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ABSTRACT
The yielding of soil exhibits both a Lode angle dependency and a dependency on the intermediate principal stress. Ignoring these leads to a loss
of realism in geotechnical analysis, yet neither of the widely used Mohr-Coulomb (M-C) or Drucker-Prager (D-P) models include both. This paper
presents a simple pressure-dependent plasticity model based on a modified Reuleaux (mR) triangle which overcomes these limitations and yet (like
the M-C and D-P formulations) allows for an analytical backward-Euler stress integration solution scheme. This latter feature is not found in more
sophisticated (and computationally expensive) models. The mR deviatoric function is shown to provide a significantly improved fit to experimental
data when compared with the M-C and D-P functions. Finite deformation finite-element analysis of the expansion of a cylindrical cavity is presented,
verifying the use of the mR constitutive model for practical analyses.
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1 INTRODUCTION

Accurate and fast numerical analysis methods, us-
ing tools such as finite-elements, are now widely
and successfully used when tackling complex ge-
omechanical problems. The appropriate choice of
constitutive model is essential for such analyses
[14].
The non-associated perfect plasticity model pre-
sented here overcomes the limitations of the
Drucker-Prager (D-P) and Mohr-Coulomb (M-C)
models, yet requires no additional material con-
stants. The D-P yield surface exhibits no Lode an-
gle dependency, θ. The M-C surface has no sensi-
tivity to the intermediate principal stress, σ2. Yet
multiaxial experiments show that both factors in-
fluence yielding and peak stresses. Inclusion of
these dependencies in constitutive models is neces-
sary in order to capture properly the deformation
of geotechnical structures [2]. The attraction of the
proposed model is the improved fit to deviatoric
yielding (the formulation has a sensitivity to both
θ and σ2) and a fast, one-step, implicit stress inte-
gration scheme.
This paper uses a tension positive convention with
the following ordering of the principal stresses
σ1 ≤ σ2 ≤ σ3.

2 SOIL DEVIATORIC YIELDING

Particulate materials, such as soils, fractured rocks,
grains and powders, experience permanent defor-

mations which are dependent on the imposed hy-
drostatic pressure. M-C and D-P [8] are two of
the most widely used pressure-sensitive constitutive
models in the literature which can capture this be-
haviour in an idealised way. The M-C criterion as-
sumes that plastic frictional sliding will occur once
the minor principal stress falls below some propor-
tion of the major principal stress. This can be de-
fined using the following yield function

f = kσ3 − σ1 − σc = 0, where (1)

k =
1 + sin(φ)

1− sin(φ)
and σc = 2c

√
k.

φ is the internal friction angle, c the cohesion and
σc defines the uniaxial compressive yield strength2.
The constitutive models examined in this paper may
also be defined using Haigh-Westergaard cylindri-
cal coordinates

ξ = tr[σ]/
√
3, ρ =

√
2J2 and (2)
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3
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−3
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3

2
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∈
[
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Here J2 = (tr[s]2)/2, J3 = (tr[s]3)/3, [s] =
[σ] − ξ[I]/

√
3 and [I] denotes the 3 by 3 identity

matrix.
The M-C normalised deviatoric radius, ρ, (the ratio
of the yield radius to that at the compression merid-
ian ρ = ρ/ρc) or Lode angle dependency (LAD), as
shown in Figure 1, can be expressed as

ρ(θ) =

√
3ρe

2a1 sin(5π/6− a2 − θ)
(3)
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2Note, that setting a non-zero cohesion is equivalent to assuming some initial hydrostatic stress in the material, given by
p = c cot(φ).



where a2 = arcsin
(√

3ρe/2a1
)
, a1 =√

1 + (ρe)
2 − ρe and ρe is the normalised devia-

toric radius on the extension meridian to that on the
compression meridian. This allows the M-C yield
function (1) to be written as

f = ρ− αρ(θ)
(
ξ − ξc

)
= 0, (4)

where ξc = c
√
3 cot(φ) is the hydrostatic tensile

yield strength (the intersection of the yield surface
with the hydrostatic axis) and α = − tan(φ) de-
fines the opening angle of the yield surface on the
compression meridians.

Figure 1. M-C and D-P deviatoric sections.

The D-P [8] criterion provides a smooth approxi-
mation to the six-faceted M-C yield function. It is
defined such that plastic yielding will occur once ρ
reaches some ratio of the hydrostatic stress (inde-
pendent of θ)

f = ρ− αρ(ξ − ξc) = 0. (5)

Here ρ is a constant, as shown in Figure 1, defin-
ing a circular cone with its axis centered on the hy-
drostatic axis. Setting ρ = 1 or ρ = ρe allows (5)
to coincide with the M-C criterion at the extension
or compression meridians. When intersecting at the
extension meridians, ρe is obtained from φ as

ρe = (2 + k)/(2k + 1). (6)

2.1 Modified Reuleaux

The Reuleaux triangle can trace its origins back
to the 1830s where the shape was used in cam-
actuated steam engine regulators. It was not un-
til 1876 that the first written discussion of the ge-
ometry appears to have been provided by Franz
Reuleaux [15]. The Reuleaux triangle belongs to
a family of curved shapes of constant breadth
(that is, rolling polygons which maintain a constant
height)3. The six-fold symmetric shape is formed
through three equal circular arcs projected from the
triangle’s corners.

Figure 2. Modified Reuleaux triangle (ρe = 0.8).

Coombs et al. [5] extended the Reuleaux trian-
gle such that the arc centres are allowed to trans-
late along the extension meridians. This modified
Reuleaux (mR) triangle is shown in Figure 2. From
this figure, we find that the mR Lode angle depen-
dency is

ρ(θ) =
√
a2 + r2 − 2ar cos(ϕ), where

r =
ρ2e − ρe + 1

2ρe − 1
, and a = r − ρe. (7)

The arc angle, ϕ, is defined as

ϕ =
π

6
+ θ − arcsin

(
a sin(5π/6− θ)

r

)
.

(8)

Although the mR criterion allows control of ρe in-
dependent of φ, in the absence of multiaxial data,
ρe ∈ [0.5, 1] can be defined using (6) such that the
mR triangle coincides with M-C at the extension
meridians.

3Other examples of these polygons that roll with a constant height are the sterling twenty and fifty pence coins.



The mR cone is formed by combining (4) and (7),
yielding a frictional cone with linear meridians and
a mR deviatoric section, as shown in Figure 3. It
is widely accepted that associated frictional plastic-
ity models overestimate the dilation seen in particu-
late media. To overcome this shortfall, Coombs and
Crouch [4] introduced a non-associated plastic flow
(NAF) rule with the angle of plastic dilation less
than φ. Combining this with a linear hyperelastic
relationship gives rise to the NAF mR constitutive
model.

Figure 3. Modified Reuleaux yield surface.

Coombs et al. [5] and Coombs and Crouch [4] made
use of an implicit backward Euler (BE) stress re-
turn scheme (see Simo and Hughes [17]) for the
case of associated and NAF, respectively. These
previous papers used the concept of energy mapped
stress space, originally formulated by Crouch et al.
[7]. This space allows the implicit stress return to
be constructed using purely Euclidean geometric
methods. That is, the closest point (lying on the mR

surface) to a point outside the surface, may be found
analytically by determining the appropriate root of
a quartic equation. Figure 3 identifies the model’s
three return regions: A apex, B corner and C non-
planar surface return. All regions allow for a fast,
fully robust, analytical stress return, eliminating the
stability problems which are often seen in iterative
solution schemes..

3 MODEL COMPARISONS

3.1 Experimental observations: θ and σ2

The M-C, D-P and mR deviatoric functions are
compared with experimental data from (i) Monterey
sand (MS) [12] and (ii) Kaolin (K) [1] in Figure 4.
There is evidence elsewhere that many materials ex-
hibit dependencies on both θ and σ2 [3,9,11,13,16].
The left of Figure 4 compares experimental data
in terms of θ-ρ(θ). D-P has no dependence on θ,
and therefore provides a poor fit to the experimen-
tal data.
Table 1 provides a quantitative measure of the error
between ρ and the experimental data for the four
models. The error is calculated as

error =
1

n

n∑
i=1

|ρi − ρ(θi)|, (9)

where i denotes the experimental data point (out of
a total of n) with ρi and θi being the experimen-
tal normalised deviatoric radius and Lode angle, re-
spectively. mR provides an improved fit over M-C
and D-P for all of the materials. Note that, in Fig-
ure 4 (ii) ρe for the mR was not set equal to ρe for
M-C.



Figure 4. Comparison of M-C, D-P and mR with experimental data on (i) Monterey sand [12] and (ii) Kaolin [1].

The right of Figure 4 compares experimental data
in terms of ratio of the intermediate principal stress
b = (σ2 − σ3)/(σ1 − σ3) versus the effective fric-
tion angle ψ, where the latter is calculated from the
expression given by Griffiths [10]

ψ = arcsin

( √
3η cos(θ)√

2 + η sin(θ)

)
,

(10)

with η = (ρ/ξ)4. The experimental data show a
dependence on the intermediate principal stress σ2.
The D-P model can only coincide with M-C at a
single b. If this occurs at b = 0 then the devia-
toric radius significantly over-estimates the effec-
tive friction angle, whereas if this occurs at b = 1,
then it under estimates ψ. Of the three formulations
considered here, only the mR model, having a de-
pendency on both θ and σ2, is able to qualitatively
reproduce the experimentally observed material be-
haviour.

Table

1. Lode angle dependency errors.

3.2 Numerical analysis

This section presents results from simulating the in-
ternal expansion of a cylindrical cavity using a two-
dimensional plane strain finite deformation finite-
element analysis. The cavity has an internal radius
of a0 = 0.042m and is modelled using a 3◦ slice
with a fixed outer radius at b0 = 80m.
The three constitutive models, in addition to a NAF
frictional cone based on a Willam-Warnke (W-W)
deviatoric section5 [18], were implemented within
an updated Lagrangian logarithmic strain-Kirchhoff
stress finite deformation framework, see Coombs et
al. [4,6] for more details.

4Note, on the compression meridian φ and ψ are equivalent and equal.
5Note it is not possible to form an analytical stress return for the W-W model, the implicit backward Euler stress return can require

multiple iterations to find convergence.



Figure 5. Plane strain cavity expansion internal pressure-expansion response.

All models used a Young’s modulus of 100MPa and
a Poisson’s ratio of 0.2 for the model’s elastic pa-
rameters. The friction and dilation angles were set
to π/6 and π/12, respectively, with the normalised
deviatoric radius under triaxial extension for mR
coinciding with that of M-C (ρe = 0.7143) and a
cohesion of 50kPa. Two forms of D-P were mod-
eled, such that they coincided with M-C at the com-
pression (ρ = 1) and extension (ρ = ρe) meridians,
as shown on the right of Figure 5.

Table

2. Plane strain cavity expansion results.

50 four-noded plane strain quadrilateral elements
with four point Gaussian quadrature model the
problem. The length of the elements was progres-
sively increased by a factor 1.16 from the inner to
the outer surface. During the analysis the internal
radius was expanded to 0.21m (that is, 5× its orig-
inal radius) via 100 equal displacement-controlled
increments. Figure 5 presents the internal pressure-

displacement response, where a/a0 is the ratio of
the current to the original internal radius. The nu-
merical solution for M-C shows excellent agree-
ment with the analytical solution provided by Yu
& Houlsby [19].
Table 2 gives the total and maximum (for any load-
step) number of Newton-Raphson iterations (NRit),
the number of plastic material points at the end of
the analysis (npgp), the ratio of the analysis time
to that of M-C (t/tMC) and the maximum internal
pressure (Pmax). The total number of iterations dif-
fers only slightly between the four models, and the
maximum is the same for the models. Although the
mR model provides significantly increased realism
over the M-C and D-P models, the analysis time is
only increased by 5.3%. The W-W model provides
a similar level of realism to that of mR but the anal-
ysis time increases by 41.9% due to the multiple
iterations required for each material point stress re-
turn. The mR model has a higher maximum pres-
sure than M-C, as the deviatoric section encloses
the M-C (coinciding only at θ = ±π/6). Chang-
ing the radius of the D-P model from ρe to 1 in-
creases the maximum pressure by 212%, demon-
strating the consequence of selecting an inappropri-
ate normalised deviatoric radius6 (or friction angle).

6This point was highlighted by Potts and Zdravkovic [14] for the analysis of a rigid footing with the modified Cam Clay constitu-
tive model.



4 OBSERVATIONS

The simple mR model has been shown to provide
improved realism (having a dependence on both
θ and σ2) over the M-C and D-P functions when
compared with multi-axial experimental data. This
is achieved without the computational overhead as-
sociated with more sophisticated models (such as
the W-W formulation) by allowing for an analyti-
cal backward Euler stress return. Thus the mR con-
stitutive model overcomes the inadequacies inher-
ent in, and provides a suitable replacement for, both
M-C and D-P in practical geotechnical numerical
analyses. For example, it allows engineers to under-
take more detailed 3D analyses where more sophis-
ticated models still demand unacceptably long run-
times. The formulation is simple enough to code;
it can be easily incorporated in commercial finite-
element programs.
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