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ABSTRACT discrete data, often because the process of estimatinglboun

. . - . .. aries uses low-level techniques that extract a set of pviesit
An interesting challenge in image processing is to classify

shapes of polygons formed by selecting and ordering pointgjomts’ edges, arcs, etc,) in the image plane. We willitstr

. : o attention to points in this paper, but the method generstize
in a 2D cluttered point cloud. This kind of data can re- POINtS N this pap : 9 .
. . ) more complex primitives. Therefore, an important problam i
sult, for example, from a simple preprocessing of images, . N o i
. . . . . . object recognition is to relate (probabilistically) a giveet of
containing objects with prominent boundaries. Taking an_. .. . .
. . ) : i primitives to pre-determined (continuous) shape clasads a
analysis-by-synthesis approach, we simulate high-priétyab ; . ; L
. ; : to classify this set usingfally statistical framework
configurations of sampled contours using models learnt from
the training data to evaluate the given test data. To facili-
tate simulations, we develop statistical models for saunfe 1.1. Problem Challenges

(nuisance) variability: (i) shape variations of contourtwm The biggest challenge is to select and organize a large subse

clqs?es,___(||) var|ab|é|ty ml sam_pll;r_lﬁ[ co_ntmubous C;J_rvga)m of the given primitives into shapes that resemble the shapes
points, (i) pose and scale variability, (iv) observatiooise, of interest. Through an example presented in Figyreve

‘éndl (v) points wtroduceg bthIl#]ter' F|rt1al_ly, usmt? E.I'.\f.ontefill explain these components. The number of permutations
arlo approach, we estimate the posterior probablities of, organizing primitives into shapes is huge. For example,

different classes which leads to a Bayesian classification. if we take the primitives to be points, the number of possible

Index Terms— shape models, Bayesian shape estimapolygons usingi0 distinct points is of the order df0*”. If we
tion, clutter model, Monte Carlo inference select only20 points out of the gived0 and form a polygo-
nal shape, the number of possibilities is still*®. To form
and evaluate all these shape permutations is impossible. Ou
solution is to analyze these configurations through syighes

The classification and recognition of objects in images is ahﬁ' to sylntheS|ze 2|g:-probab|l|ty conzggra_no_rl\s fr_onmmh o
important problem in biometrics, medical image analysis, a S"aP€ classes and then to measure their similarities wen t

many other branches of science. A common approach is Bata Although this a_pproa_ch has far smalle_r c_:omplt_exit_y_ than
represent the objects of interest with certain discrimirfiea- the bottom-up combinatoric approach, the joint variaiit

tures, and then use some statistical models on these featifté the unknowns is still enormous. To go further, one must
spaces for classification. An important feature of many obYse the structure of the problem to break down the varigbilit

jects is theirshapeand, as a consequence, shape analysi9to components, and then probabilistically model the comp
has become an integral part of object classificatitjn Dne nents individually. _Through an example presented in Figure
way to use shape analysis is to estimate the boundaries bF will try to explain these components.

the objects (in images) and to analyze the shapes of those

boundaries in order to characterize the original objects. T 2. PROBLEM FORMULATION AND OVERVIEW

wards that end, there have been several papers in the liter-

ature on analyzing the shapes of continuous, closed, plandihe classification problem is described by the probability
curves (see for examplé,[3] and others referenced therein). P(Cly), whereC € C is the class of the object represented
While such continuous formulations are fundamental in unby the data set, angt C ) is the data,.e. a finite set of
derstanding shapes and their variability, practical sibms  primitives. (Because we are restricting attention to ptiiras
mostly involve heavily under-sampled, noisy, and clutere that are simply points iiR?, we have) = R?*™ for m prim-
itives.) Classification can then be performed by maximizing

The research presented here was partially supported by ABOLWF- e A e
04-01-0268, AFOSR FA9550-06-1-0324, and Northrop-Grumiimova. 1€ Probability: ¢ = argmaxc P (Cly). The difficulty of

tion Alliance grants, and by the INRIA/FSU Associated Tes@HAPES®  the PrOblem is Contained_ iR(y|C), which .describes the for-
grant. mation of the data starting from the object class. To make
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(a) Data (b) Remove Clutter

(c) Ordering (d) Classification

Fig. 1. Problem Challenges: The point cloud in (a) contains . . _ o
clutter as well as the shape of interest. The removal of clut- Fig. 2. lllustration of sampling variability for a curve.
ter leads to the points in (b), which when ordered result in a

polygon (c). Subsequently, this polygon can be used foreshap . - . .
classification, as in (d). and Procrustes alignment, we solve the joint registratign (

transformation d4njection) problem. The cost function for

this optimization is the likelihood”(y|:, ggs), which must
any further progress, this probability must be broken dowrinclude a stochastic model of the clutter points. The result
into components corresponding to simpler stages in the datf these procedures is an approximationy|C) for each

formation process. value ofC, i.e. each class, and thus, after a trivial normaliza-
First, we introduce some variables: le€ G, whereG = tion, to the value of’(C|y). Classification is then immediate.
(50(2) x R?) x Ry, be a similarity transformation thatin-  To construct a fully statistical framework, then, we have

cludes rotation, translation, and scale. The symbdenotes  to develop probability models and computational methods fo

the semi-direct product. Let € Q be a shape,e.an object  the variability in shap&P(q|C)), sampling(P(s|q, C)), and

boundary modulo similarity transformations and repar@met observation noisand clutter(P(y|:, ggs)). We now discuss

izations. Thus, a specific boundary is givenday Lets € S each of these in more detail, beginning with sampling, since

represent: point-primitives on the shape boundary; amongour approach here is novel.

other variables containsn. We will call this a “sampling”.

Thengs will be a set ofn point primitives modulo a similar-

ity transformation, while a specific set of point primitiviss 3. MODELING SAMPLING VARIABILITY

given byx = gg¢s. Finally, letZ 3 ¢ : [0,...n] — [0,...m] ) ) .

be a one-to-one mapeg. an injection, relating each element BY @ sampling of a continuous curve, we mean selecting an

of x to a unique element of. qrdered f|_n|Fe n_umber of points on tha"E curve. (We unpler-
Now, we can write (making certain independence assumgine the d'ft'nCt'on betweerl our use of “sampling & continu-

tions, to be discussed later) ous curve and the phrase_ sampllng from a probability”. To

avoid this confusion, we will use “simulation” for the latie

The sampling step results in a loss of information about the
P(y|C) = Z/// P(yle, gqs) P(c|s) P(glg, C) % original shape. Figur@ shows some examples of samplings
el Ygeg of a single shape. Since the sampled points are ordered, we
;gg can draw a polygon to improve the visualization of the sam-

P(s|g,C) P(q|C)dg dsdg . (1) Pledpoints.

We will take P(:|s) and P(g|q, C) to be uniform. With these
assumptionsg and: appear solely in the first factor in the
integrand P(y|¢, ggs). How can we mathematically represent a sampling? The pro-
Our algorithmic strategy for dealing with this complexity cess of sampling, by itself, is seldom studied in the litem@t
is based on two approximate methods for evaluating the inalthough the related problem of matching sampled shapes has
tegrals and sums: Monte Carlo integration and the Laplaceikeceived a lot of attention. A sampling involves two ele-
method. We use the first for the integrals oy@mds, gener-  ments: a certain number of poinis, and their placement on
ating realizations from their probability distributionsdithen  the curve. The latter can be expressed by parameterizing the
summing the values of the integrand evaluated at these realurve in terms of its arc length, and then selectingalues in
izations. We use the second for the integral ayemd the the intervall0, L], whereL is the length of the curve. Since
sum over. Using a combination of the Hungarian algorithm we will be sampling the points from shapes, we can assume

3.1. Representation



that L = 1. Note that this assumes that the probability ofview the F-R metric as a metric aon too. Because of its
a sampling does not depend on the position, orientation, andvariance properties, this is the metric we choose to use. |
scale of a curve, which is implicit in EgA. terms of the probability density representation, it takes t
Let I be the set of increasing, differentiable functionsfollowing form: the inner product between tangent vectors
from [0, 1] to itself, such that for alty € T, v(0) = 0 and  Jp andd’p to the space of probability distributions ¢ 1]
v(1) = 1, or, in other words, the group of positive diffeo-  (here tangent vectors are functions that integrate to zro)
morphisms of the unit interval. Now Iéf = [0...n]/n be  the pointp € P is (op,d'p), = fol dp(s) 0'p(s) p(ls) ds.
a uniform partition of the intervgD, 1] into n sub-intervals. |t turns out, however, that the F-R metric simplifies greatly
A sampling s will be represented by an equivalence classunder the half-density representation. Indeed, it becomes
of triples (n,7,7) € N x S! x I, with the actual samples 1.2, because/? = p means thaRydy = dp, and thus that
on a (arc-length parameterized, unit length curgeheing (1, 8", = fol Su(s) 8'v(s) ds. We have already seen
B +75(0)), B((r + 7(1/n))...., B(7 +~(1)). The advan- yhaty is the positive orthant of the unit sphereliA([0, 1]),
tage of this representation is that we can changeithout 4 oW we see that the F-R metric is simply the Rie-
changingy, and vice-versa. We sti_ll have to decide, however, .o nian metric oriL2([0, 1]) restricted to¥. The spacel
how to represent. The functions inl" can be thought of as g qowed with the F-R metric is thus the positive orthant ef th
cumulative distribution functions for nowhere-zero proiva it sphere irL.2([0, 1]) with the induced Riemannian metric.
ity densities or{0, 1], with which they are in bijective corre-  qnqequently, geodesics under the F-R metric are nothing bu
spondenc_e, and this gives rise to a number of possibilities f great circles on this sphere, while geodesic lengths anglgim
re.presentlng. such functions: ) ) the lengths of shortest arcs on the sphere. Arc-lengthrttista
Diffeomorphism: An element ofl" is represented as itself, o 5 ynit sphere has been used to measure divergences be-
i.e. as an increasing function froi0, 1] to itself, such that ,een probability density functions for a long tim [ This

7(0) = 0andy(1) = 1. The advantage of this representationetric also plays an important role in information geometry
is that the action of the group of diffeomorphisms on itself i 5 developed by Amari].

particularly simple, by composition.

Probability density: Here an element df is represented by
its derivative, denote® > p = +, which is an everywhere
positive probability density of0, 1], i.e. a positive function
that integrates ta. T T
Log probability : Here an element df is represented by the F-R metricis given byl(y1,72) = C(’S‘71(<712 V3 >)* where
logarithm of a probability density. It is an arbitrary fuiet  the inner product i&.2. The geodesic between two points

1

whose exponential integratestoThe advantage of this rep- andy, of I is similarly derived. For); = 42, the correspond-
resentation is that the values of log-probability functeme  jng geodesic inl is given by (t) = . [sin((1—)0)¢ +

unconstrained, apart from the overall normalization. . sin(6) . .
' . sin(t6 , Wherecos(0) = ,9). The desired geodesic
Square-Root Formt An element ofl" is represented by the sin(10)4:] cos(0) = (i1, v2) g

. . . s 2
square root of a probability density, > ¢ = pz. Thisis a In 1"1s thgn given bw@’ Wher_e’Y(t)(S) ._.fo d](t)(T) 47-‘

o . . L g Due to this additional integration step, it is sometimesezas
positive function whose square integrates,toe. its L* norm o perform the Riemannian analvsis 1 and to map the
is 1. The set of these functions thus forms the positive orthar‘;t P Y P

of the unit sphere i the spacs (0.1 The advantage of %125 POTL L T 8 TEER S Y S
this representation is that it greatly simplifies the formbaf ping '

. . . ing probability densities oft, and for simulating from these
most natural Riemannian metric one can place’omas we o g
: . probability densities.
will now discuss. ) ) o .
In ¥, the geodesic starting from a point in the direc-
tion v € T,(¥), can be written as:cos(t)y + sin(t)qor

[lv]]
(with the L2 norm). As a result, the exponential magp :
While there are clearly a large number of Riemannian met/w(¥) — ¥, has a very simple expressiorxp,,(v) =
rics one could place off, it is a remarkable fact, proved cos(|[v|[)¢ + sin(||v|[) 77 The exponential map is a bijec-
by Cencov ], that on spaces of probability distributions on tion between a tangent space and the unit sphere if we re-
finite sets, there is a unique Riemannian metric that is invar strict [|v[| so that|jv|| € [0, ), but for large enoughjv||,
ant to “Markov mappings”. This Riemannian metric is theexp,,(v) will lie outside ¥, i.e. ¢» may take on negative val-
so calledFisher-Rao(F-R) metric. The F-R metric extends ues. We will discuss this further when we define prior prob-
naturally to the space of probability measures on contisuoudbilities onI". For anyyy, ¢ € ¥, we definev € T, (V)
spaces such a$, 1], where it is invariant to the (reparam- to be the inverse exponential gf, if exp, (v) = v2; we
eterization) action of the diffeomorphism group. Sirice will use the notationsxp;]l(w) = w. This can be com-
is isomorphic to the space of probability measures, we caputed using the following steps: = s — (Y2, 1)1, v =

Now we list some analytical expressions that are use-
ful for statistical analysis oW and thus orl’. As ¥ is an
infinite-dimensional sphere insidé ([0, 1]), the length of the
geodesic il between any two functiong and~- under the

3.2. Riemannian Structure onI"
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Fig. 3. Examples of Karcher means I In each case, (a)
shows teny;, (b) shows their Karcher mean,, and (c) shows
the cost functions vs. iterations.

Fig. 4. Curvature-driven sampling: (a) a curve; (b) a
smoothed version, withxp(|x(s)|/p) displayed as a normal
vector field; (C)y,.

weos (11, o))/ (u, u)?.

“Gaussian” distributions of the form

3.3. Statistics onl’ —ﬁd%% o)

P(y|1,C) = Z e , (2)
Consider the task of computing the statistical mean of a set
of sampling functiong,7s, . ..,y } intrinsically inT. As ~ Whered is the geodesic distance under our chosen Rieman-
mentioned earlier, we will use the square-root forms of¢hesnian metric, and wherg, = ¢ is, in consequence, the mode
functions to perform such calculations. Let the corresfrogmd  of the distribution. We discuss two possibilities fgrando,.
set of square-root forms be given By, 1o, ..., Ui}, ¥ = The simplest possibility is to emphasize the samplings of
%% We define their Karcher mean as: a cu_rve.that_are uniform with respect to its arc-length param
eterization, independently @f, by choosingy,(s) = s, or
k equivalentlyyy = 1. Alternatively,vo may depend on local
= argminz d(, ), geometrical propertieg.g. sampling density may increase
YeEY i with increasing curvature of the underlying curve. Define

. L . E(s) = [, exp(|(s')|/p) ds’, wherex(s') is the curvature
where d is the geodesic distance o#i. The minimum ¢ at arc-length parameter poigtandy € R is a con-

valuer:1 d(p, )% is .called the Karcher variance_ of that giant. The ratioy; (s) = E(s)/E(1) is a diffeomorphism,
set. The search fop is performed using a gradient ap- gqm [0,1] to itself, and the desired sampling for that curve
pr'oach where an est|mat? is k|terat|v_elly updated according Yo =T+ 71—1_ T_he i_nverse Of_YI can be n_umeric_ally esti-

to: p — exp,(ev), v = £ 3 exp, (¥i). Here,exp  mated using a spline interpolation. To define a singldor
andexp™" are as given in the previous section, and- 0 each class, we use training curves from that class. First we
is a small number. The gradient process is initialized tcomputey, for each training curve, and then, using the tech-
W\/ (,9), wherep = 37, 4. niques presented in Secti@3, we compute their Karcher

In Figure 3, we show two examples of Karcher means.Méan, which we use ag, using the Karcher variance a3.
We now illustrate these ideas with some examples.

Column (a) shows examples of sampling functionsys, . . ., y10,

and column (b) shows their Karcher means(the sampling Shown in Figured, column (a), are two shapes We
function obtained by squared integratioryof 0). smooth these curves using Gaussian filters: their smoothed

versions are shown in column (b). For these smoothed curves,
S ] ) we computes and thenE (s). This function is displayed as a
3.4. Probability Distributions and Simulations normal vector field on the smoothed curve in (b). Finally,

Having established a representation and a Riemannian mdg-computed; itis shown in column (c). Figusshows some
fic on the spacé of sampling functions, we now turn to the €xamples of class-specific means of thefor two classes.
question of constructing a probability distribution. Réteat ~ BY USing these means ag for each class, we can form class-
a samplings is a triple(n, 7,7) € N x S! x T'. We can write  SPecific priors of the form given in Eq@. _
the probability fors asP(s|C') = P(n) P(r|C)P(y|r, C); we To S|mul_ate from probability densmes_ of the form in
will use a geometric distribution far. The most interesting EdN-2, we first randomly generate a fur:ctufne Ty ()
part of the distribution is the factaP(v|C, 7). Clearly the such thatf| = 1, where, as before, = 4. Then, we gen-
possibilities here are enormous. We will restrict ourseliee  erate a normal random variable~ N (0,02), and compute
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Fig. 5. Each row shows two examples of training curves in _
a class, the sampling functiong for that class, and their Fig. 7. Karcher means of the 16 shape classes used.
Karcher means.

obtainC = {q| [, (q(t)-q(t))dt =1, 5, q(t)llg(t)]|dt = 1},
where(-) is the Euclidean inner product R?.

We want our shape analysis to be invariant to rigid mo-
tions, uniform scaling and re-parameterizations of theesir
The translation and scaling groups have already been raimnove
in definingC. The remaining two: rotationSO(2) and repa-
rameterization®iff (S') are removed as follows. Since the
) ) . ) actions of these two groups Grare isometric, with respect to
Fig. 6. Random samples fron?(+|C’) with o7 increasing  thel2 metric, we can define the shape space to be the quotient
from left to right. spaceQ = C/(SO(2) x Diff(S!)) and inherit thel.> metric
from C. In other words, for a poing € Q the Riemannian
metric takes the forndgi, dg2), = Js1 0qu(t) - 0g2(t) dt. To
perform statistical analysis i@, however, which is our goal,
one needs to construct geodesicsdn Joshiet al. [8] de-
&ribe a gradient-based technique for computing geodesics
Q. The technique uses path-straightening flows: a given pair
of shapes is first connected by an initial, arbitrary path itha

4. SHAPE AND SHAPE VARIABILITY then iteratively “straightened” so as to minimize its lempf.

The length of the resulting path is then the geodesic distanc

We now turn to the construction of the shape modié|C).  between the shapes. Since one of the effedii{S") is dif-
While objects of a given class are similar in their shapesgh  ferent placements of the origin on closed curves, its refnova
is naturally also variability within each class. It is thisn- ~ results in an alignment of shapes in that regard. One can de-
monality and variability that?(q|C') must describe. There fineand compute the mean of a collection pf shapes using the
have been several recent papers that develop tools foranaly<archer mean, now based on the geodesic computatiyns [
ing the shapes of planar closed curves.[2,3]. The main  The Karcher means for all the 16 classes used in later experi-
differences amongst these articles lie in the choice oferepr MenNts are displayed in Figure
sentation for the curves and of the metric used to compare The nextstep is toimpose a probability model@nPer-
shapes. Two recent papers §] present an efficient repre- haps the simplest model is the one usedIfpiEqn.2. As
sentation under which an elastic metric becomes a sifiople Suggested in], it is much easier to express this distribution
metric, with the result that shape analysis simplifies atersi ~ Using the tangent spadg, Q to Q at the mean shapg than
ably. This has been called the square-root elastic frameworusing < itself, because the former is a vector space. In that
and we describe it briefly here. space, one can use principal component analysis (PCA) and

Consider a closed, parameterized curve, a differentiabl@Pose a standard Gaussian _diStrib“tiOT on the PCA"coeffi-
mapping3 from S' to R?, whose shape we wish to ana- cients, then use the exponential map to “push forward” these

lyze. As described in7, €], we will represent a curve by tangent vgctors t@ itself. Empirical stut;iy §hows, hpvyever,
its square-root velocity function; : S! — R2, whereg(t) = that the histograms of these tangent principal coefficiardgs

4(t) . ; oo . : often far from Gaussian. We therefore use kernel estimates
—=2 || is the Euclidean norm if®*, and¢ is an arbitrary . . .
1B(b)| 2 of the underlying densities to capture this more complex be-
coordinate of$*. Restricting to unit length, closed curves, we havior. To simulate fromP(¢|C) described above, we first

a pointy) = cos(z)o + sin(z) f /|| f||. The random sampling
function is then given byy(s) = fos Y(s')? ds’. Figure6
shows some examples of random simulations from such
class-specific prior density for increasing values of
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Fig. 8. Some random shapes from a TPCA model.

simulate from the estimated density of the tangent priricipe ,.""_ - T
coefficients, and then use the exponential map to genemate t> | . %
corresponding elements 6f. Figure8 shows some examples .....: * *
of simulations from one such non-parametric model.

,,,,,,,,,,,,,,,,,,,
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5. EXPERIMENTAL RESULTS .'"*_;-..f\'

Shown in the top three rows of Figugeare experimental re- .
sults on the simulated data with = 40 andny = 20. In each e
case, the left panel shows the true underlying curve which wa
sampled to generate the datavhich are also shown there. rig 9. Top three rows — The original curve and the simulated
The next panel displays a bar chart of estimateid’ily)  datasety (left), and the estimated posteriét(C;|y) (mid-

for thisy, i = 1,2,...,16 using.J = 300 samples. The qje) and a high-probability configuration (last). The eutr

last figure shows a high probability polygon formed using the;|asses in these examples are: 16, 9, and 5. The bottom left
subsety. In each of the three cases, the amount of cluttep|ot shows the average classification performance verfurs

is quite high — the number of points on the curve equals theye Bayesian approach, while the bottom right compares this

number of clutter points. Still, the algorithm puts the Fégh  5pproach with a classification that uses the Hausdorff metri
probability on the correct class for all cases. As theseexpeang an ICP algorithm.

iments suggest, the algorithm is able to put high probabilit

on the correct shape class despite the presence of clutter. .

[4] N. N. Cencov,Statistical Decision Rules and Optimal In-
ferencesvol. 53 of Translations of Mathematical Mono-
graphs AMS, Providence, USA, 1982.

We have presented a Bayesian approach for finding shapg) A Bhattacharya, “On a measure of divergence between
classes in a given configuration of points that is characderi two statistical populations defined by their probability

by under sampling of curves, observation noise, and back- gjstributions,”Bull. Calcutta Math. So¢vol. 35, pp. 99—
ground clutter. Rather than trying all possible permuteio 109, 1943.

of points, we take a synthesis approach and simulate configu- o _ _ _ o
rations using prior models on shape and sampling. The clag6] S. Amari, Differential Geometric Methods in Statistics
posterior is estimated using a Monte Carlo approach. Lecture Notes in Statistics, Vol. 28. Springer, 1985.

6. SUMMARY

[7] S. H. Joshi, E. Klassen, A. Srivastava, and I. H. Jermyn,
7. REFERENCES “A novel representation for efficient computation of

geodesics between-dimensional curves,” InNEEE
[1] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham,  cvPR 2007.

“Active shape models: Their training and application,”

Computer vision and image understandingl. 61, no. [8] S. H. Joshi, E. Klassen, A. Srivastava, and |. H. Jermyn,

1, pp. 38-59, 1995. “Removing shape-preserving transformations in square-
root elastic (SRE) framework for shape analysis of

[2] E. Klassen, A. Srivastava, W. Mio, and S. Joshi, “Anal-  curves,” nEMMCVPR, LNCS 467%\. Yuille et al., Ed.,
ysis of planar shapes using geodesic paths on shape 2007, pp. 387-398.

spaces,” IEEE Patt. Analysis and Machine Inteliol.

26, no. 3, pp. 372-383, March, 2004. [9] A. Srivastava, S. Joshi, W. Mio, and X. Liu, “Statistical
shape analysis: Clustering, learning and testinggEE
[3] P. W. Michor and D. Mumford, “Riemannian geome-  Trans. on Pattern Analysis and Machine Intelligeneca.

tries on spaces of plane curvedgurnal of the European 27, no. 4, pp. 590-602, 2005.
Mathematical Societyol. 8, pp. 1-48, 2006.



	 Introduction
	 Problem Challenges

	 Problem Formulation and Overview
	 Modeling Sampling Variability
	 Representation
	 Riemannian Structure on 
	 Statistics on 
	 Probability Distributions and Simulations

	 Shape and Shape Variability
	 Experimental Results
	 Summary
	 References

