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multiscale approach and a phase field model of
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Abstract—This paper addresses the problem of automatically types of active contours, given a topologically correctpyra
extracting the main road network in a dense urban area from of the network. A multi-scale image model is used. In [15], a
a very high resolution optical satellite image using a varidonal — ,ventional multi-spectral classification of a Pan-Skagu
approach. The model energy has two parts: a phase field higher ickBird i . bined with ed inf tion f
order active contour energy that describes our prior knowlelge QuickBir |mag§ 'S_ combine _W'_ e gel In ormg ion r_om
of road network geometry, i.e. that it is composed of elongated the Panchromatic image to eliminate misclassified objects.
structures with roughly parallel borders that meet at junctions; In [5], LIDAR data is used in conjunction with VHR im-
and a multi-scale statistical image model describing the imge agery. Detection of road primitives is followed by an itérat
we expect to see given a road network. By minimizing the model Hough transform to select candidate road strips. A valifati

energy, an estimate of the road network is obtained. Promisig . . .
results on 0.6m QuickBird Panchromatic images are presented, procedure and topological analysis are finally used to form

and future improvements to the models are outlined. the road network. In [7], good results are obtained, butgisin
a complicated series of processing steps. [1] works on sub-
|. INTRODUCTION metric SAR images. The algorithm is based on a Hough

The commercial availability of sub-metric resolution @pli transform that localizes straight parts of roads in the scen
satellite images (QuickBird, lkonos, and Pléiades in tearn and a tracking algorithm that extracts the full road network
future) provides new opportunities for the extraction dbin  The result is improved by using knowledge of the road network
mation from remote sensing data: qualitatively new categor context to complete the extraction in disturbed areas.
of information are available, and the accuracy of previpusl |n the present work, we aim to extract the region in the
extracted categories of information can be quantitatively image domain containing the main road network in dense
proved. For example, road networks can be extracted as tWeban areas from a single VHR QuickBird Panchromatic
dimensional regions rather than as one-dimensional stret image ().61m/pixel). We want to do so automatically (except
and the geometric accuracy of the extracted road network gaf parameter estimation, which is a topic for future reskjr
be greatly improved. Higher resolution brings with it newve work with a unified, analysable model of the road network
challenges however. The appearance of details invisible gAd the image, rather than a series of processing steps. We
lower resolution imagese.g. cars, road markings, shadowscombine a ‘phase field higher-order active contour’ model of
and other linear but non-road features, can easily distupt the geometry of the road network, with a region-based image
recognition process, and demands more sophisticated mafbdel. We describe this model in section Il. We then intraduc
elling, both of the image and of the road network. For thg multi-scale image model in section Ill. The optimization
former, the existence of phenomena at multiple scales stg)géramework is discussed in section IV. In section V, we présen
a multi-scale approach, while for the latter, the incorpiora results obtained using both the single-scale model at wario
into the models of our prior knowledge of the geometry of thgsolutions, and the multi-scale model, and make a congaris

road network becomes critical. between them showing the benefits of the multi-scale arsalysi
There is a large body of work on extracting road netpfe conclude in section VI.

works [11] from images with resolutions significantly lower

than 1m/pixel, particularly from rural or peri-urban sitekere

the network is readily visible, with less shade and occlusio Il. THE MODEL: PRIOR AND DATA ENERGIES

artefacts than in inner cities. There is less work on VHR

images of urban environments, where the problem is madé/Ne model the region containing the road netwdtlusing
more difficult by the complexity of the images. In [12], roadshe phase field formulation of HOACs introduced by [14]. Let
and junctions are extracted in two steps using two differesfitbe a phase field level set function in the image donsain
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We define our model energy in the following form: normal vectors to repel each other, and with parallel normal
vectors to attract each other. This has two effects: it preve
E(¢) =0Ep(¢) + Ep(I,9) , pairs of points with anti-parallel normal vectors from coiqi
wheref is a constant that balances the contribution of the pri&?0 close, and it encourages the growth of armlike strusture
energyEp(¢) and the data energ¥p (I, ¢). Consequently, the effect is to assign low energy to (andéenc
favour) regions composed of long arms of a certain width and
with roughly parallel sides that join together at junctioirs
Conventional active contours [2]-[4], [6], [10] are defineather words, it makes the generation of a network possibje.
by linear functionals, expressible as single integralscdn- thus constitutes an appropriate prior term for our problem.
trast, HOACs [13] are defined by polynomial functionals.
Expressed as multiple integrals, they describe non-lazal B. Data energy

teractions between points in the region boundary. Via | order to segment road networks in the image, the data

these long-range interactions, HOACs allow the inclusibn germ of the functional must be defined in terms of the phase
complex prior geometrical constraints. For this reasonAB®  field function¢. Since, as we mentioned earlier, the potential
are more robust to noise than conventional active contanis, constrainsp(z) ~ 1 for x € R and¢(x) ~ —1 for = ¢ R,

Phase fieldsnodel the regiorfz using a level set function  p and R = O — R respectively.

defined over the entire image, rather than using its boundingrad networks possess the following properties:
contour. Phase fields differ from most level-set methods in
that ¢ is not constrained to be a distance function. Phase
fields have several advantages over parametric active wento
or standard level sets: a linear representation space; ase
implementation; and a neutral initialization. In additighey
allow greater topological freedom, which is critical when
the topology of the region is not knowa priori. In the
context of the present application, the objects to be setgden . )
i.e. road networks, may have several connected components shadows, roaq SIgns, etc. Nevertheless, they still show
and many loops. Dealing with this topological complexity is much less variability than the background.

arguably one of the most difficult aspects of automatic rodd'ese properties discriminate roads from the backgroumd, a
network extraction; phase fields handle it “naturallPhase are takeninto accountin the data term of our moflgJ(1, ¢):

field HOACsare phase field models that also include the long-

range interactions characteristic of HOACS. Ep(l,¢) =

The prior energyEp is the same as the one used by [14]: _/ {[lnB+(I(x)) + 0 In P (V(2))] 6. ()
D e
Ep(¢) = / Gg{gwm Vo(x) + V(<z>(x))} + [ P_(I(z)) + 6 In P (V(2))] - (:c)} )
_b // Vo(z) - Vo(z') ¥(jxz —2'|). (1) The P4 and P, terms are the density functions of the grey
2 (z,2")€N?

level I (one-point statistics model) and of the variandés
wherez is a point in the image domaift and D, 3, A\, « are computed in a window centred at point(two-point statistics

A. Prior Energy

« they are mainly built from the same materials (concrete,
asphalt) and thus tend to have somewhat homogeneous
spectral properties. In contrast, the backgroured ion-
road regions) has no single photometric characteristic.

o The surfaces of main roads as seen in the image are
not entirely uniform due to the presence of deterministic
noise, such as zebra crossings, over-bridges, vehicles,

constant parameters. The potenfialis model) respectively, estimated in the main roadl$ and in
1 1 1 the background-{). 6, is the weight of the variance.
4 2 3 . .
V(z) = M73#" = 52°) +alz = 327) To learn the parameters for this model, Geographic In-

formation System (GIS) road layer data was used as a
mask covering the main roads (see figure 1). For each class
(road and background), we then computed the histograms
’ - of the pixel intensities/ and the variance$’, from which
Vo(x) penalizes large gradients and ensures thatakes a e estimated the parameters of Gaussian mixture distribu-
.smooth.transmorj frorrfrl tol across the bo_unda@R. The tions @i p1e, 0% pior, 02,) and of Gamma distributions
mter_actlon functlo_n\I/ is a function of the distance betweertbivci,di) respectively:
the interacting points.

It was demonstrated in [14] that the first line of equation 1 P (1) = ax N(I; 14, 054) + (1 — ax)N(I; pios, 05)
is equivalent to an active contour model with an energy Vb v
E = AcL(OR) + acA(R), where L is the length of the ~R=(V)=-——e =, 3)
contourdR and A its interior surface area. The second line *
introduces the long-range HOAC interactions that encoite prwhereay € [0,1] and N is the normal distribution. Examples
geometric knowledge. It causes pairs of points with ansij@r of histograms and fitted models are shown in figure 2.

By definition, R = {x € Q : ¢(x) > «/A}, but in addition
the potentialV” effectively constraing(z) ~ 1 for x € R and
¢(x) ~ —1 for x ¢ R. The local derivative produc?¢(x) -
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Fig. 1. Two QuickBird©images (size2560 x 2560) and the
corresponding GIS masks of the main roads.
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IIl. M ULTI-RESOLUTION DATA ENERGY

A multi-resolution analysis is motivated by the following
three factors. First, as noted in section |, VHR images donta o o oo
objects, e.g. roads, buildings, at many different scales. In
order to capture this complicated behaviour, it makes sense ()
to analyse an image at several resolutions simultaneously.

Second, the large size of VHR images compels us to “op
mize” the computation speed. Multi-resolution algorithoas
be significantly faster than single resolution algorithinzst,

0.002

Eig. 2: 2(a): histograms of the pixel intensifyin the main
road (top) and the background (bottom); 2(b): histograms of

the pixel intensity variance¥®” in the main road (green/light

the same object observed at high or low resolutions prese ;
different characteristics. In particular, at low resaut, the gjiy;ﬁg:g ;;thgr: iﬂ;%;zugsd Sgblilge"/gzgk grey). Fitted models,

background can be viewed as noise, while the larger roa
are still clearly distinguished as homogeneous areas. Road

segmentation is thereby facilitated, but is also less peadn ] ) ) ] ) )
contrast, higher resolutions can provide a more precissitae Ieve_l as deflnt_ad in equation 2. In practice, since the size of
and width for the road. The use of several resolutions th{¥€ image varies by a factor affrom level s to level s + 1,
allows the combination of coarse data, in which details ¥y UP-sample all to the finest resolution. The total energy
the image that can disrupt the recognition process have bé@hthe multi-scale model is then defined as

eliminated, with fine data to increase precision.

To generate a multi-scale version of the image, a wavelet E=FEp+EpmuL -
transform [9] is used to generate a series of scaling coefiisi
at different scales (levels). Since the model energy with a IV. OPTIMIZATION FRAMEWORK

single level works well in leve} (after three levels of wavelet L )
transform), as we will show in section V, we start with T0 minimize the energy’, we performed a gradient descent

energies computed at four different levels: set to be a constant equal tg/A everywhere in€2, which
corresponds to the local maximum of the potentfalDuring
Epwu (1, ¢) = ZED,S(IS,@ ; the algorithm, no re-initialization oad hocregularization is

required. Parameter values and weights are for the moment se
wherel,, s € {0,1,2, 3}, are the scaling coefficients at level by hand, but they are constrained by stability conditior.[1
of a wavelet transform anfl; ; is the data energy at a singleln the case of the single-scale model energy, the gradient



descent equation is

% _

i 0[DV?6 — A(¢° — ¢) — a(l — ¢*) — BV * ]

L % [In Py (I(2)) + 6y In Py (V(2))]

_ %[mpi,(f(x)) +60,InR_(V(x))] .

wherex indicates convolution. The equation for multiple scales:
involves adding a copy of the last two lines for each scale.

V. EXPERIMENTAL RESULTS

Two pieces of a QuickBird Panchromatic image are showr
in figure 1. It is a typical dense urban scene in Beijing. In
the same figure are shown the corresponding pieces of t
associated GIS main road layer. The image dates from sever
years after the GIS data were acquired, however, so it is
measure of the robustness of the approach that the mod
parameters are learned from these outdated GIS masks.

A. Results using a single scale

In this section, we apply the single-scale model to the (© (d)
scaling coefficients of the images in figure 1 at differentlsv
of the wavelet decomposition. Figure 3(a) shows one of the,s%_ 3: Image data and extraction results at lege(size:
images at leveB of the wavelet transform, while figure 3(b)39 320) using the single-scale model energy. Road width
shows a zoom on part of this image illustrating that everrafte, |9 pixels. 3(a): image data at level for one of the two
three levels of smoothing and down-sampling, the datalls s{pgt images. 3(b): zoom to illustrate the complexity reriman

rather complex. The results of applying the single-scalél@ho ¢\ep 4 this level. 3(c) and 3(d): the results obtained usieg
to the images at levél are shown in figure 3(c) and figure 3(d)single-scale model energy at levil

The road networks in the GIS masks are nearly perfectly
retrieved. Thanks to the incorporation of strong geometric
pr!or knowledge, a_t the coarser resolution, the model is &l B. Results using multiple scales
bridge gaps resulting from shadows cast on the road, remove
errors along the boundary of the roads and ignore errongous| In order to improve the segmentation result at finer reso-
detected roads in the background. Moreover, figure 3(d) sholitions, we applied the multi-scale model (see section Al)
that the model also has the ability to find roads that d&sult is shown in figure 5. The result is not perfect, but is
not appear in the GIS maskise. that have been built more Very promising considering the complexity of the image. The
recently. This is an important issue in the application tqpma!Se of a multi-scale model improves the result obtained from
updating. On the other hand, if the radiometric properties 1€ original image at a single level (see figure 4(c)). Howeve
the new roads are quite different from those computed fram tHhere are still some false detections in the background and
given GIS mask, they cannot always be found (see figure 3(&?{-_\ road borders are rather inaccurate due to geometrie nois
along the boundaries of the road. The result indicates that a
The level 3 image is already quite complex, and we fingimple sum of data_ e_nergies at several different scaledewhi
that if we try to use the same model at finer resolution8€lPful, is not sufficient to solve the problem completely.
using the images at level3, 1, or 0, the details of the It suggests that the model sh_ould mcl_ut_je more complicated
scene in the image make road extraction more difficult (sé@/ationships among the scaling coefficients and maybe the
figure 4). The erroneous detections in the background resyyvelet coefficients, within and between scales.
from regions of poor contrast between the main roads and the
buildings or areas of vegetation, and also from the smaller
roads, which have statistical properties similar to themmai ‘Phase field HOACs’ are powerful models for image region
roads. The shadows of high buildings, cars, road markindgs asegmentation. They have many advantages with regard to
bridges lead to jagged borders or gaps along the roads. THoaventional models: a linear representation space; ehse o
former indicates a lack in the image model, while the lattémplementation; neutral initialization (initializatiols chosen
seem more likely to be due to a weakness in the prior modal a constant function); greater topological freedom; ded t
which therefore needs to be improved in order to enforce tivelusion of sophisticated prior knowledge of region getine
road geometry more effectively. In this paper, we have proposed a new multi-resolution image

VI. CONCLUSION



Our current work is focused on a further study of the
two-point statistics of the wavelet and scaling coefficsetat
improve the data model; we are also working on a coherent
multi-scale prior energy term (as opposed to data term) to
reduce computational load. In addition, with the map updgti
application in mind, we plan to incorporate even more prior
knowledge in the form of outdated GIS maps, which should
help greatly to improve the results.
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