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Abstract. This paper addresses the segmentation from an image of entities that
have the form of a ‘network’, i.e. the region in the image corresponding to the
entity is composed of branches joining together at junctions, e.g. road or vascu-
lar networks. We present a new phase field higher-order active contour (HOAC)
prior model for network regions, and apply it to the segmentation of road net-
works from very high resolution satellite images. This is a hard problem for two
reasons. First, the images are complex, with much ‘noise’ in the road region
due to cars, road markings, etc., while the background is very varied, contain-
ing many features that are locally similar to roads. Second, network regions are
complex to model, because they may have arbitrary topology. In particular, we
address a severe limitation of a previous model in which network branch width
was constrained to be similar to maximum network branch radius of curvature,
thereby providing a poor model of networks with straight narrow branches or
highly curved, wide branches. To solve this problem, we propose a new HOAC
prior energy term, and reformulate it as a nonlocal phase field energy. We anal-
yse the stability of the new model, and find that in addition to solving the above
problem by separating the interactions between points on the same and opposite
sides of a network branch, the new model permits the modelling of two widths
simultaneously. The analysis also fixes some of the model parameters in terms
of network width(s). After adding a likelihood energy, we use the model to ex-
tract the road network quasi-automatically from pieces of a QuickBird image,
and compare the results to other models in the literature. The results demonstrate
the superiority of the new model, the importance of strong prior knowledge in
general, and of the new term in particular.

1 Introduction

The need to segment network-like structures from images arises in a variety of domains.
Examples include the segmentation of road and river networks in remote sensing im-
agery, and of vascular networks in medical imagery. Extracting automatically the region
in the image corresponding to the network is a difficult task, however. Because images
often contain confounding elements having similar local properties to the entity of inter-
est, techniques that include no prior knowledge about the region containing the network
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cannot succeed. In order to solve the problem, such prior knowledge must be injected
somehow, either through the intervention of a user, or by incorporating it into a model.
Human users possess very specific prior knowledge about the shape of regions corre-
sponding to networks, and in most applications, this level of knowledge is necessary
rather than merely sufficient: generic prior knowledge alone, for example concerning
boundary smoothness, is not enough. The need to include more specific prior knowl-
edge raises another, methodological issue, however. The set of network-like regions
is complicated: it consists of a large (in principle infinite) number of connected com-
ponents, corresponding to the different possible topologies of a network (number of
connected components in the network, number of loops in each connected component),
or equivalently to the set of planar graphs (for 2d data). To this is added a geometric
superstructure corresponding to an embedding of the graph in the plane, and to its ‘fat-
tening’ into a region. The construction of a model that favours regions lying in this set
as opposed to those outside it is a non-trivial problem. This paper proposes a new model
to address this problem, and applies it to the extraction of road networks from very high
resolution satellite imagery.

The incorporation into models of prior knowledge about a region to be segmented
from an image has a long history. The earliest and still most widely used models incor-
porate local knowledge about the boundary, essentially smoothness: active contours [1]
are one example, the Ising model another [2, 3]. This degree of prior knowledge is al-
most never enough to segment an entity of interest automatically, even in relatively sim-
ple images. More recent work has focused on models that include more specific prior
knowledge [4–8]. This work involves shape priors saying that the region sought must
be ‘close’ to an exemplar region or regions. Although useful for many applications, this
type of model is not appropriate when the region sought has arbitrary topology.

To model families of regions such as networks, Rochery et al. [9] introduced
‘higher-order active contours’ (HOACs). HOACs incorporate not only local, differential
knowledge about the boundary, but also nonlocal, long-range interactions between tu-
ples of contour points. Via such interactions, they favour regions with particular geomet-
ric characteristics without constraining the topology via use of a reference region. For
example, the model used in [9], which uses pairwise interactions, favours, for certain
ranges of parameter values, network-like regions composed of branches with roughly
parallel borders and a constant width that meet at junctions.

The HOAC energy developed in [9] suffers from a serious limitation, however, when
it is used to model networks. This is that the interaction between points on the same side
of a network branch have the same range of interaction as points on opposite sides. The
effect is that a typical maximum curvature of a branch κ is connected to the width of
that branch Wvia κ ∼ 1/W . This is particularly limiting for certain types of networks,
e.g. road networks in cities, for which κ� 1/W .

In this paper, we construct a new HOAC prior energy for modelling networks that
overcomes this limitation, allowing separate control of branch straightness and width.
The new energy also permits a broader range of widths to be modelled simultaneously,
and can even model two disjoint width ranges. We test the model by applying it to
the problem of road network extraction from very high resolution (VHR) images of
Beijing. This represents an extremely challenging problem due to the amount of ‘noise’
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in the road regions (cars, road markings, shadows, . . . ) and the degree of variation and
detail in the non-road regions. Nevertheless, the new energy permits a quasi-automatic
extraction of the road network.

To avoid the complications of expressing regions with arbitrary topology in terms
of boundaries and the complexity of the implementation of HOAC terms using stan-
dard level-set methods, Rochery et al. [10] reformulated HOAC models as equivalent
nonlocal phase field models. Phase fields possess many advantages over more tradi-
tional methods for region representation and modelling, even in the non-HOAC case,
but are particularly advantageous for HOAC energies. It is often convenient to formu-
late a model in terms of the contour initially, and then reformulate it as a phase field
model for implementation; we follow that procedure in this paper.

The paper is organized as follows: section 2 recalls HOAC energies and the phase
field framework. In section 3, we introduce our new HOAC energy, and calculate the
conditions for which the model allows stable bars. In section 4, we define the overall
model, including a data term. The application of the model to road extraction from VHR
images is illustrated in section 5. We conclude in section 6.

2 Higher-Order Active Contours and Phase Fields

In [9], Rochery et al. proposed an Euclidean-invariant HOAC energy for modelling
network regions:

EC(R) = λCL(R) +αCA(R)− βC
2

∫∫
(∂R)2

dt dt′ γ̇(t) · γ̇(t′)Ψ
( |∆γ(t, t′)|

d

)
, (1)

where ∂R is the boundary of region R; γ : S1 → Ω is a map representing ∂R, pa-
rameterized by t; Ω ⊂ R2 is the image domain; dots represent differentiation wrt t;
L is boundary length; A is region area; ∆γ(t, t′) = γ(t) − γ(t′); and d is a constant
that controls the range of the interaction. The long range interaction between t and t′ is
modulated by Ψ , the interaction function:

Ψ(k) =

{
1
2

(
2− |k|+ 1

π sin(π|k|)
)

if |k| < 2 ,
0 else .

(2)

It is a smoothly decreasing function from 1 at k = 0 to 0 for k ≥ 2.
For many reasons [10], the phase field framework provides a more convenient

framework for region modelling than do contours. A ‘phase field’ is a function φ : Ω →
R, which defines a region R ∈ Ω via a threshold z: R = ζz(φ) = {x ∈ Ω : φ(x) > z}.
The basic phase field energy term E0 is

E0(φ) =
∫
Ω

dx

{
1
2
∇φ(x) · ∇φ(x) + V (φ(x))

}
. (3)

where the ‘potential’ V is given by

V (y) = λ(
1
4
y4 − 1

2
y2) + α(y − 1

3
y3) , (4)
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where λ and α are constants. For λ > α > 0, V has two minima, at y = −1 and y = 1,
and a maximum at y = α/λ. Define φR = arg minφ: ζz(φ)=RE0(φ). If we ignore the
gradient term in equation (3), and set z = α/λ, we clearly find that φR(x) = 1 for
x ∈ R and φR(x) = −1 for x ∈ R̄ = Ω \ R. Adding the gradient term results in a
smooth transition from 1 to −1 over an interface region RC around the boundary ∂R.
Note that to a very good approximation∇φ is non-zero only inRC . It can be shown [10]
that E0(φR) ' λCL(R) + αCA(R).

The third, HOAC term in EC can also be reformulated in terms of an equivalent
phase field energy [10]. It becomes

ES(φ) = −β
2

∫∫
Ω2
dx dx′ ∇φ(x) · ∇φ(x′) Ψ

( |x− x′|
d

)
. (5)

The sum E0 + ES is then equivalent to EC in equation (1) [10].

3 Modelling Networks

As explained briefly in section 1, EC (or equivalently E0 + ES) suffers from a sig-
nificant limitation when it comes to modelling networks. Apart from a sign change,
the interaction between two points with parallel tangent vectors is the same, and in
particular has the same range, as that between anti-parallel tangent vectors. The for-
mer interaction controls the curvature of network branches by trying to align tangent
vectors, while the latter controls branch width by creating a repulsive force. Hence we
expect that for a stable network branch, typical maximum curvature κ and branch width
W will be related approximately by κ ∼ 1/W . Thus,EC does not model well networks
with straight narrow branches or highly curved, wide branches. To overcome these lim-
itations, we will set up a new, Euclidean invariant nonlocal energy term EL that will
act in a complementary way to the HOAC term in EC . We will also find conditions that
ensure that a long bar of a given width is a stable configuration of the new model. This
enables the fixing of one of the parameters of the energy in terms of the others, and
places constraints on the rest.

3.1 Linear Nonlocal HOAC Term

One general class of quadratic HOAC terms can be written as

EC,HO(R) = −
∫∫

(∂R)2
dt dt′ γ̇(t) ·GC(γ(t), γ(t′)) · γ̇(t′) , (6)

where GC is a map from Ω2 to 2 × 2 matrices. Imposing Euclidean invariance, and
choosing GC(γ(t), γ(t′)) = Ψ(|∆γ|)δ, where δ is the unit matrix, leads to the HOAC
term in EC . Choosing GC(γ(t), γ(t′)) = Ψ(|∆γ|)∆γ∆γT leads to

EC,L(R) = −
∫∫

(∂R)2
dtdt′

[
γ̇(t) ·∆γ(t, t′)

][
γ̇(t′) ·∆γ(t, t′)

]
Ψ
( |∆γ(t, t′)|

d2

)
. (7)

where we use the same Ψ as in EC , but with a different range d2.



5

EC,L compares each tangent vector to the vector ∆γ(t, t′) joining the two inter-
acting points. When two points have tangent vectors that are both nearly aligned or
anti-aligned with ∆γ, the product of the dot products is positive. The energy EC,L can
decrease further by further aligning these tangent vectors with ∆γ and hence with each
other. This situation corresponds to two points on the same side of a network branch, as
shown in Fig. 1(a). The energy thus favours straight lines, within a range controlled by
d2. On the other hand, when at least one of the two tangent vectors is nearly orthogonal
to ∆γ, the product of dot products is small. This means that changing the distance be-
tween the two points in the argument to Ψ does not change the energy much, and thus
that the force between two such points is small. This situation corresponds to two points
on opposite sides of a network branch, as shown in Fig. 1(b).

As a result, when EC,L is added to EC , the width of the network branches is con-
trolled largely by the parameter d of EC , while the distance over which the branch will
be straight is controlled largely by d2, if d2 > d. For thin, straight bars, we will indeed
fix d2 > d. The exception to this rule is also shown in Fig. 1(b). From the above, γ(t′)
exerts no force on γ(t), but γL(t′) and γR(t′) both repel γ(t), as shown by the force
arrows FL and FR in the figure. The tangential parts of FL and FR cancel, and there
is an overall normal repulsion F . If the weight of EC,L in the model is too large, this
repulsion may begin to dominate the bar width, which we want to avoid.

(a) (b)

Fig. 1. The effect of EC,L: (a) when two tangent vectors are nearly aligned or anti-aligned with
∆γ, the energy EC,L favours their alignment; (b) when at least one of the two tangent vectors is
nearly orthogonal to∆γ, there is only a very small force between the two points, but contributions
from many points can add up to a significant repulsion

We now reformulate EC,L(R) in the phase field framework [10]. We rotate tangent
vectors to normal vectors, and replace the latter by∇φ. Since∇φR is very small outside
RC , the domains of integration can be extended from ∂R to Ω without significantly
changing the energy, except for a multiplicative factor. The new, linear nonlocal HOAC
phase field term EL(φ) becomes (we introduce a weight parameter β2)

EL(φ) = −β2

2

∫∫
Ω2
dxdx′

[
∇φ(x)×(x−x′)

][
∇φ(x′)×(x−x′)

]
Ψ
( |x− x′|

d2

)
, (8)

where × is the 2D antisymmetric product.
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3.2 Stability Analysis

The sum of the three energies we have introduced so far,EP = E0 +ES+EL will con-
stitute the prior energy for our model. The behaviour of EP depends on the six param-
eters (α, λ, β, β2, d, d2), and can vary significantly. If we wish to model networks with
this energy, it is therefore important to ensure that a network branch is a stable config-
uration. An important side-effect is that some of the (rather abstract) model parameters
are effectively replaced by ‘physical’ quantities, such as bar and interface width, which
we can reasonably fix from numerical or application considerations.

Since network branches are locally like straight bars, we can to a good approxima-
tion analyse the stability of a long (because we want to ignore boundary effects) straight
bar, of length L and width W << L. Ideally, we should minimize EP under the con-
straint that ζz(φ) = Rbar, and then expand around that point to test stability, but this
is very difficult. Instead, we take a simple ansatz for φRbar, and study its stability in a
low-dimensional subspace of function space; the results may be justified a posteriori by
numerical experiments. In [10] a similar procedure was followed, the results comparing
favourably to those obtained by more sophisticated ‘matched asymptotics’. The ansatz
is as follows. The phase field is given by φ(x) = 1 for x ∈ R \ RC ; φ(x) = −1 for
x ∈ R̄ \ RC , while in RC , φ changes linearly from 1 to −1. The energy EP evaluated
on this ansatz, per unit length of bar, which we denote eP , is given by

eP (w,W ) =
4
3
αW +

4
15
λw +

4
w

+
4β
d

∫ 2d

W

dη
√
η2 −W 2

(
1− cos

πη

d

)
+ 4β2

∫ 2d2

W

dη η
√
η2 −W 2

(
2− η

d2
+

1
π

sin
πη

d2

)
.

where w is the width of the interface region RC . The energy eP is now minimized with
respect to w andW by setting its first derivatives to zero, while ensuring that the second
derivatives are positive. Forw this is trivial, and leads to λ = 15/w2, and thus λ ∼ 1 for
reasonable interface widths. For W , the calculation is lengthy and will not be detailed
here. Note that stability in fact depends only on the three scaled parameters β̂ = β/α,
β̂2 = β2d

2/α and d̂2 = d2/d, and on the scaled width Ŵ = W/d. The main results are
then as follows. If d̂2 is less than a threshold D2, at most one minimum can be found.
If d̂2 > D2, there are three cases, depending on the values of β̂, β̂2, and d̂2: eP has no
local minimum; eP has one local minimum, with either Ŵ ' 1 (i.e.W ' d) or Ŵ ' d̂2

(i.e. W ' d2); or eP has two local minima, at Ŵ ' 1 and Ŵ ' d̂2. (This behaviour
is an example of a swallowtail catastrophe.) The two regimes are further illustrated in
Figs. 2 and 3.

The variety of behaviour is important for applications. As well as being able to
model networks with branches of more or less fixed width, but with greater ‘stiffness’
than provided by the model in [9], the new energy can model two widths at the same
time. At certain ‘critical points’ in parameter space, essentially where pairs of minima
merge, it can also model a large range of widths, all of which are approximately stable.
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Fig. 2. Top-left: different regions in the β̂2 − β̂ plane for d̂2 = 2 < D2. eP has either no
local minimum (red) or one local minimum (green). Top-right: the associated stable bar width.
Bottom-left: eP with no local minimum (β̂ = 0.05, β̂2 = 0.04). Bottom-right: eP with one local
minimum (β̂ = 0.2, β̂2 = 0.1)

Fig. 3. Top-left: different regions in the β̂2 − β̂ plane for d̂2 = 5.5 > D2. eP has either no
local minimum (red), one local minimum (green), or two local minima (white). Top-right: the
associated stable bar width(s). Bottom-left: eP with no local minimum (β̂ = 0.1, β̂2 = 0.01).
Bottom-middle: eP with one local minimum (β̂ = 0.05, β̂2 = 0.015). Bottom-right: eP with
two local minima (β̂ = 0.2, β̂2 = 0.013)

4 Overall Model for Linear Network Extraction

In addition to the prior energy EP , we also need a likelihood energy linking the region
R (which in our case corresponds to the road network) to the data, in our case a VHR
optical satellite image. We will also specify some of the implementation details.
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4.1 Total Energy

The total energy is the sum of the prior energy EP and the likelihood energy ED:

E(φ; I) = ED(I, φ) + θEP (φ) , (9)

where I : Ω → R is the image, and θ ∈ R+ balances the contributions of the two
terms. ED is given by

ED(I, φ) = −
∫
Ω

dx

{
φ+(x) lnP+(I(x)) + φ−(x) lnP−(I(x))

}
. (10)

P±(I) are models of the histograms of the image intensity, inside (+) and outside (−)
the road region. They are both mixtures of Gaussians whose parameters are learned a
priori, in a supervised way. The quantities φ± = (1 ± φ)/2 are, by construction, ap-
proximately equal to the characteristic functions of R and R̄. The likelihood energy is
quite weak, in the sense that maximum likelihood classification produces very poor re-
sults (see Fig. 4(d)), mainly due to the ‘noise’ in the road region and the great variations
in the background. No image model with independent pixels can do much better than
this, which is why a powerful prior model is needed.

4.2 Optimization and Parameter Settings

To minimize E, we perform gradient descent with the neutral initialisation: the initial
value of φ is set equal to the threshold z = α/λ everywhere in Ω [10]. The algorithm
is thus quasi-automatic. The functional derivatives of the HOAC terms δES/δφ and
δEL/δφ involve convolutions: they are calculated in the Fourier domain, as are all
derivatives. The evolution equation is

∂φ(x)
∂t

=
1
2

ln
P+

P−
+ θ

{
∇2φ(x)− λ(φ3(x)− φ(x))− α(1− φ2(x))

+ βF−1
{
k2dΨ̂(kd)φ̂(k)

}
+ β2F

−1
{(
k · F{εxxT εTΨ(|x|/d2)} · k

)
φ̂(k)

}}
,

(11)

where F and F−1 denote the Fourier and the inverse Fourier transforms respectively,
and a hat ˆ indicates the Fourier transform of a variable. ε rotates the tangent vectors
to the inward normal vectors. The time evolution of φ uses the forward Euler method.
The parameters of the prior energy, i.e. θ, α, λ, β, β2, d, and d2, are constrained by the
stability analysis of section 3.2. This enables a choice of λ, β, β2, d, and d2 based on
the width(s) to be modelled: only α and θ remain.

5 Experimental Results

As input data I , we use a number of images, with average size 1500 × 1500 pixels, ex-
tracted from a QuickBird optical panchromatic image of Beijing. The scenes are char-
acteristic of dense urban regions. Fig. 4(a) illustrates one of these images. Our aim is to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Experiments and comparisons. 4(a): a QuickBird image, 0.61m; 4(b)-4(c): results obtained
using the new model,E, at 1/4 resolution and at full resolution. 4(d)-4(h): results obtained using:
MLE; the model with β = β2 = 0 (equivalent to a standard active contour); the model in [9]
β2 = 0; the methods in [11] and [12]

extract, completely and accurately, the road network from an image. In order to evaluate
the performance of our new model, we compare it quantitatively to ground truth and to
other methods from the literature. We also analyse the effect of the different terms in
our energy.

We will focus on two particular cases of road extraction: extraction of a network
consisting of roads of roughly the same width; and extraction of networks containing
roads of two different widths. In the former case, we choose the parameters so that eP
has one local minimum. The resulting model can extract roads whose widths are close
to the minimizing value. In the latter case, we choose the parameters so that eP has two
local minima. Again a small range of widths around each minimum is possible.

5.1 Extraction of Roads of Similar Widths

We apply our model to both the full-resolution and reduced resolution images. We
fixed the parameters as described in section 3.2. For all experiments, the parameters
(θ, α, λ, β, β2, d, d2) were (200, 0.15, 4, 0.02, 2× 10−4, 4, 12) and (200, 0.15, 4, 0.02,
1.25 × 10−5, 16, 48) at 1/4 and full resolution respectively. Note that apart from the
obvious scaling of d and d2, and a change in β2, the other parameters are the same for
the two resolutions.

The results obtained using the model E (equation (9)), at 1/4 resolution and at full
resolution, are shown in Fig. 4. The complete road network is retrieved successfully,
at both resolutions. Although the segmentation at 1/4 resolution appears geometrically
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Table 1. Quantitative criteria at full resolution (except first row) for Fig. 4(a) (T = True, F = False,
P = Positive, N = Negative)

PPPPPPPMethod
Measure Completeness Correctness Quality

TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)
Our model E (with EL) at 1/4
resolution, (e.g. Fig. 4(b))

0.9688 0.8519 0.8292

Our model E (with EL) (e.g. Fig. 4(c)) 0.8756 0.9693 0.8520
MLE (e.g. Fig. 4(d)) 0.9356 0.2073 0.2044

θE0 + ED (e.g. Fig. 4(e)) 0.6047 0.8249 0.5359
θ(E0 + ES) + ED (e.g. Fig. 4(f)) 0.6946 0.9889 0.6892

Wang [11] (e.g. Fig. 4(g)) 0.9350 0.3463 0.3381
Yu [12] (e.g. Fig. 4(h)) 0.6050 0.3695 0.2977

smoother, the extraction result is actually more accurate at full resolution. Accuracy
at 1/4 resolution is limited both directly, by the low resolution of the phase field, and
indirectly, because each scaling coefficient in the data at level 2 is the average of 16
pixels at full resolution: coefficients near the road border therefore include both road
and background contributions, and the road boundary is thereby blurred.

To evaluate the performance of the new model, we now compare our result with
other methods. In order to illustrate the effects of different terms in the model, we
computed results using maximum likelihood estimation (MLE, i.e. θ = 0); a standard,
non-higher-order active contour, (β = β2 = 0); and the model in [9] (β2 = 0). The
results are shown in Figs. 4(d)–4(f). MLE is clearly incapable of distinguishing the
roads from the background, while the models without ES and/or EL are not able to
recover the complete road network (although that with ES does better than the standard
active contour, which has only local prior knowledge). In addition, we apply two other
methods, proposed in [11] and [12], and compare them to ours. The approach in [11] is
a classification, tracking, and morphology algorithm; [12] introduced a fast but rough
segmentation technique based on ‘straight line density’. Without much prior geometric
knowledge, they extract many incorrect areas that happen to have similar statistical
properties to roads. Moreover, the accuracy of the delineation of the road boundary
is poor. Some quantitative evaluations based on standard criteria [13], are shown in
Table 1. Ground truth for this evaluation was segmented by hand. The ‘quality’ is the
most important measure because it considers both completeness and correctness. Our
complete model outperforms all others. Fig. 5 presents more results using E.

5.2 Extraction of Roads of Different Widths

Images containing roads of different widths are processed after choosing parameter val-
ues for which eP,L has two local minima. Fig. 6(a) shows an input image containing
two roads: their widths are approximately 20 pixels and 80 pixels. The results obtained
using our complete model E and the model in [9] (with β2 = 0) are illustrated in
Figs. 6(b) and 6(c) respectively. The parameter values used in this experiment were
(25, 0.15, 5, 0.02, 1.228 × 10−4, 4, 22). The estimated stable widths for these parame-
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Fig. 5. More results using the model E on pieces of a QuickBird image

(a) (b) (c)

Fig. 6. Extraction of a road network containing two different widths, at 1/4 resolution. Left to
right: image data; results using: the new model E; the model in [9] (β2 = 0)

ter values are 5.28 and 20.68, corresponding to the road widths at 1/4 resolution, i.e. 5
pixels and 20 pixels. This comparison shows clearly that adding EL enables the detec-
tion of roads with both widths, while the model without EL finds only an incomplete
network.

In practice, the results are not very sensitive to the precise choice of parameter
values, provided they lie in the correct subset of the β̂ − β̂2 − d̂2 diagram.

6 Conclusions

We have proposed a new HOAC term for modelling bar shape and embedded it in the
phase field framework. Based on a stability analysis of a bar with a desired width, we
established constraints linking the parameters of the energy function. We explored the
possible behaviours of the resulting prior energy EP as a function of the parameter
settings, and showed that as well as separating the interactions between points on the
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same and opposite sides of a network branch, the new model permits the modelling of
two widths simultaneously. The analysis also fixes some of the model parameters in
terms of network width(s). Experiments on road network extraction from VHR satellite
images demonstrate the superiority of the new model to others in the literature. Our
current work is focused on constructing a prior energy EP that has a very flat local
minimum in a wide range, instead of two sharp local minima. This might be a better
solution for the extraction of roads with multiple widths.
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tistical shape knowledge into the Mumford-Shah functional. Int. J. Comput. Vis. 50 (2002)
295–313

6. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic
active contours. In: Proc. IEEE CVPR. Volume 1., Hilton Head Island, South Carolina,
USA (2000)

7. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Proc. ECCV.
Volume 2., Copenhague, Danemark (2002)

8. Srivastava, A., Joshi, S., Mio, W., Liu, X.: Statistical shape analysis: Clustering, learning,
and testing. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2003) 590–602

9. Rochery, M., Jermyn, I.H., Zerubia, J.: Higher-order active contours. Int. J. Comput. Vis. 69
(2006) 27–42

10. Rochery, M., Jermyn, I.H., Zerubia, J.: Phase field models and higher-order active contours.
In: Proc. IEEE ICCV, Beijing, China (2005)

11. Wang, R., Zhang, Y.: Extraction of urban road network using Quickbird pan-sharpened
multispectral and panchromatic imagery by performing edge-aided post-classification. In:
Proc. ISPRS, Quebec City, Canada (2003)

12. Yu, Z., Prinet, V., Pan, C., Chen, P.: A novel two-steps strategy for automatic GIS-image
registration. In: Proc. ICIP, Singapore (2004)

13. Heipke, C., Mayr, H., Wiedemann, C., Jamet, O.: Evaluation of automatic road extraction.
Int. Arch. Photogram. Rem. Sens. XXXII (1997) 47–56


