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Abstract. This paper illustrates and extends an efficient framework, called the
square-root-elastic (SRE) framework, for studying shapes of closed curves, that
was first introduced in [2]. This framework combines the strengths of two im-
portant ideas - elastic shape metric and path-straightening methods - for finding
geodesics in shape spaces of curves. The elastic metric allows for optimal match-
ing of features between curves while path-straightening ensures that the algorithm
results in geodesic paths. This paper extends this framework by removing two
important shape preserving transformations: rotations and re-parameterizations,
by forming quotient spaces and constructing geodesics on these quotient spaces.
These ideas are demonstrated using experiments involving 2D and 3D curves.

1 Introduction

Shape analysis of closed curves, in two, three, or higher dimensions, have become an
important topic of study. In particular, a large number of mathematical representations
and metrics have been proposed to analyze shapes of such curves, albeit mostly in two-
dimensional situations. Despite the large variety in metrics proposed, there is an emerg-
ing consensus on the suitability of the elastic metric for curve-shape analysis. This
metric uses a combination of bending and stretching/compression to find optimal defor-
mations from one shape to another. Additionally, it is invariant to re-parameterizations
of curves. On pre-defined shape spaces of curves, these deformations are computed as
shortest paths, or geodesics, under this chosen metric. This metric was suggested by
Younes [13] and Mio et al. [6, 7]; the latter developed a shooting method to compute
geodesic paths between arbitrary shapes. Several other authors, including Michor and
Mumford [5] and Shah [11], have also highlighted the advantages of this metric.

Although there is continuing research on various shape representations and met-
rics, we point out that the computational evaluations of different approaches are yet to
be performed. For instance, we can ask the question: Amongst the different represen-
tations, such as coordinate functions, angle functions, curvature functions, log-speed
functions, and deformation vector fields, introduced for shape analysis of parameter-
ized curves, which is the most efficient one for elastic shape analysis? We elaborate this
question further. Consider the representation of a planar curve β by its velocity vector
β̇(s), seen a complex scalar r(s)eiθ(s). Here r(s) is the instantaneous speed and θ(s) is
the angle made by β̇(s) with the positive X axis. Mio et al. [7] use the pair (φ, θ), with



φ = log(r), to represent and analyze the shape of β. Other researchers have used r di-
rectly, or its integral form

∫
r(s)ds, as representatives of speeds of curves. In this case,

the elastic metric assumes a complicated form due to the requirement of invariance to
parameterizations. Secondly, it may not be computationally efficient. As an example, in
case of Mio et al., the elastic metric translates into the form,

〈(h1, g1), (h2, g2)〉(φ,θ) =
∫

h1(s)h2(s)eφ(s)ds +
∫

g1(s)g2(s)eφ(s)ds . (1)

This metric given by Eqn. 1, under the (φ, θ) representation varies from point to point
on the shape manifold, and is thereby complicated to implement.

Recently, Joshi et al. [2] proposed a new framework that uses the square-root of the
speed of the curve and greatly simplifies the computation of geodesics. Additionally,
it applies a more stable as well as an efficient, path-straightening approach for finding
geodesics. This framework has been called the Square-Root Elastic (SRE) framework,
since it uses the square-root representation to obtain an elastic analysis of curves. The
SRE framework has the following advantages. Under this representation, the elastic
metric reduces to a simple L2 metric. Not only is the metric the same at all points,
but it is also much simpler to implement and study. The SRE framework combines the
strengths of the elastic metric and the path straightening method for finding geodesics.
Furthermore, there are convenient, isometric mappings from the proposed represen-
tation to other forms used previously. Finally, this approach is applicable to study of
curves in Rn for all n and not just n = 2.

In this paper, our focus is on the shapes of curves, rather than the curves themselves.
The paper [2] constructed a space C of closed curves in Rn, and presented algorithms
for computing geodesic paths between curves in C. However, there are infinite number
of elements in C that represent the same shape. The reason for this multiplicity is that
rigid rotations and re-parameterizations of a curve can result in different elements of C,
but they all have the same shape. The sets of such representations are called orbits, and
they form equivalent classes of shapes. For the purpose of shape analysis of curves, one
needs to remove these shape-preserving transformations from the representation, and
to compute geodesic paths in the resulting shape (quotient) space, called S . The shape
space is viewed as the quotient of C under the rotation SO(n) and re-parametrization
D groups, i.e. S = C/(SO(n) × D). To find geodesics in S , one needs to find the
shortest geodesic path(s) between elements of orbits in C. Previous papers have used
different techniques for removing these transformations. Since most of the past papers
have studied curves in R2, where the rotation space is simply one-dimensional, one can
do so using the exhaustive search [4]. The group of all re-parameterizations is often
removed using the dynamic programming algorithm to match points across curves [7,
10]. In this paper, we present a gradient approach that uses the differential geometry of
these transformation groups, SO(n) and D, to match any two curves. The basic idea is
to initialize a geodesic path in C between arbitrary elements of the two given orbits, and
to use the gradient directions on these spaces to iteratively reduce the geodesic length
until one reaches a geodesic path in S.

The remainder of the paper is organized as follows. Section 2 summarizes the SRE
framework for analyzing curves; it presents the square-root representation of curves
and the path-straightening approach to finding geodesics in C. Section 3 presents the
main results of this paper: defining shape space S and computation of geodesic paths in



S . This is followed by some experimental results in Section 4 and a short summary in
Section 5.

2 Square-Root Elastic (SRE) Framework

Next, we summarize ideas presented in [2] for elastic matching of closed curves in Rn.
There are two main ideas here: (i) the use of square-root representation of curves, and
(ii) the use of path-straightening flows for computing geodesic paths. We summarize
each of these ideas here, and refer the reader to [2] for further details.

2.1 Square-Root Representations of Curves

For the interval I ≡ [0, 2π], let β : I → Rn be a curve with a non-vanishing derivative
everywhere. Denote its shape by the function q : I → Rn as follows,

q(s) =
β̇(s)√
||β̇(s)||

∈ Rn . (2)

Here, s ∈ I , || · || ≡
√

(·, ·)Rn , and (·, ·)Rn is taken to be the standard Euclidean
inner product in Rn. The quantity ||q(s)|| represents the square-root of the instanta-
neous speed of the curve β, whereas the ratio q(s)

||q(s)|| is the unit tangent vector for
each s ∈ [0, 2π) along the curve. Indeed, the curve β can be recovered from q using
β(s) = β(0) +

∫ s

0
||q(t)|| q(t) dt. Let Q ≡ {q = (q1, . . . , qn) : I 7→ Rn|∀i, qi ∈

L2 and ∀s, q(s) 6= 0} be the space of all vector valued functions representing the
curves as described above. This is an open subset of the infinite-dimensional vector
space of all functions on I . Each element of this set represents an elastic curve on Rn.
Denote B ≡ {q ∈ Q| ∫ 2π

0
(q(s), q(s))Rnds = 1} as the space of all unit-length, elas-

tic curves. The closure condition for a curve β implies that
∫ 2π

0
β̇(s)ds = 0. For the

square-root representation, this translates to
∫ 2π

0
||q(s)||q(s) ds = 0. Define a mapping

G : Q 7→ Rn according to Gi =
∫ 2π

0
qi(s) ||q(s)||ds. The space obtained by the in-

verse image A = G−1(0) is the space of all closed, elastic curves. Then, the subset
C = A ∩ B ⊂ Q is the space of all unit-length, closed and elastic curves that are
invariant to translation and scaling.

The length of a geodesic or the “shortest path” between two points on a manifold
depends on the Riemannian metric, which is an inner product defined on each tangent
space of the manifold. Thus we would like to construct a tangent space Tq(C) at each
point q. We observe that the tangent space of Q is the space of all vector valued func-
tions with L2 components. We define an inner-product on Q as follows.

Definition 1 Given a curve q ∈ Q, and the tangent vectors u, v ∈ Tq(Q) respectively,
the inner product between u, v is defined as,

〈u, v〉 =
∫ 2π

0

(u(s), v(s))Rnds. (3)



In order to define the space of tangent vectors to C, we derive the normal space of C at
q first. As shown in [2], the normal space of C at q is

Nq(Q) = span {q(s), ( qi(s)
||q(s)||q(s) + ||q(s)||ei), i = 1, . . . , n} ,

where ei is a unit vector in Rn along the i coordinate axis. Given a curve q ∈ Q, and
the tangent vector w to Q at q, the tangent space of C at q is defined as Tq(C) = {w :
I → Rn|w ⊥ Nq(Q)}.

2.2 Path Straightening Flows for Computing Geodesics

Given two curves q0 and q1, our goal is to find a geodesic between them in C under
the Riemannian metric specified in Eqn. 3. In the path straightening approach, first
introduced in [3], the given shapes are connected by an initial arbitrary path that is
iteratively “straightened” so as to minimize its length. This iteration is performed using
the gradient of an energy E, until one reaches a critical point of E. Let α : [0, 1] → C
be any path in C. Then, the critical points of the energy

E[α] =
1
2

∫ 1

0

〈α̇(t), α̇(t)〉 dt (4)

are geodesics in C (see [12]). In order to minimize the integral in Eqn. 4, we need to find
the gradient of the energy E[α] in the space of all paths on C. For this purpose, we define
F as the collection of all paths in C, and F0 ⊂ F as the collection of all paths going
from q0 to q1. Since each element along the path α is a curve in C, the tangent space
Tα(F) is written as Tα(F) = {w|w(t) ∈ Tα(t)(C) ∀t ∈ [0, 1]}. Following [3], we
impose the Palais metric [8] on Tα(F) to result in a Riemannian structure on the space
of all paths F . For u1, u2 ∈ Tα(F), the Palais metric is given by the inner product,

〈〈u1, u2〉〉 = 〈u1(0), u2(0)〉+
∫ 1

0

〈
Du1

dt
(t),

Du2

dt
(t)

〉
dt , (5)

where D
dt denotes a covariant derivative. The gradient of E[α] is a vector field in the

tangent space Tα(F0), where Tα(F0) = {w ∈ Tα(F)|w(0) = w(1) = 0}.
To derive the gradient vector field of E[α] on Tα(F), we state the following theorem

from [3] without proof.

Theorem 1 The gradient vector field of E is given by a v in Tα(F) such that Dv
dt = α̇,

and v(0) = 0.

Theorem 1 implies that the gradient of E in Tα(F) is given by covariantly integrating
the velocity vector field dα(t)

dt along the curve α. Once the gradient in Tα(F) is ob-
tained, it can be orthogonally projected into Tα(F0) to obtain the required gradient for
iteratively updating α. This projection is specified using the following lemma.

Lemma 1. The orthogonal complement of the tangent space Tα(F0) in Tα(F) is given
by T⊥α (F0) ≡ {w ∈ Tα(F) | D

dt

(
Dw
dt

)
= 0}.



Using this Lemma, a tangent vector field v ∈ Tα(F) can be projected onto Tα(F0)
by subtracting a component w of v that satisfies D

dt

(
Dw
dt

)
= 0; this property makes w a

covariantly linear vector field. In our case, w is given by tṽ(t), where ṽ(t) is a backward
parallel transport of the vector field v(1) along α. After obtaining the gradient of the
energy E[α] in F0, we can update the path α in the direction of the gradient field v.

Now we can combine all the previous steps to compute geodesics in the space C.
The first step is the initialization of a path α on C. Using the initialized path α, Algo-
rithm 1 summarizes various steps using the path-straightening approach in computing
the geodesic. The resulting geodesic distance between the two curves is then given by

Algorithm 1 Given q0, q1 ∈ C, compute a geodesic between them
1: Initialize a path α between q0 and q1.
2: repeat
3: Compute the path velocity αt ≡ dα

dt
along α.

4: Calculate the covariant integral (v) of dα
dt

.
5: Parallel translate (backward) v(1) along α as w̃.
6: Form the gradient vector of E in Tα(F0) as v = v − tw̃.
7: Update the path α in the direction v.
8: Compute path energy E = 1

2k

Pk
0〈αt(τ), αt(τ)〉.

9: until ||∇E|| > ε

∫ 1

0

√
〈 ˙̂α(t), ˙̂α(t)〉 dt, where α̂ is the resulting geodesic path.

3 Removing Shape Preserving Transformations

So far, we have constructed geodesics between a pair of curves in the C. In doing so,
we implicitly assumed that the starting points of both the curves were fixed, and the
rotational alignment remained unchanged. However the “shape” of a curve remains
invariant under rotations as well as the choice of starting point along the curve. Further-
more, the appearance of a curve, including its pose (scale, location, and orientation) is
also invariant to the speed of traversal along the curve. In the following subsections,
we define the space of elastic shapes, and outline an optimization algorithm that mea-
sures the “elastic” distance between curves under certain well-defined shape-preserving
transformations.

3.1 Elastic Shape Space (S)

The idea of matching shapes of objects by studying their deformations under appro-
priate group actions is well known [1]. Following a slightly different approach, we are
interested in constructing the shape space as a quotient space of C, modulo shape pre-
serving transformations such as rigid rotations and re-parameterizations. In addition to
translation and scaling, we identify the following re-parameterizations and group ac-
tions on the curve that preserve its shape.

1. Placement of origin (seed): A change in the starting point of the curve q ∈ C is
represented by the action of a unit circle S1 on q, according to r · q(s) = q((s −
r)mod 2π) for r ∈ [0, 2π] with 0 and 2π identified..



2. Rigid rotation: A rigid rotation of a curve is considered as a group action by a
n-by-n rotation matrix On ∈ SO(n) on q, and is defined as On · q(s) = Onq(s),
∀s ∈ [0, 2π).

3. Re-parametrization by speed: A curve traveled at arbitrary speeds is said to be
re-parameterized by a non-linear differentiable map γ (with a differentiable in-
verse) also referred to as a diffeomorphism. We define D = {γ : S1 → S1}
as the space of all orientation-preserving and origin-preserving diffeomorphisms.
Then, the resulting variable speed parameterizations of the curve can be thought
of as diffeomorphic group actions of γ ∈ D on the curve q. This group action
is derived as follows. Let q be the representation of a curve β. Let α = β(γ) be
a re-parametrization of β by γ. Then the respective velocity vectors can be writ-
ten as α̇ = γ̇β̇(γ) = γ̇q(γ)||q(γ)|| = ||√γ̇q(γ)||√γ̇q(γ). The re-parametrization
of q by γ is defined as a right action of the group D on the set C and written as
q · γ =

√
γ̇ (q ◦ γ). Figure 1 shows an example of a re-parameterized curve by

an arbitrary γ. The change in the speed due to re-parametrization is observed by
discrete points plotted along the curve.
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Fig. 1. From left, an unit-speed 2-D curve, γ acting on the curve, and the re-parameterized curve.

Altogether, the set of curves affected by the group actions above, partition the space
C into equivalent classes. We now define the elastic shape space as the quotient space
S = C/(S1 × SO(n)×D). The problem of finding a geodesic between two shapes in
S is same as finding the shortest path between the equivalent classes of the given pair
of shapes. Since the actions of the re-parametrization groups on C constitute actions by
isometries, this problem also amounts to minimizing the length of the geodesic path,
such that

d(q0, q1) = min
r∈S1,On∈SO(n),γ∈D

d(q0, (r ·Onq1) · γ) (6)

Conceptually, this involves finding an optimal rotational alignment (Ô), seed (r̂),
and an optimal speed parameterization (γ̂) that minimizes the distance given by Eqn.
6. As a result of this optimality, the geodesic path becomes orthogonal to the respec-
tive orbits of SO(n) and S1. We propose an iterative solution using a gradient descent
approach that successively causes the projection of the tangent vector (αt(1)) on each
of these orbits, to be zero. In practice, we divide the problem in two steps. At ev-
ery iteration, we will first find a geodesic in the quotient space under all rotations,
C/(S1 × SO(n)) and use it as an initial condition for computing the geodesic in the
elastic shape space S = (C/(S1 × SO(n))/D until the algorithm converges.



3.2 Geodesics in C/(S1 × SO(n))

We briefly discuss the computation of geodesics in the space C after removing all ro-
tations and seed placements. We recall that the orbit of any element q ∈ C under a
group action g ∈ G is the set Gq = {q · g : g ∈ G}. Given a pair of shapes
q0 and q1, the idea is to construct a tangent space of the orbit Oq1 of q1 under the
group action by On ∈ SO(n) and iteratively make the projection of the tangent vec-
tor αt(1) on Tq1(Oq1) to be zero. We will adopt the approach similar to Klassen et
al. and refer the reader to [3] for details. Furthermore, the optimal seed is given by
r̂ = arginfr〈q0, r · q1〉. In practice, for a discrete representation (T samples), the op-
timal seed is given as r̂ = argminr=1,...,T 〈q0, r · q1〉. Together, the above minimiza-
tion approach yields a locally optimal alignment in terms of the rotation and place-
ment of origin. Although this approach works for n−dimensional curves, one can
adopt other efficient methods for low-dimensional curves. Particularly in the case of
2D curves, we can take advantage of the fact that the group of rotations SO(2) is a
1-dimensional manifold. In this case, we can discretize the angle θ ∈ S1 and using the

map θ 7→
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, search in the orbit of Oq1 to achieve an optimal rotational

alignment. As an example, Fig. 2 shows the variation of the geodesic path energy in C
against the rotational alignment. The path corresponding to O = Oopt is the geodesic
in C/(S1 × SO(n)).
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Fig. 2. Left: Path energy vs. the angle of rotation. Right: Geodesic Path corresponding to the
optimal alignment.

3.3 Geodesics in S
In order to compute geodesics in the quotient space of elastic shapes, S, we follow a
similar idea as above. This time, we define an orbit Dq1 of q1 under the group action
by γ ∈ D. An optimal elastic alignment between any two shapes q0 and q1 is obtained,
when the projection of the tangent vector αt(1) on the subspace Tq1(Dq1) is zero.
Instead of posing the optimization problem on the subspace Tq1(Dq1), we consider
the tangent space of D at identity Tid(D), which is an L2(S1) space and construct 1-
parameter flows on D as follows. Let ψt : Tid(D) → D represent a 1-parameter flow
at identity on D such that ψ0(id, g) = s for any tangent vector g ∈ Tid(D). Next, we
define the diffeomorphic group action φ : C × D → C as φγ(q) =

√
γ̇q(γ). Then the

differential φ∗ maps the tangent vector g to φ∗(g) ∈ Tq(Dq) and is given by,

φ∗(g) = q
′
(s)g(s) +

1
2
q(s)g

′
(s), s ∈ [0, 2π) (7)



Let V ≡ {vi}, i = 1, . . . , d denote the Fourier basis for the tangent space of D. Using
the differential map φ∗(V ), we can construct the basis for the tangent space Tq1(Dq1).
Following the previously outlined approach, we compute a geodesic between shapes
represented by q0 and q1 in C/(S1×SO(n)). In the process of computing this geodesic,
the shape q1 gets rotated and shifted as q̃1 = r̂ · Ôq1, where r̂ ∈ S1 and Ô ∈ SO(n).
We then project the tangent vector αt(1) on Tq̃1(Dq̃1). For a tangent vector αt(1) ∈
Tα(F), its projection on Tq̃1(Dq̃1) is defined as

π(αt(1)) =
d∑

i=1

〈αt(1), φ∗(vi)〉φ∗(vi) (8)

Using the inverse of φ∗, we can construct a tangent vector g ∈ Tid(D) and compute 1-
parameter flows on D. The above procedure is repeated until the quantity 〈π(αt(1), π(αt)〉
becomes zero. Shown in Fig. 3 is a cartoon diagram illustrating this process. The com-

Fig. 3. Illustration of the process of finding geodesics in S .

plete procedure of finding a geodesic in S ≡ C/D is described in Algorithm 2. As an

Algorithm 2 Given two curves q0 and q1, compute a geodesic in S
1: Find the geodesic between q0 and q1 in C/(S1 × SO(n)) using the approach outlined in Sec.

3.2. This also yields the tangent vector αt(1) at q1.
2: Let {vi}, i = 1, . . . , d be the Fourier basis for Tid(D).
3: Project the vector αt(1) on Tq1(Dq1) using Eqn. 8.
4: if ||π(u)||2 < ε then
5: Stop.
6: end if
7: Form the tangent vector g ∈ Tid(D) as, g =

Pd
i=1 〈αt(1), φ∗(vi)〉 vi.

8: Compute the flow on D at id, such that γ̃ = Ψε(id,g) = id− εg.
9: Set q1 = q1 · γ̃ =

p
γ′q ◦ γ̃.

10: Go to Step 1.



example, Fig. 4 shows the comparisons between non-elastic geodesics computed using
the method in [4] and elastic geodesics computed using algorithm 2.

Fig. 4. Odd rows show non-elastic geodesic paths [4]. Even rows show elastic geodesics.

4 Experimental Results

In this section, we present some experimental results for computing elastic geodesics by
implementing the above algorithms in MATLAB R©. Figure 5 shows pairwise geodesics
between 2-D curves in the shape space S . Intermediate shapes along the geodesics have
tick-marks placed around the curve, that help identify parts of the curve traversed by
non-uniform speed. Figure 6 shows two different views of a geodesic path computed
between a pair of 3-D curves in S .

Fig. 5. Row-wise geodesic paths in S between the pair of curves shown to the left.

Next, we present a few examples of geodesic paths between 3D curves of real data
consisting of salient curves extracted from human facial surfaces. Samir et al. [9] have
used 3D curve matching for the purpose of face recognition. The idea here is to extract
important curves from 3D scans of facial surfaces across subjects, and use pairwise



Fig. 6. Examples of geodesics between a pair of 3-D curves.

geodesic distances to match them. Figure 7 (a) shows 2D views of a facial surface over-
laid with 3D curves resulting from a specific depth function. Figure 7 (b) shows different
views of a geodesic in S between two arbitrarily selected curves on this surface.

(a) (b)

Fig. 7. (a) Example facial surfaces with salient curves marked. (b) Two different views of a
geodesic between two facial curves.

Finally, we present a clustering result of a sample of 25 shapes of gestures from the
ASL alphabet. We compute the pairwise elastic geodesic distances between the set of
shapes shown in Fig. 8 and use a simple k−means algorithm to automatically group
them into 5 clusters. It is observed that the elastic distance captures local variabilities
effectively, an important requirement in clustering of shapes.
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Fig. 8. Left panel shows 25 gestures from the ASL alphabet. Right panel shows row-wise clusters
of gestures.

5 Summary

This paper illustrates and extends the square-root elastic (SRE) framework introduced
recently in [2] for analyzing shapes of closed curves in Rn. The novelty in this frame-
work is that the representation of elastic curves by a single vector valued function that
incorporates both stretching and bending along the curve. The elastic (Riemannian)
metric reduces to a simple L2 form that greatly simplifies analysis and understanding
of shapes of curves. This paper extends this idea by computing geodesics on the quotient
spaces formed by the action of rotation and re-parametrization groups on the spaces of
closed curves. The main idea is to use a gradient iteration to find a geodesic path be-
tween any two orbits. Experimental results, obtained on 2D and 3D curves, underline
the utility of using elastic metrics and emphasize the generality of these ideas to higher
dimensions.
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