
Out of the Sandbox: Third Party Validation for Java Applications

I. Jermyn, F. Monrose, P. Wycko�

Department of Computer Science

New York University

251 Mercer Street, NYC, NY, 10012

Abstract

Java's security allows a user to import and run ap-

plets from the Web without undue risk to the user's

machine by restricting the applet's actions to a \sand-

box", an area of the web browser dedicated to that

applet. The sandbox model is critical to Java's success

and its promise of truly network-oriented computing.

Applications running in the sandbox can only access

local and network resources through a limited number

of trusted mechanisms. This model gives users the ad-

vantage of easy distribution of software while protect-

ing them from potentially malicious applications, but

can be too restrictive at times. To address the need to

extend the 
exibility of the \all-or-nothing" approach,

the concept of object signing was introduced to the

Java model. Access to resources outside the sandbox

is granted based on a user-de�ned policy consisting of

a list of code signers and the type of access each signer

is allowed. While this policy works well for restrict-

ing access to \trusted" code from a well-known signer,

non-malicious, entertaining or educational code from

individual programmers or small businesses is cast out,

unless privileges for each signed authority are incor-

porated into the user's access matrix. In this paper

we propose that the privileges required by code from

unknown sources be veri�ed and signed by a single

trusted third party and present an infrastructure to

facilitate this proposal. We then describe a parallel

application built on top of the Charlotte [2] parallel

processing system and an order inventory database ap-

plication as exemplars of this approach.

1 Introduction

Consider the following scenario. Alice wants to run

her parallel processing code on Bob's machine. She

has written her code to take advantage of a trusted

code base from BigDeveloper Inc. Her code is non-

malicious, and requires the full privileges of classes

provided within BigDeveloper's software development

kit. Unfortunately Bob has no reason to trust Al-

ice, and refuses to grant her code the necessary priv-

ileges. Due to the nature of Java's extended stack

introspection, in which the security model assigns run-

time privileges based on the consensus voting rule [6],

Alice's parallel processing code is never correctly ex-

ecuted. Alice cannot obtain higher privileges for her

code since these privileges are assigned by Bob on the

basis of the principal responsible for the code source,

and Alice runs a small operation that is virtually un-

known.

This scenario is not unusual. Users are continually

encountering code on the Web that cannot be trusted,

and in the absence of other information are forced for

their own safety to deny it the privileges necessary

for its execution. In essence, this means that full use

of the Web is denied to both users and the developers

providing them with a trusted computing base. Even if

Alice and her many counterparts obtained digital IDs

and had their code signed by certifying authorities,

Bob would still face the tedious administrative task

of assigning each principal to a particular entry in his

access matrix.

We are proposing a certi�cation procedure based on

a single trusted third party who is given a set of priv-

ileges on the users' machine, and who can guarantee

varied levels of safety of (in this case) Alice's code if

it conforms to certain restrictions. The bene�ts are

two-fold. Firstly, the user is no longer responsible for

the administration of the security privileges assigned

to each code source. In addition, smaller code sources

can utilize the full power of trusted libraries without

danger of harm to the user.

In the next few sections we discuss some issues per-

taining to the implementation of code signing in the

two most prominent browsers. We then discuss our

proposal for a third party veri�er, outline a method

for the third party to verify the code, and discuss two

applications that bene�t from our proposals.



2 Object Signing

Object signing is a mechanism which allows users to

obtain reliable information about downloaded classes

by using standard cryptographic techniques such as

one-way hash functions and message authentication

checks. Reliable software distribution over the In-

ternet poses many serious security problems, most

notably ensuring safety, integrity and accountability.

Object signing has been proposed as a solution to the

latter two problems. Integrity means that the byte

stream has not been interfered with and altered dur-

ing transit, and accountability means that the code

should be associated to a particular identi�able prin-

cipal.

The use of object signing in Java facilitates oper-

ations beyond the de�ned limits of the sandbox en-

vironment. Such extended operations include �le ac-

cess and establishing arbitrary network connections.

The burden of determining to what granularity these

normally restricted accesses are granted, and which

signers are permitted access, is left entirely up to net-

work administrators and users. While this approach

permits a �ne-grained continuum of access privileges

from relatively innocuous operations [4], creating and

managing a user's access matrix can be somewhat bur-

densome.

The Java object signing model is based on the no-

tion of capabilities [3], which has existed in the se-

curity component of many novel systems such as Taos

[7] and Amoeba [5] for quite some time. A capability

is a pointer to a controlled system resource that can-

not be duplicated, thus protecting the resource from

misuse. A program that wishes to use a controlled re-

source must do so through a capability, but the ability

to use a capability needs to be explicitly assigned to

the requesting program, either during its initialization

or by a call to another capability.

In Java, object signing reduces to a capability based

system where digital signatures which accompany an

applet are represented as principals, resources are rep-

resented by targets, and the privileges associated with

a principal represent the authorization for a principal

to access a speci�c target [4]. These signatures repre-

sent endorsements of the code by the signer, asserting

that the code is not malicious and behaves as adver-

tised [6].

The extended stack introspection mechanism imple-

mented by both Netscape and Microsoft uses digital

signatures to match pieces of incoming byte code to

principals, and consults a policy engine to determine

which system targets should be enabled for a particu-

lar principal. Microsoft's approach to handling digital

signatures is to allow only one signature on each piece

of code, and each signature contains a list of targets

to which the signer thinks the code should be given

access. By contrast, Netscape's approach allows for

multiple signers, with no a priori mention of targets.

In Netscape, because of the possibility of multiple

signers for a particular class, the policy engine uses

a consensus voting rule to determine which privileges

are granted on behalf of the signers. Intuitively, con-

sensus voting means that one negative vote can force

access to be forbidden, while at least one positive vote

(and no negative votes) is required in order to allow

access to a target [6]. When a privilege is enabled,

an annotation is recorded on the call stack of the re-

questing thread, so that by querying the call stack for

these annotations, future calls to the policy engine are

avoided. However, when a method call crosses classes

with di�erently signed principals, the enabled privi-

leges are hidden. Therefore, for Alice's code to move

beyond the sandbox and execute correctly with, for

example, \networking" privileges, the signature of a

more trusted principal is needed.

3 Veri�er

In this section, we describe the third party veri�ca-

tion method and present one possible framework that

supports its implementation for a restricted but large

class of applications.

Third party veri�cation is a method by which Java's

security model is extended (without changing the JVM

implementation) to allow trusted third parties to grant

well-behaved applications the privileges necessary to

access restricted system targets. In this way, well-

behaved applications from small companies can be

granted access to targets outside the Java sandbox

without having to explicitly trust the primary prin-

cipal associated with the code source. Trust is placed

in the third party who is delegated the responsibility

for verifying that the code is well-behaved.

The proposed veri�cation process proceeds as fol-

lows. Alice sends her code and a request to be granted

privileges for target(s) fpg to the third party veri�er

1

The veri�er checks whether Alice's code attempts to

perform any malicious operations with the fpg tar-

gets, and if not, signs her code with the signature

which grants privileges for fpg. Alice's code may be

executed by any user that grants the third party the

1

Our implementation requires that the list of requested tar-

gets precedes the code, as is the case with Microsoft's imple-

mentation of object signing.



Figure 1: Alice sends her code to the third party ver-

i�er.

proper privileges. This is depicted schematically in

Figure 1. It is important to note that the third party

veri�er does not need to verify the overall safety of

Alice's code: the use of restricted targets not in fpg

is controlled by the standard Java security manager.

Figure 2 shows Alice's code being executed on Bob's

machine.

The third party veri�cation method is only useful

when there is a method of verifying that an applica-

tion will use the targets that it has requested in an

innocuous fashion. In the rest of this section, we pro-

pose a framework that facilitates this veri�cation and

show how a simple order inventory application and a

parallel application are supported within this frame-

work.

The framework we propose is simple: a trusted

source, BigDeveloper Inc, creates a high-level library

that accesses restricted targets in such a way that if

the library is used in a prescribed manner, the use

will be innocuous. The application developer, Alice,

then writes her code using the library in the prescribed

manner and requests that the third party veri�er at-

test to this so that the end-user Bob will grant her

code the privileges necessary to use the library. The

third party veri�er checks that Alice's code does in

fact use the library in the prescribed manner and in

addition that the code does not abuse any privileges it

may acquire by deliberately or accidentally accessing

restricted targets without using the library. In this

way, restricted targets can be made available to ap-

plication builders while still protecting the end-user's

Figure 2: Bob downloads Alice's code from the Web

and runs it.

execution environment.

The library must be high-level enough that it can-

not be used for purposes other than it is intended. For

example, a socket library that allows Alice to open

a socket, and read and write byte streams from the

socket is too low-level because she could use it to per-

form third party attacks. On the other hand, if the

library provides high-level shared memory operations

and is such that it can only communicate with other

instances of the same library (as is the case, for exam-

ple, with Charlotte as discussed below), then it is safe

to allow Alice to use it.

We denote the targets that the library uses as L

t

and the manner in which the library must be used as

L

m

. We now describe a parallel processing application

built using a parallel library, and a simple inventory

and order database application built using a database

library.

We use Charlotte [2] as our model of a parallel pro-

cessing library. Charlotte [2] leverages Java and the

Calypso [1] programming model to provide a power-

ful metacomputing substrate for the WWW. The pro-

gramming model is simple, consisting of parallel loops

and CREW distributed shared memory. Load balanc-

ing and fault tolerance are provided transparently by

the runtime system, and the Charlotte library is writ-

ten entirely in Java. The Charlotte system we describe

is slightly modi�ed so that it meets the requirements

of a library in our framework.

The Charlotte library communicates with a Char-

lotte Manager through a socket. The Java socket



library is the only restricted parameterized tar-

get that the Charlotte library uses (i.e., L

t

=

fNetworkConnectg). In Charlotte, all applica-

tion communication is done through shared memory

\read"s and \write"s. Although the application can

cause data to be read and written to and from the

Charlotte socket connection, it is greatly restricted be-

cause at a low-level, that data is packaged and sent in a

Charlotte speci�c way. For example, when the connec-

tion is �rst established the String \ am Alice's Char-

lotte Worker"is the �rst data sent and the library will

throw an exception if the String \ am Alice's Charlotte

Manager" is not received.

The manner in which the use of the library is re-

stricted, expressed by L

m

, states that the ratio of com-

munication to computation must be low in order to

prevent denial of service attacks.

The third party veri�cation for an application that

uses Charlotte simply consists of checking that the ap-

plication does not use sockets except via the Char-

lotte library, and that the amount of communication

is much less than the amount of computation

2

.

Our second example application is a simple ordering

and inventory control database for small companies

who want to distribute applets to current and prospec-

tive customers. In this type of application, only simple

user input forms and database transactions are neces-

sary. A simple database interface library is used to

allow these applications to access their databases.

The library uses a parameterized system target and

L

t

= fUniversalNetworkConnectg. We restrict its

use so that it may only connect to machines in the

application developer's domain. In this way, we en-

sure that Alice does not try to attack her competi-

tor's databases, but she is free to access any of her

databases around the world. Because Alice is only al-

lowed to connect to databases within her company's

domain, we can allow her to perform any operation as

many times as she likes with the library. We could

also allow Alice to read and write to a single �le in a

speci�ed directory using this method.

4 Conclusion

In this paper, we proposed third party veri�cation

as a method to permit applets to move beyond the con-

�ned limits of the Java security sandbox. We proposed

an implementation framework of third party veri�-

cation based on having applications use well-de�ned,

2

In our prototype implementation, we restrict loops to de-

pend on constants and do not allow recursion; thus we can check

this ratio

high-level libraries to access restricted targets. In the

future, we plan on performing a more rigorous exami-

nation of the proposed model, and to explore alterna-

tive implementation frameworks.

Acknowledgements

This research was sponsored by the Defense Advanced

Research Projects Agency and Rome Laboratory, Air

Force Material Command, USAF, under agreement num-

ber F30602-96-1-0320; by the National Science Foundation

under grant number CCR-94-11590; and by the Intel Cor-

poration.

The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwith-

standing any copyright annotation thereon.

The views and conclusions contained herein are those

of the authors and should not be interpreted as necessar-

ily representing the o�cial policies or endorsements, either

expressed or implied, of the Defense Advanced Research

Projects Agency, Rome Laboratory, or the U.S. Govern-

ment.

References

[1] Arash Baratloo, Partha Dasgupta, and Zvi Kedem. Ca-

lypso: A novel software system for fault-tolerant paral-

lel processing on distributed platforms. 4th IEEE Inter-

national Symposium on High Performance Distributed

Computing, 1995.

[2] Arash Baratloo, Mehmet Karaul, Zvi Kedem, and

Peter Wycko�. Charlotte: Metacomputing on the

web. 9th International Conference on Parallel and Dis-

tributed Computing Systems, 1996.

[3] H. Levy. Capability-Based Computer Systems. Digital

Press, 1984.

[4] McGraw and Felten. Understanding the keys to Java

security:the Sandbox and authentication. JavaWorld,

2(5), May 1997.

[5] A.S Tanenbaum, S.J Mullender, and R. Van Renesse.

Using sparse capabilities in a distributed operating sys-

tem. 6th International Conference on Distributed Com-

puting Systems, pages 558{563, 1986.

[6] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward

Felton. Extensible Security Architectures for Java. 16th

Symposium on Operating System Principles, 1997.

[7] Edward Wobber, Mart

�

in Abadi, Michael Burrows, and

Butler Lampson. Authentication in the Taos Operating

System. TOCS, 12(1):3{32, February 1994.


