japan.

Foulonneau, A., Charbonnier, P. and Heitz, F., 2003. Geomet-
ric shape priors for region-based active contours. In: Proceed-
ings of the IEEE International Conference on Image Processing,
Barcelone, Espagne.

Kass, M., Witkin, A. and Terzopoulos, D., 1988. Snakes: Active
contour models. Int. J. Comput. Vis. 1(4), pp. 321–331.

Lacoste, C., Descombes, X., Zerubia, J. and Baghdadi, N., 2004.
Unsupervised line network extraction from remotely sensed im-
ages by polyline process. In: Proc. European Signal Processing
Conference, University of Technology, Vienna, Austria.

Lacoste, C., Descombes, X., Zerubia, J. and Baghdadi, N., 2005.
Extraction of hydrographic networks from satellite images using
a hierarchical model within a stochastic geometry framework. In:
Proc. European Signal Processing Conference, Antalya, Turkey.

McFeeters, S., 1996. The use of the normalized difference water
index (NDWI) in the delineation of open water features. Interna-
tional Journal of Remote Sensing 17, pp. 1425–1432.

Figure 4: River network segmentation from a colour image using

the new algorithm. Flow conservation is satisfied at junctions, il-

lustrated by a significant change of width, and along branches, as

illustrated by a slow change of width. ( c©2010 Google - Imagery

c©2010 TerraMetrics, Map data c©2010 Tele Atlas.)

Mena, J. B., 2003. State of the art on automatic road extraction for
gis update: a novel classification. Pattern Recogn. Lett. 24(16),
pp. 3037–3058.

Paragios, N. and Rousson, M., 2002. Shape priors for level
set representations. Proceedings of the European Conference on
Computer Vision.

Peng, T., Jermyn, I. H., Prinet, V. and Zerubia, J., 2010. Extended
phase field higher-order active contour models for networks. Int.
J. Comput. Vis. 88(1), pp. 111–128.

Rochery, M., Jermyn, I. and Zerubia, J., 2006. Higher order active
contours. Int. J. Comput. Vis. 69(1), pp. 27–42.

Rochery, M., Jermyn, I. H. and Zerubia, J., 2005. Phase field
models and higher-order active contours. In: Proceedings of
the IEEE International Conference on Computer Vision, Beijing,
China.

Rouse, J., Haas, R., Schell, J. and Deering, D., 1973. Monitor-
ing vegetation systems in the great plains with ERTS. In: ERTS
Symposium, NASA SP-351, pp. 309–317.

Srivastava, A., Joshi, S., Mio, W. and Liu, X., 2003. Statistical
shape analysis: Clustering, learning, and testing. IEEE Trans.
Pattern Anal. Mach. Intell. 27(4), pp. 590–602.

Tucker, C., 1979. Red and photographic infrared linear combina-
tions for monitoring vegetation. Remote Sensing of Environment
8, pp. 127–150.


