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Abstract—This paper addresses the problem of automatically
extracting the main road network in a dense urban area from
a very high resolution optical satellite image using a variational
approach. The model energy has two parts: a phase field higher-
order active contour energy that describes our prior knowledge
of road network geometry, i.e. that it is composed of elongated
structures with roughly parallel borders that meet at junct ions;
and a multi-scale statistical image model describing the image
we expect to see given a road network. By minimizing the model
energy, an estimate of the road network is obtained. Promising
results on 0.6m QuickBird Panchromatic images are presented,
and future improvements to the models are outlined.

I. I NTRODUCTION

The commercial availability of sub-metric resolution optical
satellite images (QuickBird, Ikonos, and Pléiades in the near
future) provides new opportunities for the extraction of infor-
mation from remote sensing data: qualitatively new categories
of information are available, and the accuracy of previously
extracted categories of information can be quantitativelyim-
proved. For example, road networks can be extracted as two-
dimensional regions rather than as one-dimensional structures,
and the geometric accuracy of the extracted road network can
be greatly improved. Higher resolution brings with it new
challenges however. The appearance of details invisible in
lower resolution images,e.g. cars, road markings, shadows,
and other linear but non-road features, can easily disrupt the
recognition process, and demands more sophisticated mod-
elling, both of the image and of the road network. For the
former, the existence of phenomena at multiple scales suggests
a multi-scale approach, while for the latter, the incorporation
into the models of our prior knowledge of the geometry of the
road network becomes critical.

There is a large body of work on extracting road net-
works [11] from images with resolutions significantly lower
than 1m/pixel, particularly from rural or peri-urban siteswhere
the network is readily visible, with less shade and occlusion
artefacts than in inner cities. There is less work on VHR
images of urban environments, where the problem is made
more difficult by the complexity of the images. In [12], roads
and junctions are extracted in two steps using two different

types of active contours, given a topologically correct graph
of the network. A multi-scale image model is used. In [15], a
conventional multi-spectral classification of a Pan-Sharpened
QuickBird image is combined with edge information from
the Panchromatic image to eliminate misclassified objects.
In [5], LIDAR data is used in conjunction with VHR im-
agery. Detection of road primitives is followed by an iterative
Hough transform to select candidate road strips. A validation
procedure and topological analysis are finally used to form
the road network. In [7], good results are obtained, but using
a complicated series of processing steps. [1] works on sub-
metric SAR images. The algorithm is based on a Hough
transform that localizes straight parts of roads in the scene,
and a tracking algorithm that extracts the full road network.
The result is improved by using knowledge of the road network
context to complete the extraction in disturbed areas.

In the present work, we aim to extract the region in the
image domain containing the main road network in dense
urban areas from a single VHR QuickBird Panchromatic
image (0.61m/pixel). We want to do so automatically (except
for parameter estimation, which is a topic for future research).
We work with a unified, analysable model of the road network
and the image, rather than a series of processing steps. We
combine a ‘phase field higher-order active contour’ model of
the geometry of the road network, with a region-based image
model. We describe this model in section II. We then introduce
a multi-scale image model in section III. The optimization
framework is discussed in section IV. In section V, we present
results obtained using both the single-scale model at various
resolutions, and the multi-scale model, and make a comparison
between them showing the benefits of the multi-scale analysis.
We conclude in section VI.

II. T HE MODEL: PRIOR AND DATA ENERGIES

We model the region containing the road networkR using
the phase field formulation of HOACs introduced by [14]. Let
φ be a phase field level set function in the image domainΩ.
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We define our model energy in the following form:

E(φ) = θEP (φ) + ED(I, φ) ,

whereθ is a constant that balances the contribution of the prior
energyEP (φ) and the data energyED(I, φ).

A. Prior Energy

Conventional active contours [2]–[4], [6], [10] are defined
by linear functionals, expressible as single integrals. Incon-
trast, HOACs [13] are defined by polynomial functionals.
Expressed as multiple integrals, they describe non-local in-
teractions between points in the region boundary∂R. Via
these long-range interactions, HOACs allow the inclusion of
complex prior geometrical constraints. For this reason, HOACs
are more robust to noise than conventional active contours,and
permit a generic initialization that renders them automatic.

Phase fieldsmodel the regionR using a level set functionφ
defined over the entire image, rather than using its bounding
contour. Phase fields differ from most level-set methods in
that φ is not constrained to be a distance function. Phase
fields have several advantages over parametric active contours
or standard level sets: a linear representation space; easeof
implementation; and a neutral initialization. In addition, they
allow greater topological freedom, which is critical when
the topology of the region is not knowna priori. In the
context of the present application, the objects to be segmented,
i.e. road networks, may have several connected components
and many loops. Dealing with this topological complexity is
arguably one of the most difficult aspects of automatic road
network extraction; phase fields handle it “naturally”.Phase
field HOACsare phase field models that also include the long-
range interactions characteristic of HOACs.

The prior energyEP is the same as the one used by [14]:

EP (φ) =

∫

x∈Ω

{D

2
∇φ(x) · ∇φ(x) + V (φ(x))

}

−
β

2

∫∫

(x,x′)∈Ω2

∇φ(x) · ∇φ(x′) Ψ(|x − x′|) . (1)

wherex is a point in the image domainΩ andD, β, λ, α are
constant parameters. The potentialV is

V (z) = λ(
1

4
z4 −

1

2
z2) + α(z −

1

3
z3) ,

By definition,R = {x ∈ Ω : φ(x) > α/λ}, but in addition
the potentialV effectively constrainsφ(x) ≃ 1 for x ∈ R and
φ(x) ≃ −1 for x 6∈ R. The local derivative product∇φ(x) ·
∇φ(x) penalizes large gradients and ensures thatφ makes a
smooth transition from−1 to 1 across the boundary∂R. The
interaction functionΨ is a function of the distance between
the interacting points.

It was demonstrated in [14] that the first line of equation 1
is equivalent to an active contour model with an energy
E = λCL(∂R) + αCA(R), where L is the length of the
contour∂R and A its interior surface area. The second line
introduces the long-range HOAC interactions that encode prior
geometric knowledge. It causes pairs of points with antiparallel

normal vectors to repel each other, and with parallel normal
vectors to attract each other. This has two effects: it prevents
pairs of points with anti-parallel normal vectors from coming
too close, and it encourages the growth of armlike structures.
Consequently, the effect is to assign low energy to (and hence
favour) regions composed of long arms of a certain width and
with roughly parallel sides that join together at junctions. In
other words, it makes the generation of a network possible.EP

thus constitutes an appropriate prior term for our problem.

B. Data energy

In order to segment road networks in the image, the data
term of the functional must be defined in terms of the phase
field functionφ. Since, as we mentioned earlier, the potential
V constrainsφ(x) ≃ 1 for x ∈ R andφ(x) ≃ −1 for x 6∈ R,
φ± = (1 ± φ)/2 are approximate characteristic functions for
R and R̄ = Ω − R respectively.

Road networks possess the following properties:

• they are mainly built from the same materials (concrete,
asphalt) and thus tend to have somewhat homogeneous
spectral properties. In contrast, the background (i.e. non-
road regions) has no single photometric characteristic.

• The surfaces of main roads as seen in the image are
not entirely uniform due to the presence of deterministic
noise, such as zebra crossings, over-bridges, vehicles,
shadows, road signs, etc. Nevertheless, they still show
much less variability than the background.

These properties discriminate roads from the background, and
are taken into account in the data term of our model,ED(I, φ):

ED(I, φ) =

−

∫

x∈Ω

{

[

lnPi+(I(x)) + θv lnPv+(V (x))
]

φ+(x)

+
[

lnPi−(I(x)) + θv lnPv−(V (x))
]

φ−(x)
}

. (2)

The Pi± andPv± terms are the density functions of the grey
level I (one-point statistics model) and of the variancesV
computed in a window centred at pointx (two-point statistics
model) respectively, estimated in the main roads (+) and in
the background (−). θv is the weight of the variance.

To learn the parameters for this model, Geographic In-
formation System (GIS) road layer data was used as a
mask covering the main roads (see figure 1). For each class
(road and background), we then computed the histograms
of the pixel intensitiesI and the variancesV , from which
we estimated the parameters of Gaussian mixture distribu-
tions (a±; µ1±, σ2

1±; µ2±, σ2
2±) and of Gamma distributions

(b±, c±, d±) respectively:

Pi±(I) = a±N(I; µ1±, σ2
1±) + (1 − a±)N(I; µ2±, σ2

2±)

Pv±(V ) =
V b±

d±
e
−

V

c± , (3)

wherea± ∈ [0, 1] andN is the normal distribution. Examples
of histograms and fitted models are shown in figure 2.



Fig. 1: Two QuickBirdc©images (size:2560 × 2560) and the
corresponding GIS masks of the main roads.

III. M ULTI -RESOLUTION DATA ENERGY

A multi-resolution analysis is motivated by the following
three factors. First, as noted in section I, VHR images contain
objects, e.g. roads, buildings, at many different scales. In
order to capture this complicated behaviour, it makes sense
to analyse an image at several resolutions simultaneously.
Second, the large size of VHR images compels us to “opti-
mize” the computation speed. Multi-resolution algorithmscan
be significantly faster than single resolution algorithms.Last,
the same object observed at high or low resolutions presents
different characteristics. In particular, at low resolutions, the
background can be viewed as noise, while the larger roads
are still clearly distinguished as homogeneous areas. Road
segmentation is thereby facilitated, but is also less precise. In
contrast, higher resolutions can provide a more precise location
and width for the road. The use of several resolutions thus
allows the combination of coarse data, in which details in
the image that can disrupt the recognition process have been
eliminated, with fine data to increase precision.

To generate a multi-scale version of the image, a wavelet
transform [9] is used to generate a series of scaling coefficients
at different scales (levels). Since the model energy with a
single level works well in level3 (after three levels of wavelet
transform), as we will show in section V, we start with
information from this level. Our data energy is a sum of
energies computed at four different levels:

EDMUL (I, φ) =
∑

s

ED,s(Is, φ) ,

whereIs, s ∈ {0, 1, 2, 3}, are the scaling coefficients at levels
of a wavelet transform andED,s is the data energy at a single
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Fig. 2: 2(a): histograms of the pixel intensityI in the main
road (top) and the background (bottom); 2(b): histograms of
the pixel intensity variancesV in the main road (green/light
grey) and the background (blue/dark grey). Fitted models,
equations 3, are shown as solid lines.

level as defined in equation 2. In practice, since the size of
the image varies by a factor of2 from level s to level s + 1,
we up-sample allIs to the finest resolution. The total energy
for the multi-scale model is then defined as

E = EP + EDMUL .

IV. OPTIMIZATION FRAMEWORK

To minimize the energyE, we performed a gradient descent
with the neutral initialization [14]: the initial value ofφ is
set to be a constant equal toα/λ everywhere inΩ, which
corresponds to the local maximum of the potentialV . During
the algorithm, no re-initialization orad hoc regularization is
required. Parameter values and weights are for the moment set
by hand, but they are constrained by stability conditions [14].
In the case of the single-scale model energy, the gradient



descent equation is

∂φ

∂t
= θ

[

D∇2φ − λ(φ3 − φ) − α(1 − φ2) − β∇2Ψ ∗ φ
]

+
1

2

[

lnPi+(I(x)) + θv lnPv+(V (x))
]

−
1

2

[

lnPi−(I(x)) + θv lnPv−(V (x))
]

.

where∗ indicates convolution. The equation for multiple scales
involves adding a copy of the last two lines for each scale.

V. EXPERIMENTAL RESULTS

Two pieces of a QuickBird Panchromatic image are shown
in figure 1. It is a typical dense urban scene in Beijing. In
the same figure are shown the corresponding pieces of the
associated GIS main road layer. The image dates from several
years after the GIS data were acquired, however, so it is a
measure of the robustness of the approach that the model
parameters are learned from these outdated GIS masks.

A. Results using a single scale

In this section, we apply the single-scale model to the
scaling coefficients of the images in figure 1 at different levels
of the wavelet decomposition. Figure 3(a) shows one of these
images at level3 of the wavelet transform, while figure 3(b)
shows a zoom on part of this image illustrating that even after
three levels of smoothing and down-sampling, the data is still
rather complex. The results of applying the single-scale model
to the images at level3 are shown in figure 3(c) and figure 3(d).
The road networks in the GIS masks are nearly perfectly
retrieved. Thanks to the incorporation of strong geometric
prior knowledge, at the coarser resolution, the model is able to
bridge gaps resulting from shadows cast on the road, remove
errors along the boundary of the roads and ignore erroneously
detected roads in the background. Moreover, figure 3(d) shows
that the model also has the ability to find roads that do
not appear in the GIS masks,i.e. that have been built more
recently. This is an important issue in the application to map
updating. On the other hand, if the radiometric properties of
the new roads are quite different from those computed from the
given GIS mask, they cannot always be found (see figure 3(c)).

The level 3 image is already quite complex, and we find
that if we try to use the same model at finer resolutions,
using the images at levels2, 1, or 0, the details of the
scene in the image make road extraction more difficult (see
figure 4). The erroneous detections in the background result
from regions of poor contrast between the main roads and the
buildings or areas of vegetation, and also from the smaller
roads, which have statistical properties similar to the main
roads. The shadows of high buildings, cars, road markings and
bridges lead to jagged borders or gaps along the roads. The
former indicates a lack in the image model, while the latter
seem more likely to be due to a weakness in the prior model,
which therefore needs to be improved in order to enforce the
road geometry more effectively.

(a) (b)

(c) (d)

Fig. 3: Image data and extraction results at level3 (size:
320 × 320) using the single-scale model energy. Road width
≃ 12 pixels. 3(a): image data at level3 for one of the two
test images. 3(b): zoom to illustrate the complexity remaining
even at this level. 3(c) and 3(d): the results obtained usingthe
single-scale model energy at level3.

B. Results using multiple scales

In order to improve the segmentation result at finer reso-
lutions, we applied the multi-scale model (see section III). A
result is shown in figure 5. The result is not perfect, but is
very promising considering the complexity of the image. The
use of a multi-scale model improves the result obtained from
the original image at a single level (see figure 4(c)). However,
there are still some false detections in the background and
the road borders are rather inaccurate due to geometric noise
along the boundaries of the road. The result indicates that a
simple sum of data energies at several different scales, while
helpful, is not sufficient to solve the problem completely.
It suggests that the model should include more complicated
relationships among the scaling coefficients and maybe the
wavelet coefficients, within and between scales.

VI. CONCLUSION

‘Phase field HOACs’ are powerful models for image region
segmentation. They have many advantages with regard to
conventional models: a linear representation space; ease of
implementation; neutral initialization (initializationis chosen
as a constant function); greater topological freedom; and the
inclusion of sophisticated prior knowledge of region geometry.
In this paper, we have proposed a new multi-resolution image



(a)

(b) (c)

Fig. 4: Extraction results using the single-scale model energy
at finer resolutions. 4(a): result at level2 (size:640×640), road
width ≃ 24 pixels. 4(b): result at level1 (size:1280× 1280),
road width≃ 48 pixels. 4(c): result at original resolution (size:
2560 × 2560), road width≃ 96 pixels.

Fig. 5: Extraction result at the original resolution (size:2560×
2560) using the multi-scale model energy.

model to adapt ‘phase field HOACs’ to the problem of urban
road extraction from VHR QuickBird Panchromatic images.
We have shown that the model is robust: it is able to retrieve
roads in any image samples in which the roads have similar
statistical properties to those used for the parameter learning.
Nevertheless, the multi-scale approach needs further improve-
ments in order to eliminate false detections and improve the
accuracy of road border delineation.

Our current work is focused on a further study of the
two-point statistics of the wavelet and scaling coefficients to
improve the data model; we are also working on a coherent
multi-scale prior energy term (as opposed to data term) to
reduce computational load. In addition, with the map updating
application in mind, we plan to incorporate even more prior
knowledge in the form of outdated GIS maps, which should
help greatly to improve the results.
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