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Abstract

The representation and modelling of regions is an impor-

tant topic in computer vision. In this paper, we represent a

region via a level set of a ‘phase field’ function. The func-

tion is not constrained, e.g. to be a distance function; nev-

ertheless, phase field energies equivalent to classical active

contour energies can be defined. They represent an advan-

tageous alternative to other methods: a linear representa-

tion space; ease of implementation (a PDE with no reini-

tialization); neutral initialization; greater topological free-

dom. We extend the basic phase field model with terms that

reproduce ‘higher-order active contour’ energies, a power-

ful way of including prior geometric knowledge in the active

contour framework via nonlocal interactions between con-

tour points. In addition to the above advantages, the phase

field greatly simplifies the analysis and implementation of

the higher-order terms. We define a phase field model that

favours regions composed of thin arms meeting at junctions,

combine this with image terms, and apply the model to the

extraction of line networks from remote sensing images.

1. Introduction

The aim of computer vision algorithms is to make state-

ments about the scenes of which images are representations.

Many such statements concern the localization of entities in

the image (and thereby, implicitly, in the scene). Entities are

thus associated with regions in the image domain, and the

question arises of how best to represent these regions, both

in models and in algorithms, and how to model the prior

knowledge we have about the regions of interest.

Many different answers to both these questions have

been developed in the literature. Active contours, begin-

ning with Kass et al. [6], use energy functionals defined on

the space of region boundaries. Early algorithms performed

gradient descent on a discretized boundary, but this contour
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representation creates a number of difficulties, the most im-

portant being that topology changes are hard to handle. This

limits the regions that can be reached starting from a given

initialization, and thus increases the dependence of the re-

sult on the starting point.

Many of the difficulties with discretized boundaries are

overcome by using level sets [9]. During gradient descent,

the region is represented by a function on the image domain

Ω whose zero level set is the region boundary. The function

is usually taken to be the signed distance to the boundary,

a constraint that is enforced by reinitializing the function

during gradient descent. As a consequence, level sets per-

mit changes in the number of connected components of the

region only via ‘splitting’ and ‘merging’, and changes in

the number of handles only via ‘wrapping’ and ‘separat-

ing’. Energies may be formulated in terms of the boundary

itself, and the descent equations converted to a level set rep-

resentation, or they may be formulated directly in terms of

the level set function. The latter, however, results in singu-

larities in the descent equations, which must then be regu-

larized in an ad hoc way to permit computation.

If the image domain is treated as discrete, these singular-

ities are regularized by the discretization; the characteristic

function of the discrete region may then be used directly.

The best known model in this class is the Ising model. Such

models are usually solved using stochastic optimization.

Previous models have incorporated varying degrees of

prior geometric knowledge. The standard prior terms to be

found in active contour models (and, e.g. in region com-

petition [18]) are boundary length and interior area. The

Ising model also uses a discrete version of boundary length.

This is not surprising: Euclidean invariance is necessary for

most problems, and length and area are the only two in-

variants if higher derivatives are not used. Some models

have also used the boundary integral of the magnitude of the

boundary curvature or its square. Recently there has been

a great deal of interest in the incorporation of more specific

prior knowledge. This normally (although see [3]) takes

the form of a template shape around which small variations

controlled by a Gaussian energy are permitted (see [8] and

references therein). Because the template has a particular



position and orientation, repeated pose estimations are re-

quired for Euclidean invariance. This means that detecting

multiple instances of an entity, whose number must also be

known a priori [4], is computationally expensive.

An alternative approach to the incorporation of prior

geometric (and image) knowledge in active contour mod-

els, known as ‘higher-order active contours’ (HOACs), was

introduced by Rochery et al. in [11]. The standard length,

area, and curvature terms incorporate only local, differen-

tial knowledge about the boundary, whereas HOACs in-

clude nonlocal interactions between widely separated con-

tour points. The nonlocal terms focus the energy minima

on regions with particular geometric characteristics, e.g. re-

gions composed of arms with roughly parallel sides that

meet at junctions. In [11], such a model was applied to

remote sensing images for the extraction of road networks,

for which it clearly provides a better prior model than the

standard terms alone. HOACs have a number of advan-

tages over other methods for incorporating prior geomet-

ric knowledge. First, they are not limited to small varia-

tions around a template shape, as the road network exam-

ple makes clear. Indeed, they provide a general framework

for the construction of models of increasing complexity and

specificity. Second, they require no pose estimation as the

energy is intrinsically invariant. Multiple instances of an

entity, whose number need not be known a priori, therefore

cost no more to detect than a single instance.

There are difficulties, however. First, as with other ac-

tive contour approaches, an initial region is needed for the

gradient descent. Although the inclusion of more specific

prior knowledge means that a generic, hence automatic ini-

tialization can be used, the final result still depends on this

choice. Second, a level set representation is used to perform

the gradient descent, and this prevents the formation of han-

dles. Road networks, for instance, can have a complicated

topology with many handles, and the choice of initialization

affects which of these are detected. Finally, the nonlocal

terms produce nonlocal forces, whose evaluation requires

boundary extraction and integration followed by velocity

extension, and this is expensive computationally.

The primary goal of the present paper is to describe how

HOACs can be expressed in terms of a fourth region rep-

resentation and modelling framework: phase fields. Phase

field models originated in physics, where they have been

much used to model regions and interfaces. They offer the

following important advantages:

• the representation space is linear, thus facilitating

model building and analysis;

• gradient descent is based solely on the PDE resulting

from an energy functional, with no need for ad hoc

regularization or reinitialization; numerical implemen-

tation is simple;

• no initial contour is needed for evolutions; a com-

pletely neutral initialization is possible;

• components of a region can be created or destroyed

anywhere in Ω; handles can be created and destroyed

in the interior of existing regions;

• HOAC terms require no boundary extraction, integra-

tion, or velocity extension; indeed prior terms are local

in the Fourier domain.

The difficulties mentioned above are thereby overcome,

while the ability to include sophisticated prior geometric

knowledge is retained. This will be illustrated by applying

a particular model to the extraction of road networks from

remote sensing images. The first four points apply equally

to standard active contour models, which are a special case

of HOACs, and a subsidiary goal of this paper is to sug-

gest that phase fields represent an advantageous alternative

to other active contour methods in this case also.

In the rest of the paper, we expand on the above. In sec-

tion 2, we describe the simplest phase field model and its

approximate equivalence to classical active contour ener-

gies. This equivalence is quite well-known, but does not

appear to have been exploited in computer vision. We pro-

vide a heuristic but simple derivation. We also illustrate

the above advantages as applied to standard active contours.

Section 3 is the heart of the paper. We introduce extended

phase field models, and show their approximate equivalence

to HOACs, as well as their algorithmic simplicity. We il-

lustrate the prior geometric knowledge included in the ex-

tended models via gradient descent evolutions using a spe-

cific example, and discuss the relation between the descent

equations and reaction-diffusion equations in the literature.

In section 4, we move from prior models to the construction

of image terms for line networks in remote sensing images,

and show some examples of network extraction from real

images. We summarize and conclude in section 5.

2. Phase Field Models

Phase fields are a level set framework: the phase field

φ is a function on Ω, which, given a threshold z, defines a

region in the space of regions R via the map ζz(φ) ∈ R =
{x ∈ Ω : φ(x) > z}. However, in contrast to other meth-

ods, which use a representation space that is isomorphic to

the space of regions R (e.g. distance functions, contours,

characteristic functions), no constraint is placed on φ: the

set of functions considered, Φ, is a linear space. The non-

linear nature of R is instead taken into account via nonlinear

terms in the energy functional defining the model. The sim-



plest phase field energy is

E0(φ) =

∫

Ω

d2x

{

D

2
∇φ · ∇φ

+λ(
1

4
φ4 −

1

2
φ2) + α(φ −

1

3
φ3)

}

. (1)

When α = 0, this is commonly known as the Ginzburg-

Landau model. For λ ≥ |α|, the potential on the second

line has two minima, at ±1, and a maximum at α/λ. If

α > 0, the minimum at −1 has the lowest energy, and is

thus preferred. The energy (1) can be minimized subject

to the constraint that ζz(φ) = R, which defines a function

φ0 : R → Φ. The form of the potential means that away

from the region boundary, ∂R, φR = φ0(R) will assume

the value 1 inside, and −1 outside R. In the absence of

the derivative term, φR would have a discontinuity on ∂R,

where it would jump from −1 to 1. The presence of the

derivative term prevents this, however, and the competition

between the two parts of the energy results in a smooth tran-

sition over an interface region around the boundary. Up to

a rescaling and shift, φR is thus a smoothed version of the

characteristic function of R. The function φ0 defines a re-

gion energy EC,0 = E0φ0, which can be described approx-

imately in terms of the boundary length L(R) and interior

area A(R) of R. Gradient descent in Φ using E0 will fol-

low the ‘valley’ corresponding to the functions φ0(R) for

a sequence of regions corresponding to gradient descent in

R using EC,0. The phase field and the energy E0 can thus

be used to represent and model regions in place of a con-

tour or distance function and EC,0. This connection1 does

not appear to have been exploited in computer vision. How-

ever, the energy E0 with φ complex and α = 0 was used for

image inpainting [5], and to detect codimension 2 objects

in the image domain [2], while in [14], a model with multi-

ple minima was used with Gamma convergence to construct

piecewise constant approximations to an image.

We can ‘derive’ the form of EC,0 heuristically using a

simple ansatz φ̃R for φR. We divide Ω into three pieces:

a narrow interface region RC containing ∂R (the width w
of RC can vary with position on ∂R); an interior region

R+ = R\RC ; and an exterior region R− = R̄\RC , where

R̄ = Ω\R. The situation is illustrated in figure 1. We take

φ̃R = ±1 on R±, while on RC it changes linearly from

−1 to 1 along the normal to ∂R. For a segment of ∂R small

enough that the curvature can be considered constant, in po-

lar coordinates based on the centre of curvature, φ in RC is

thus

φ̃R(r, θ) = −
2

w
(r − r0) + z (2)

1It is interesting to note that when (1) is discretized on a lattice using

standard finite differences, and λ → ∞, the Ising model is recovered.

Figure 1. Ansatz used to derive EC,0.

Substituting this form into E0, one finds, up to an additive

constant, that

E0(φ̃R) =

∫ L(R)

0

ds

{

2D

w
+ w

(

2λK

15
+

3α

40
wκ

)}

+
4α

3
A(R) , (3)

where s is an arc length parameterization of ∂R, K =
1 + 5(α/λ)2, and κ is the boundary curvature. Minimiz-

ing E0 with respect to w gives the optimal width w∗ as a

function of the parameters. If wκ ≪ 1, w∗ is constant:

w2
∗ = 15D(λK)−1. Thus we find that

EC,0(R) ∼= ẼC,0(R) = λCL(R) + αCA(R) , (4)

where αC = 4α/3 and λ2
C = 16DλK/15. These values

are close to those obtained by more sophisticated methods.

Of course there are curvature dependent corrections to

EC,0 stemming from the wκ term in (3), meaning that E0

does not mimic exactly the behaviour of ẼC,0. To achieve

this, the interface width must be as small as possible, which

requires very fine and/or adaptive discretization, and this

is computationally expensive. This dilemma constitutes a

commonly voiced objection to phase field methods. The

objection has force, however, only when it is known that

ẼC,0 is the appropriate region energy, i.e. that the correc-

tion terms should be very small at the scale of interest. In

physical systems, this may arise from more fundamental

principles. In computer vision, however, region energies

are not derived from fundamental principles. Rather, they

are designed to represent our prior knowledge about region

geometry. If the maximum curvature expected of the re-

gions of interest is κmax, then w must be . κ−1
max to assign

them significant probability. Then if κmax & 1 in pixel

units, w must be . 1. The need to reduce computation may

then outweigh the advantages of phase field methods. If

this is not the case, however, then there is no good reason to

assert that one must use ẼC,0 rather than EC,0, especially

since the lowest-order term in the difference is, anyway, of



Figure 2. Neutral initialization

the κ2 form that has been used in computer vision. In what

follows, including the HOAC case, we will therefore sim-

ply define the phase field energy to be our region model,

thereby implicitly defining an energy on regions.

The functional derivative of E0 is given by

δE0

δφ
= −D∇2φ + λ(φ3 − φ) + α(1 − φ2) , (5)

and gradient descent thus follows the Allen-Cahn equa-

tion [1]. Provided the parameters are such that the interface

width is not small compared to the discretization, this can

be implemented using simple finite differences. No reini-

tialization or ad hoc regularization are required.

Phase fields have a major advantage in terms of initial-

ization. We can initialize gradient descent using the con-

stant function φinit ≡ α/λ. If we then choose the map

ζα/λ to map functions to regions, this is a completely neu-

tral initialization, in two senses. First, it corresponds to the

maximum of the potential, and hence is not biased towards

one minimum or the other. Figure 2 illustrates this. Second,

φinit is not biased towards interior or exterior, in the sense

that both {x ∈ Ω : φinit ≷ α/λ} are empty.

Such an initialization means that φ can produce regions

‘where required’ in the image domain at the beginning of

the evolution, rather than having to evolve towards them

from some initial configuration. A simple example is shown

in the top row of figure 3. The underlying data is a white

annulus on a black background. The prior energy is E0 with

α = 0. The image energy is the first term of (10). The

figure shows the evolution of the region ζ(φ) starting from

the neutral initialization (all-white image at left). Note the

formation of regions near the high gradient zones followed

by their extension to the full annulus. This behaviour is

particularly important when multiple instances of an entity

must be found. In addition, it seems intuitively clear that

there will be less problems with local minima starting from

this initialization, although making this precise is hard.

As advertised, the new framework also has much greater

topological freedom. In the standard level set framework,

the number of connected components of a region can only

change by splitting and merging. Now, as figure 3 makes

clear, new components can appear or disappear where

needed. In addition, in the standard level set framework,

Figure 3. Top: evolution starting from the neu­

tral initialization. Bottom: evolution starting

from a circle.

the number of handles of a region can only change by wrap-

ping or separating. Phase fields again show more topolog-

ical freedom: handles can appear and disappear within an

existing region. This is illustrated in the bottom row of fig-

ure 3. The data and energy are the same as for the top row,

but now the initialization is a circle. Note the formation of

the hole in the centre.

The greater topological freedom offered by phase field

models means that the evolving region can reach more of R

starting from a given initialization than other frameworks,

which renders the method more independent of the initial-

ization. These freedoms are critical for applications dealing

with topologically non-trivial regions, e.g. road network ex-

traction. If topological restrictions are required, then they

must be imposed at the level of the model, as terms in the

energy, which is where they should appear anyway, rather

than appearing as side-effects of the algorithm.

We conclude that phase fields offer a distinctly advan-

tageous alternative to standard active contours, whether the

latter are used with contour or level set representations. All

these advantages, and more, apply equally to the phase field

models corresponding to HOACs, which we now discuss.

3. HOACs as Phase Field Models.

In the previous section, we described the basic phase

field model corresponding to standard active contour prior

energies. In this section, we show how to extend E0 to

E = E0 + ENL such that EC = Eφ0 is a HOAC en-

ergy. We can thus use phase field models to incorporate

sophisticated prior geometric knowledge about the regions

being modelled, thus accruing all the advantages mentioned

previously. In addition, phase field models greatly simplify

the analysis and algorithmic treatment of HOAC terms. We

begin by briefly discussing HOACs [11].

Standard active contour energies are defined by single

integrals of local, differential geometric properties of the

region boundary. They thus incorporate prior knowledge

only about these local quantities. HOACs, in contrast, in-

corporate long-range interactions between boundary points,



and this enables the inclusion of complex prior geometric

knowledge. The long-range interactions are expressed via

multiple integrals over the boundary. For instance, the sim-

plest form involves two integrals:

EQ(R) =

−
βC

2

∫

S1×S1

dt dt′ γ̇(t) · GC(γ(t), γ(t′)) · γ̇(t′) , (6)

where γ : S1 → Ω is a parameterization of ∂R (for nota-

tional simplicity, we consider only single connected compo-

nent, simply connected regions), a dot indicates d/dt, and

GC is a map from Ω2 to 2 × 2 matrices.

Now define the phase field energy

ENL(φ) =

−
β

2

∫

Ω2

d2x d2x′ ∇φ(x) · G(x, x′) · ∇φ(x′) , (7)

where G is the same type of operator as GC . Consider in-

serting the ansatz (2) into this energy. The regions R+ and

R− contribute nothing, so all the contribution comes from

the double integral over RC . The gradient of φ in RC is

given by ∇φ = −(2/w)n̂, where n̂ is the outward normal to

the boundary, extended to RC . The integrals across the in-

terface in (7) are thus easy to perform if we assume that G is

roughly constant over distances ∼ w. Each integral simply

contributes a factor w, which cancels that in the correspond-

ing gradient. We are left with two boundary integrals in the

form (6), with βC = 4β, and GC = ǫ†Gǫ, where ǫ is the

2×2 Levi-Civita tensor and † is transposition. (This conclu-

sion is confirmed by a more sophisticated analysis [7].) The

phase field model E = E0 + ENL is thus approximately

equivalent to the HOAC model EC = ẼC,0 + EQ, and can

be used in its place, thus profiting from all the advantages

of the phase field framework.

The functional derivative of ENL is given by

δENL

δφ(x)
= β

∫

Ω

d2x′ ∇ · G(x, x′) · ∇φ(x′) . (8)

Note that this is a nonlocal term. However, for prior terms,

ENL will normally be Euclidean invariant, which means

that G is rotationally and translationally invariant:

G(x, x′) = G(x − x′)δ = Ψ(|x − x′|)δ , (9)

where δ is the 2 × 2 unit matrix. Translation invariance

means that G is diagonalized by the Fourier basis; its action

on φ can thus be computed trivially in the Fourier domain.

This shows the particular advantage of phase field methods

for HOACs. Whereas the standard level set method requires

boundary extraction, integration, and velocity extension at

each iteration to compute the nonlocal force, here it is sim-

ple to compute. Implementation is thus much easier and

execution faster.

To illustrate the prior knowledge contained in (7), we

will show the results of gradient descent using the energy

E, and compare with the results of gradient descent using

EC . We choose Ψ to be a smoothed step function:

Ψ(z) =

{

1
2

(

1 − z−d
ǫ − 1

π sin(π(z−d)
ǫ )

)

if |z − d| < ǫ ,

1 − H(z − d) else .

where H is the Heaviside function. With this choice of in-

teraction, E = E0 + ENL, favours regions composed of

arms with roughly parallel sides that meet at junctions. In

figure 4, the results of gradient descent starting from a cir-

cle are shown. The upper evolution is based on E, the lower

on EC , with parameters chosen to be equivalent according

to the relations given earlier. As can be seen the evolutions

are rather similar, with eight arms with a width of ∼ 5 pix-

els being formed from the circle. The differences are also

notable. The phase field evolution preserves the symme-

try of the initial condition, whereas the contour evolution

breaks it. The symmetry breaking is due to the contour ex-

traction and integration steps in the latter, which introduce

small numerical errors that are then amplified by the energy

EC . While this has little effect in computer vision appli-

cations, where the effect of the image terms dominates, the

experiments nevertheless show that the phase field imple-

mentation is numerically more stable.

Figure 4. Geometrical evolutions based on E
(top) and EC (bottom).

The energy E clearly provides a better model for the

geometry of road networks than E0 alone. We will thus

use it as the prior energy in a model for the extraction of

road networks in remote sensing images.

3.1. Relation to coupled reaction­diffusion

The gradient descent equation derived from E is a non-

local reaction-diffusion equation. For very special forms of

G, ENL can be rewritten in terms of local operators us-

ing an auxiliary field. Gradient descent using E is then

equivalent to two coupled reaction-diffusion equations in



the ‘slaving limit’, i.e. when the auxiliary field reacts in-

stantaneously to changes in φ. Coupled reaction-diffusion

equations have been used in graphics for texture synthe-

sis [15, 16] and in computer vision for image restora-

tion [10]. With appropriate initial conditions, the models

used here can produce patterns similar to those generated

in these works, but there are several important differences.

First, the equations therein were far from the slaving limit.

Second, the equations here are based on an energy, which

greatly simplifies their analysis. This is not true of many

of the equations used, e.g. for texture synthesis, and brings

the current work closer to [17], in which reaction-diffusion

equations arise from the Gibbs energies of images learned

using minimax entropy. Although the energies used here fit

within the framework of [17], which is rather general, [17]

did not address region representation and modelling.

The third and most important difference between the

work on texture synthesis and the present work is that pat-

tern generation in the former relies on the Turing instabil-

ity of homogeneous solutions: such solutions ‘decay’ into

periodic patterns, resulting in spontaneous region creation

in homogeneous areas, even in the absence of data. This

might be useful in some applications, but it is of no use in

the present context, since we wish to be able to describe lo-

calized regions such as those in figure 4. This requires that

the homogeneous solutions be Turing stable (i.e. the second

functional derivative of E evaluated at φ± must be positive

definite), to prevent the decay of the background or region,

which in turn constrains the possible parameter values. An-

other way to say the same thing is that φ0 is not well-defined

in the unstable case. However, as figure 4 shows, stability

does not mean that complex patterns cannot arise [7].

4. Line network detection.

In order to extract line networks from remote sensing im-

ages, image terms must be defined in terms of the phase

field function φ. We define two local terms and one non-

local term similar to those introduced by Rochery et al. in

[11]:

EI(φ) = −

∫

Ω

d2x

{

λI∇I · ∇φ + αI

(

φ + 1

2

)

F [I]

}

−
βI

2

∫

Ω2

d2x d2x′ ∇I · ∇I ′ ∇φ · G · ∇φ′ , (10)

where (un)primed quantities are evaluated at x′ (x), and G

is given by (9). Note that ∇φ is zero everywhere except

for the interface, where it points inwards. The first term

thus predicts large inwardly pointing image gradients on

the road boundary. Note that (φ + 1)/2 is approximately

the characteristic function of the region. F is a simple line

detection filter; the second term thus predicts large values

when the filter output is integrated over the road interior.

The third term is nonlocal, and corresponds to a quadratic

HOAC term (6) in which GC depends on the image. If

∇φ(x) and ∇φ(x′) are parallel and close (i.e. x and x′ are

on the same side of the road), it predicts large, parallel val-

ues of ∇I(x) and ∇I(x′). If ∇φ(x) and ∇φ(x′) are an-

tiparallel and close (i.e. x and x′ are on opposite sides of

the road), it predicts large, antiparallel values of ∇I(x) and

∇I(x′). Note that unlike the prior term ENL, this term is

not translation invariant, and so is not diagonalized by the

Fourier basis. For the moment, we treat this term by brute

force, convolving a varying filter with φ.

We used EI + E as a model for road networks in the

experiments shown in figures 5 and 6, performing gradient

descent from the neutral initialization φinit. In figure 5, two

steps of the evolution are shown, in addition to the data and

the result, to illustrate the very different nature of the evolu-

tion found with the phase field model as compared to a con-

tour model. Figure 6 shows two further results. The para-

meter values were chosen by hand, but they are constrained

by the relation with w and Turing stability. For the ex-

periments shown here, they were (D,λ, α, β, λI , αI , βI) =
(1, 3.5, 0.55, 0.16, 1.8, 0, 3) and (1.1, 5, 1.7, 0.3, 2, 0.4, 1.5)
and (0.35, 0.6, 0.05, 0.01, 2, 0.2, 0.1). In both cases, despite

the neutral initialization, the network is largely extracted,

while confounding features such as image gradients at the

edges of fields are ignored. The main failure mode involves

‘gaps’ in the network. This was addressed within the HOAC

framework by Rochery et al. [12, 13]. The same idea can

be translated into the phase field framework, and would cer-

tainly lead to reduction in the number of gaps. Note that if

we run the model on these images with β = βI = 0 (i.e.

with a standard active contour), even the best results are not

at all close to the network.

5. Conclusion

Phase field models offer an advantageous alternative

to classical active contour methods: a linear representa-

tion space; ease of implementation (a PDE with no reini-

tialization); neutral initialization; and greater topological

freedom. Further, extended models that are equivalent

to higher-order active contour prior energies can be con-

structed, meaning that sophisticated prior geometric knowl-

edge can be included while retaining these advantages. In

addition, the phase field framework greatly simplifies the

analytic and algorithmic treatment of the HOAC terms.

Phase fields can also be used to build standard image terms,

and again, more sophisticated image models can be con-

structed using terms equivalent to image-dependent HOAC

energies. Road network extraction results on aerial and

satellite images confirm the efficacy of the models and algo-

rithms: starting from a neutral initialization, the network is



Figure 5. From left to right, top to bottom:

satellite image ( c©CNES); two steps of the

evolution; result.)

largely extracted while ignoring confounding features that

confuse models which do not include prior geometric in-

formation or nonlocal image terms. The results obtained

are at least equal in quality to those obtained in [11], while

computation times are reduced. The gaps that remain in the

networks were a problem for [11] also. Addressing them

along the lines of [12, 13] is future work.
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