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Abstract

We present a method for region identification in multi-
ple images. A set of regions in different images and the
correspondences on their boundaries can be thought of as
a boundary in the multi-dimensional space formed by the
product of the individual image domains. We minimize an
energy functional on the space of such boundaries, thereby
identifying simultaneously both the optimal regions in each
image and the optimal correspondences on their bound-
aries. We use a ratio form for the energy functional, thus
enabling the global minimization of the energy functional
using a polynomial time graph algorithm, among other de-
sirable properties. We choose a simple form for this energy
that favours boundaries that lie on high intensity gradients
in each image, while encouraging correspondences between
boundaries in different images that match intensity values.
The latter tendency is weighted by a novel heuristic energy
that encourages the boundaries to lie on disparity or opti-
cal flow discontinuities, although no dense optical flow or
disparity map is computed.

1. Introduction

Sets of images of a scene formed by varying camera pa-
rameters such as position, orientation or time of image for-
mation contain more information about the scene than sin-
gle images. This information, for example the distance to or
motion of points in the scene, is contained in the correspon-
dence between the image domains defined by the points in
the scene that are visible in more than one image in the set.

If the camera parameters do not vary too much from one
image to another, the correspondence will be ‘dense’: most
points in each image will correspond to a point in at least
one other image. Many approaches to such sets of images
concentrate on inferring this dense correspondence from the
data. The philosophy and the techniques used in finding a
dense correspondence are analogous to those used in mod-

els that attempt to partition the image domain in a meaning-
ful way. In both cases the objects studied are fieldson the
image domain. For example, a partition of the image do-
main can be thought of as a field of labels. Optical flow and
disparity are other examples of such fields.

Complementary to these approaches to image under-
standing is a large body of previous work that attempts
to identify significant regions in an image directly, using
a model of the nature of the region or its boundary. The
objects studied in these methods are typically mappings of
some structureinto the image domain. Examples of this
type of approach are template-based methods and active
contours. In both cases a model of the type of region (or
its boundary) is established, and the region or regions of
the image that best conform to that model are sought. In
the active contour case, the standard model favours regions
with shorter boundaries passing through points in the image
domain with higher intensity gradient for example. While
there has been a great deal of effort made to utilise multiple
image information in the first approach, the body of work
that uses such cues in this second approach is less volumi-
nous.

Each approach has its advantages and drawbacks. Field-
based approaches provide information about the whole im-
age, whereas region identification methods provide infor-
mation about the extracted region only. On the other hand,
the latter are clearly well suited to situations in which inter-
est centres on the region identified, and where extra infor-
mation about the rest of the image would be redundant. An
example is the approach of a fast-moving object. In such
a situation, computing the distance to or motion of every
point in the rest of the scene is inefficient. What is needed
is both detection and recognition of the object along with
the extraction of the pertinent information.

The present paper is a contribution to this second ap-
proach. We present a method for region identification in
multiple images. A set of regions in different images and
the correspondences on their boundaries can be thought of
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as a boundary in the multi-dimensional space formed by the
product of the individual image domains, so that minimiz-
ing an energy functional on the space of such boundaries
identifies simultaneously both the optimal regions in each
image and the optimal correspondences on their bound-
aries. By using the ratio form of energy functional described
in [15], we enable the global minimization of the energy
functional in polynomial time using a minimum ratio cy-
cle graph algorithm, as well as a number of other desirable
properties. The energy will incorporate information about
the boundaries and regions in each image individually, and
also about the correspondences between the boundaries in
different images, thus allowing us to utilise the extra infor-
mation inherent in having more than one image. We will
focus on the case of motion sequences, but everything goes
over to the stereo case (in particular the phrase ‘optical flow’
will stand in for ‘optical flow and disparity’ where appro-
priate), the primary difference being that the epipolar con-
straint reduces the dimensionality of the space we need to
consider.
Acknowledgments. This work was partially supported
by NSF Grant No.9733913 and MURI-AFOSR 25-74100-
F1837.

1.1. Previous Work

The application of active contour models to multiple im-
ages is discussed in the original active contour paper [18].
The approach taken to motion sequences is to track a con-
tour over time, a method which has been greatly elaborated
and extended in subsequent work, for example using parti-
cle filters [14]. While tracking has something in common
with the approach we describe here, the philosophy is dif-
ferent: its emphasis is on following an already-identified
region. Initialization, or in other words region identifica-
tion, is a secondary concern. In fact, viewed as a method
for the identification of regions in multiple images, tracking
is lacking. It is a greedy approach, in that a region in a sec-
ond image for example is identified given the region in the
first. In contrast, the approach we describe here is global:
all regions and their correspondences are identified simul-
taneously. In addition, tracking algorithms usually do not
find the global minimum even for the greedy problem.

The approach taken to stereo pairs in [18] is different
and similar to that described here. An energy term favour-
ing contours parallel to the image planes (or alternatively
contours whose shape is the same in each image) is used to
couple the contours in the two images. However no attempt
is made to match the data at corresponding points or to dis-
cover disparity discontinuities. It would be quite possible
for the two contours to lie on unrelated parts of the two im-
ages (in the sense that the data on one of the contours would
bear no resemblance to that on the other) provided the dis-

placement from one contour to the other was constant along
the contour. In addition, while the energy terms described
here could be incorporated into a linear functional such as
that used in [18], the advantages of equation 2.1, principally
the global minimizability of the energy, would then be lost.
In [9], stereo pairs of contours are tracked through time.
The contours in the two stereo images are constrained to de-
form in related ways in time or are constrained to be affine
transformations of one another for example. This is an in-
teresting way of incorporating shape information if one has
stereo motion sequences, but we do not consider this case
here.

Field-based methods for the computation of dense opti-
cal flow are very numerous. Many methods use some vari-
ant of an optimization approach in which the energy func-
tional encourages ‘similar’ features in the images to corre-
spond, while using a regularization term to smooth out noise
and to determine the optical flow in regions where the data is
non-committal [1, 4, 5, 6, 7, 11, 13, 25, 16, 17, 20, 28]. As
already discussed, such an approach is complementary to
that pursued here. The results of dense computations could
be used as extra data for the type of model considered here,
as is done in [23], but that is what we are trying to avoid.
In fact the reverse is also true: the results of the computa-
tions described here can be used to fix the optical flow and
weaken the smoothing on the extracted boundaries.

There is a significant difference between the methods
proposed here and those methods dedicated to computing
correspondences between pre-existing contours [12]. While
it would be possible to apply a single image version of equa-
tion 2.1 to each image and then match the results, this would
constitute another greedy approach to the problem. Similar
considerations apply to feature-based dense stereo compu-
tations (for example the matching of grouped edge maps
[3, 8, 21, 24]), where features are extracted first and then
matched, rather than the optimal features being found along
with their optimal correspondence.

The approach known as ‘layers’ [10] attempts to avoid
the problem of oversmoothing endemic to most of the above
methods by assuming that the image domains can be parti-
tioned into regions in each of which an affine or projective
(although not always [27]) model of the optical flow ap-
plies. The difficulty with such methods, as with all partition
methods, is that of model selection: in this case the number
of regions and their models. In addition, the EM algorithm
does not guarantee global optimization and must be initial-
ized.

An attempt to circumvent these restrictions is described
in [26], where, citing the above problems and the prob-
lem of initialization in contour models, the normalized cut
method developed for single images is applied to stereo and
motion. In the case of motion for example, a motion se-
quence is segmented into spatio-temporal volumes. The
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drawback of this approach, which is a form of clustering,
is that it is not easy to incorporate geometry. It is difficult
to use boundary information, and the correspondence is un-
known, since the output is a set of pixels with no inherent
structure. The model described in the present paper answers
the objections raised in [26] to boundary-based methods.

2. Boundaries and Energy Functionals in Mul-
tiple Images

In the sequel, we assume that we haveM images, in-
dexed byi ∈ {1, ..,M}. Subscripts on quantities indicate to
which image they apply. The intensity functions on the im-
ages will be denotedIi for example. In order to describe re-
gions and boundaries in all images simultaneously, we form
the product space of the image domains, which is a domain
in R2M . The projections to each image domain will be de-
notedπi. By a boundary∂R we mean an oriented closed
curve inRn, which will be represented by a mapγ of the
circle S1 into Rn. Several such maps may have the same
image∂R, and hence represent the same geometric infor-
mation. Our energy functional must and will be invariant to
choice of representative.

Given a boundary inR2M represented byγ, we can
project it to each image domain to produce boundaries in
each image,γi := πiγ. This structure is illustrated in fig-
ure 1. The fact that a point(w, x, y, z) lies on the bound-
ary in R4 for example, says both that the points(w, x) and
(y, z) lie on the boundaries in their respective images, and
that they correspond. Thus, given an energy functional on
the space of boundaries inR2M , we can minimize it and find
boundaries in each image simultaneously with their corre-
spondences.

It is necessary to consider such multi-dimensional spaces
for we wish to express not only the boundary in each frame
but also the correspondences between the boundary and it-
self in other frames. A boundary moving through time is a
functiont ∂R(t) living in an infinite-dimensional space.
By discretizing time and keeping only a few slices, we ar-
rive at the spaces of boundaries considered here.

The energy functional we will use has the form described
in [15]. For the sake of completeness, we review briefly that
work here. We start by giving the form of energy functional,
and then explain the various quantities involved.

E[∂R] =
N [∂R]
D[∂R]

=

∫
S1 dt γ′(t) · v(γ(t))∫

S1 dt |γ′(t)| g(t)
(2.1)

Here∂R andγ have already been defined.t is an ar-
bitrary parameterization ofS1. A prime denotes a deriva-
tive with respect tot. R2M has the usual Euclidean metric,
denoted·. v is a vector field onR2M , andg is a positive
function onS1. Both v andg will typically be derived in
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Figure 1. The geometry of the space of bound-
aries in multiple images.

some way from the data, or will encode some geometric
constraint. Note thatN is orientation-dependent, changing
sign under a change of orientation of∂R, whereasD is not.
Thus values ofE come in positive/negative pairs and mini-
mizingE is the same as maximizing its absolute value.

The functionalE has several interesting properties. The
first is that for the discrete version of the energy, defined on
cycles in directed graphs, there is a polynomial time algo-
rithm, described in section 3, that finds the global minimum
for any choice ofv andg. We will use this algorithm to find
the global minimum of the discrete problem as an approx-
imation to the global minimum of the continuous problem.
The second is that the ratio form of the energy ameliorates
and in some cases removes the scale dependence inherent
in the linear functionals normally used for active contours
for example. The third is that, in two dimensions, because
the energy is defined on closed curves, we can use Green’s
theorem to convert integrals over the interior of the curve
to integrals over the boundary, and include these in the nu-
merator. Any measure of region optimality that can be ex-
pressed as

∫
R

f(x, y) dx dy can be converted to an inte-
gral of the form of the numerator by a simple integration of
f . An important example of such a function isf = 1, in
which case we will favour larger area regions. Many other
possibilities have the form of a similarity measure between
points in the image and some fixed model. For example, the
energy can be made to favour regions of a particular colour,
or containing a particular texture.

There are two distinct types of information available
when we deal with boundaries in multiple images, both of
which we will incorporate into the energy 2.1. The first
is the information contained about the boundaries,γi, in
each image individually. Because these boundaries lie in
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two dimensions, we can include information about the in-
terior regions also, as described above. For example, do
the boundaries lie on high intensity gradients, or contain
a particular texture? The second is the information con-
tained in the correspondences between the boundaries. For
example, are the intensities or intensity gradients similar at
corresponding points on the boundaries in each image? We
will encode the first type of information in the vector field
v on R2M , and the second in the functiong. This is appro-
priate since typically we want to maximize the measure of
boundary optimality in each image individually, while min-
imizing some measure of difference between the boundaries
in different images, which is exactly what this assignment
of responsibility suggests.

The particular choices that we make in this paper encour-
age boundaries that lie on points with high intensity gradient
normal to the boundary in each image, while also favouring
larger areas, and correspondences for which the intensity
values at corresponding points are close. In addition we in-
troduce a novel measure that, without computing an optical
flow, favours boundaries that lie on discontinuities in the
field. We wish to stress however that these are merely the
simplest choices, likely to be broadly useful. There are a
large number of other possibilities, the choice of which will
be determined by the particular application under consider-
ation, or perhaps by higher-level object models. All other
choices can be handled in the same way using the same al-
gorithm.

In order to proceed, we must define the vector fieldv and
functiong. The choices we make are as follows.

2.1. Numerator

As stated, we will use the numerator of the energy func-
tional to measure the optimality of the projected boundaries
in each imageindependently. To do this, we first define a
vector fieldvi on each image plane. Typically these will all
have the same functional form because of symmetry. We
then construct a vector field inR2M by combining the com-
ponents of theseM two-dimensional vector fields into a
2M -dimensional vector fieldv = 〈v1, v2, . . .〉. This com-
bination is done without (potentially present) linear param-
eters because again symmetry dictates that we treat each
image identically. The numerator then becomes

N [∂R] =
∫

S1
dt γ′(t) · v(γ(t))

=
∑

i

∫
S1

dt γ′i(t) · vi(γi(t)) (2.2)

ThusN [∂R] is a measure of how optimal a boundary is∂R
when examined in each image independently. In this paper
we choose the vector field on each image to be a linear com-
bination of the gradient of the intensity function rotated by

π/2, (~∇iIi)⊥, and the position vector(x, y) rotated sim-
ilarly. The latter, when converted to an integral over the
region, gives the area of the region. This choice has the
effect of favouring boundaries that pass through points in
each image with high intensity gradient oriented normal to
the boundary and with larger enclosed area. There is a con-
stant of proportionalityα between these two terms, which
we discuss in section 4.

2.2. Denominator

In [15], a trivial D[∂R] was used in equation 2.1. Here
we exploit the freedom allowed by the energy 2.1, and con-
struct aD[∂R] that compares the boundaries in the images
to each other by comparing intensities at corresponding
points. This comparison measure is however weighted by a
novel term, likely to be useful beyond the model considered
here, that, without computing an optical flow, heuristically
favours boundaries that lie on discontinuities in the field.

To proceed, we must therefore describe the positive func-
tion g. This function has the following form:

g(t) =
gN (t)
gD(t)

(2.3)

The valuegN (t) will be a measure of the difference of the
intensities at the corresponding pointsγi(t) on the bound-
ary in each image. It will be small when the intensities at
corresponding points agree. The valuegD(t) is the new
weighting term that will tend to be large when the points
γi(t) lie on an optical flow discontinuity. Sinceg appears
in the denominator ofE, it will tend to be small for optimal
boundaries, thus encouraging boundaries that match similar
data and that lie on discontinuities.

Both gN and gD compare the corresponding points in
consecutive pairs:

g?(t) =
M−1∑
i=1

gi,?(t) (2.4)

where ? stands forN or D, and wheregi,? depends on
the data atγi(t) andγi+1(t) only. (Note that consecutive
pairwise comparison is not the only possible choice: it is
equally easy to compare more than two boundaries at once,
to encourage small accelerations for example.) More specif-
ically

gi,N (t) = (Ii+1(γi+1(t))− Ii(γi(t)))2. (2.5)

Note thatgi,N is small at a pointt ∈ S1 when the intensities
at the projected pointsγi(t) andγi+1(t) are similar. Thus
the sum of thegi,N encourages good intensity matches be-
tween consecutive pairs of corresponding points. To avoid
dividing zero by zero, we add a constantβ to the value of
gN , which we discuss in section 4.
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Figure 2. Two one-dimensional images con-
taining a moving object. The figure illustrates
the geometrical meaning of the function gD.

Before giving the details of the functionsgi,D, we first
give an intuition as to why the form of function we will de-
scribe is useful. Consider figure 2. It shows the product
space of the image domains of two one-dimensional im-
ages,I1 andI2. Let us suppose that these images consist
of a moving object against a background. The graph shows
the true optical flow for such a situation. The role of the
boundary in this situation is played by the points A and B
in the figure, which project to the boundaries of the object
in each image. Take the point A. Now move away from A
(the boundary) but in a direction of constant optical flow.
(The line of constant optical flow is shown by the diagonal
dotted line.) If one moves to the interior of the object, the
intensities in each image should match, because they corre-
spond to the same point in the scene. On the other hand, if
one moves, still at constant optical flow, to the exterior of
the region, there is no longer any reason for the intensities
to match because the projected points C and D no longer
correspond to the same point in the scene. Thus, if we take
the derivative of the intensity difference (squared) normal to
the boundary in the direction of constant optical flow, it will
tend to be non-zero if the boundary lies on a discontinuity in
the true optical flow. This is a heuristic: the intensities out-
side the boundary may match by chance (if the background
is homogeneous for example), but in general this will not be
the case. The derivative may also be large in other regions
of the plane in figure 2, but in this case the intensities are
unlikely to match, so thatgN would be unfavourable.

More precisely: any point in the 4D subspace ofR2M

formed by the product of the image planes of theith and
(i + 1)th images defines a two-vector in that space, the
difference between the projected points. This in turn de-
fines a plane embedded in the 4D space on which this vector
(the optical flow) is constant. The symbol~∇i,2 denotes the
derivative within this plane. The perpendicular operator⊥2

operates within this plane, rotating any vector in the plane

by π/2. We then define the functionsgi,D as follows:

gi,D(t) =
{

1
|γ′(t)|

γ′(t) · (~∇i,2gi,N (t))⊥2

}2

. (2.6)

Since~∇i,2gi,N (t) is the gradient of the intensity difference
gi,N in the plane of constant optical flow,gi,D is a mea-
sure of the component of this gradient normal to the bound-
ary. It is thus large if the intensity difference changes a
lot when we take a small step away from the boundary in
R2M in a normal direction, remaining at the same optical
flow value. The functiongi,D thus captures the intuition
explained above.

By summinggi,N (t) andgi,D(t) over consecutive pairs
of images and taking their ratio, we therefore have a func-
tion g(t) that tends to make the projected pointsγi(t) match
in intensity and lie on discontinuities in the optical flow. In-
tegratingg(t) over the boundary thus tends to find bound-
aries with these properties also.

This completes the definition of the energy functional on
boundaries inR2M . As we have stressed, with the excep-
tion of the above heuristic, which we expect to be useful in
any scenario, we have chosen the simplest possible models
for the regions and boundaries that we seek. Particular ap-
plications can augment or replace these choices for both the
numerator and denominator, choosing to look for particu-
lar textures for example, or favouring boundaries with high
optical flow or small acceleration.

3. Algorithm

In [15], the algorithm that was used to optimize the en-
ergy functional was not completely general, solving only a
subset of instances of the energy 2.1. The more complex
energies we use here necessitate moving beyond this sub-
set, so we take the opportunity to describe a new algorithm,
the ‘minimum ratio weight cycle’ algorithm, that is com-
pletely general, in the sense that it applies to any instance of
the energy functional in equation 2.1, and is also faster and
considerably more space-efficient than the one used in [15].

Consider a directed graphG = 〈V,E〉 with two edge

weightsE
λ→ Z andE

τ→ Z+. We definen = card(V ),
andm = card(E). Define a weightW on subsets ofE by

W (C) :=
∑

e∈C λ(e)∑
e∈C τ(e)

(3.1)

The discrete problem is to find the cycleC∗ in G that min-
imizes W over the space of cycles. We defineW ∗ =
W (C∗). The algorithm that solves this problem is called the
‘minimum ratio weight cycle’ algorithm, described in [19]
and generalised and improved in [22]. The algorithm relies
on the following, interesting observation. Define a new, pa-
rameterized edge weightE

wt→ Q : wt(e) = λ(e) − tτ(e),
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wheret ∈ Q. We use the same symbolw for the weight of a
set of edges (defined by summation). Then the solution,t∗,
of the equationwt(C∗

t ) = 0, whereC∗
t is the minimizing

cycle forwt, is equal to the minimum ratio weightW ∗ of
W , and the minimizing cycleC∗

t∗ of wt∗ is equal toC∗, the
minimizing cycle forW . We omit the simple proof.

The problem is now reduced to finding an efficient search
strategy fort∗. Although there are a number of approaches,
including binary search [19], and a more sophisticated ap-
proach using parametric edge weights [22], we find in prac-
tice that the fastest method is simply linear search. To see
how this works, note that ift > t∗, the graphG using
the weightswt will have a negative cycle. We start with a
known upper boundt0 on t∗. We apply a negative cycle de-
tection algorithm (we give no details of this here—we use
a variant of a label-correcting algorithm described in [2])
with edge weightswt0 . If we do not find a negative cycle,
and the algorithm terminates, there will be a zero weight
cycle, and we are done:t0 = t∗ = W ∗, and the zero weight
cycle C∗

t0 is the solutionC∗ required. (Detection of zero
weight cycles is easily done. Again we refer the reader to
[2] for details.) If a negative cycleC is detected,t0 is too
large. Sincewt0(C) < 0, we have thatt0 > W (C) ≥ t∗.
We therefore replacet0 by t1 = W (C). The search contin-
ues in this fashion untilt∗ is found. Whent∗ is found, we
have thatW ∗ = t∗ and thatC∗ = C∗

t∗ . C∗ is a zero weight
cycle and so can easily be detected. Note that the algorithm
requires no initialization.

Since the weightsλ andτ are integral,t∗ is rational, as
already stated. This enables a pseudo-polynomial bound to
be placed on the search time in the following way. It is
easy to see that because of the integrality of the weights,
upper and lower bounds onW ∗ are given by±λ0, where
λ0 = max {λ(e) : e ∈ E}. The minimum weight differ-
ence between two distinct ratio weights can similarly be
proved to be 1

τ2
0

, whereτ0 = max {τ(e) : e ∈ E}. Thus
the maximum number of applications of the negative cy-
cle detection algorithm isO(τ2

0 λ0). Since the asymptotic
complexity of our negative cycle detection algorithm is
O(mn), the pseudo-polynomial bound follows. In practice,
the negative cycle detection never executes to completion,
and the time bound is never saturated. The algorithm re-
quiresO(m) space, the bound coming from the negative
cycle detection algorithm. Unlike the time bound, this one
is saturated.

We construct an instance of this problem starting from
the continuous energy as follows. First we define a graph
Gi in each image domain. The graphs in each image have
as vertex sets the pixels in that image, and as directed edge
set the eight neighbours of each pixel. In a manner en-
tirely analogous to the continuous case, we form the product
graphG = ×M

i=1Gi of the individual image graphs.G is a
rectangular lattice embedded inR2M . The edges inG are

the product edges, but we eliminate many of them in the fol-
lowing way. First we reduce the overall size of the graph by
using only a slice ofG around the diagonal. In addition, we
reduce the number of edges on a local basis by restricting
the magnitude of the “time derivative” of the tangent vector
to the boundary. Since we are dealing with a discrete time,
this means that we impose a restriction on the difference
between the tangent vectors to the boundary at correspond-
ing points in successive frames. Thus ifγ′i andγ′i+1 are
the projections of the tangent vector to the boundaryγ′ in
two successive frames, we impose that|γ′i+1 − γ′i| ≤ |γ′i|.
In the discrete case, this becomes a condition on the edges
that we allow in the graph. These constraints, which are im-
posed for reasons of computational efficiency and are not
necessary in principle, do however have sensible interpre-
tations. The first says that the inter-frame motion should
be less than some threshold. The second amounts to con-
straining the amount by which the shape of the boundary
can change from frame to frame. This is in fact similar in
nature to the energy term used in [18] for stereo, where it
was imposed as a soft constraint. In the stereo case, the or-
dering constraint can be used similarly to reduce the num-
ber of edges, although the constraint is too stringent as is:
it means eliminating all edges that can change the dispar-
ity. To alleviate this problem, we added extra edges at each
vertex to second neighbours. See figure 3.

For an edge(x, y) in G, we then define the numerator
and denominator weights as follows. The vector fieldv and
function g at this edge are defined as the averages of the
values atx andy. The tangent vector to the boundary is
defined asy−x (recall thatx andy are points inR2M ). We
compute the intensity gradients using a Gaussian derivative
spread over a few pixels, and do the same for the gradient
of the intensity difference used in the denominator. This
gives us all the required data to compute the numerator and
denominator of equation 2.1 for each edge. We can then
apply the above algorithm to find the minimizing cycle.

4. Demonstrations

In the motion sequences, we applied the model to triples
of images in succession, which was the maximum possible
within the limits of the memory currently available to us.
(The demonstrations were run on a 933MHz Pentium III
machine with 1GB of memory.) We iterated the algorithm
on each of the examples, after first removing the pixels be-
longing to the previously identified boundary.

Figure 4 demonstrates the effect of the termgD. The
image sequence consists of the motion of two black circles
against a background whose intensity varies linearly with
height in the image. At the start of the sequence the left-
hand circle is stationary, while the right-hand circles moves
up, to the right, and down. Then the right-hand circle is sta-
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x1 

x3 
x2 

Figure 3. The edge connectivity in the stereo
case.

Figure 4. The effect of the term gD. Four sam-
ple frames equally spaced from a sequence
consisting of a total of 25 frames.

tionary while the left-hand circle moves to the right. Due to
the intensity gradient,gD is non-zero for the moving circle,
while it is zero for the stationary circle. This results in the
correct identification of the moving circle over each triple
of frames, with the identified boundary switching from the
right- to the left-hand circle when the former stops and the
latter begins to move. Note that the identification of the
right-hand circle occurs in spite of the fact that by mov-
ing up in the image this circle acquires a reduced average
intensity flow across its boundary, and hence a weaker nu-
merator,N [∂R]. To emphasize this, it is worth noting that
when the still image version of the model is applied to these
images, it consistently identifies whichever circle is lower
in the image.

In figures 5 and 6 are shown the results of the appli-
cation of the model to several stereo pairs and image se-
quences. The examples took about 5 to 20 minutes to run
on stereo pairs of 135×152, 148×148, and 230×260 pix-
els and triples of images from motion sequences of 75×50
and 55×70 pixels. The model successfully identifies cor-
responding regions within each image, and is consistent
across consecutive triples of motion sequence images, even
though no initialization was used to pass from one triple
to the next. Note that although there is a tendency for the
boundaries to lie on discontinuities, this tendency can be
overruled by other properties of the region model, in this
case the tendency to find boundaries lying on high intensity

 
1 

2 

1 1 

3 3 

2 2 

1 

2 

1 1 

2 2 

3 3 

4 4 

5 5 
6 6 

Figure 5. The results, shown on the right, of
applying the algorithm to some stereo pairs,
shown on the left. The algorithm was iterated
on the images, the numbers showing the or-
der in which the regions were found.

gradients. This is to be expected: a sharp intensity gradi-
ent may signal the boundary of an object even though there
is no discontinuity present. Both are indicators of such a
boundary.

5. Conclusions

We have presented a method for the extraction of regions
from multiple images simultaneously with their correspon-
dences. This method falls within the category of methods
that search for regions in images possessing certain proper-
ties directly, without performing dense computations, a par-
ticularly relevant example being active contours. The model
allows a broad range of possibilities for the description both
of regions in the individual images and of their correspon-
dences. For any of these possibilities, the optimal regions
and boundary correspondences can be found in polynomial
time. We have illustrated the model using the simplest (and
hence most likely to be broadly useful) choices for the terms
in the energy. In addition, we have introduced an energy
term based on a novel heuristic that favours boundaries ly-
ing on discontinuities in the disparity or optical flow. This
energy should be useful beyond the specific model used in
this paper.

The principle drawback of the method lies in the nature
of the object models. Object recognition in images is a
hard problem, and although equation 2.1 can incorporate
a great variety of different information, it is all in the form
of summations over the region or boundary. The same crit-
icism applies to active contours and segmentation by parti-
tion methods. It is clear that using this type of information
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Figure 6. The results of applying the algorithm to some motion sequences.

alone, successful identification of the region occupied by
particular objects will remain difficult. The development of
higher-order models of regions and boundaries that describe
structure rather than average properties is necessary to make
more progress.
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