
Using a Follow-on Survey to Investigate Why Use of the
Visitor, Singleton & Facade Patterns is Controversial

Cheng Zhang, David Budgen and Sarah Drummond
School of Engineering & Computing Sciences

Durham University
Durham DH1 3LE, U.K.

{cheng.zhang2;david.budgen;sarah.drummond}@durham.ac.uk

ABSTRACT
Context: A previous study has shown that software devel-
opers who are experienced with using design patterns hold
some conflicting opinions about three of the more popular
design patterns: Facade, Singleton and Visitor.
Aim: To identify the characteristics of these three patterns
that have caused them to generate such differing views.
Method: We employed a qualitative follow-on survey of those
developers who had taken part in the earlier survey about
design patterns.
Results: We received 46 usable responses from a possible
total of 188, with nearly 85% of respondents having six or
more years of experience with design patterns. Of these,
27 also provided comments and descriptions of experiences
about the patterns, which we categorised.
Conclusions: All three patterns can easily be misused and in
each case, the consequences of misuse are regarded as being
particularly significant.

Categories and Subject Descriptors
D2.2 [Design Tools and Techniques]: Object-Oriented
Design Methods

Keywords
design pattern; survey; empirical

1. INTRODUCTION
The concept of the design pattern forms a well-established

and widely advocated mechanism for aiding the OO design
process, with the textbook by the ‘Gang of Four’ (GoF)
providing a widely-known and much-cited catalogue of pat-
terns [4]. However, relatively little research has been done
to identify how effective the concept actually is in practice,
and to determine the conditions under which it might be
appropriate (or inappropriate) to use specific patterns. In
two previous studies we have:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’12, September 19-20, 2012, Lund, Sweden.
Copyright 2012 ACM 978-1-4503-1056-7/12/09 ...$10.00.

• conducted a Systematic Literature Review (SLR) in the
form of a mapping study, in order to identify how ex-
tensively the use of design patterns have been inves-
tigated through the use of empirical studies, and to
identify any knowledge about their use and limitations
that may have been identified [14];

• undertaken a survey of 216 experienced software devel-
opers to draw upon their experiences with using the 23
design patterns in the GoF [13].

We discuss the outcomes from these studies more fully in the
next section. As might be expected, both the experiences
and the opinions from the survey were quite varied. We
did identify groups of patterns for which there was general
agreement about their usefulness or otherwise. However, we
also identified three patterns where significant differences
emerged in the assessments of their value: Facade, Singleton
and Visitor. (We might also note that within the patterns
community, Singleton and Visitor have attracted consider-
able debate, and that one member of the GoF has gone on
record to express doubts about the value of Singleton1.)

A problem that was encountered in both studies was that
of obtaining causal links that could provide a clear derivation
of knowledge and opinions from experiences. In our survey
we did ask for qualitative comments that could help with
this, but this element received relatively few responses.

We therefore decided to investigate these three patterns
more fully, to see if we could identify the characteristics that
made them controversial. To do so, we conducted a second
survey that asked respondents to express views about the
characteristics of these three patterns. Since we were seeking
to probe deeper into the reasons that lay behind the results
of the first survey, the sampling frame used for this survey
was the set of respondents to the first survey.

So, for this second survey, our research question was:

“What characteristics of these three patterns cause
developers to hold widely differing views about
their use?”

A supplementary question we also asked was:

“Is a follow-on survey a useful way to investigate
these characteristics?”

Our second survey was conducted in early summer 2011.
In the following sections we provide a little more background
about the original studies, describe the design of this follow-
on survey and its conduct, present our results and discuss
how far they answer the research questions .
1http://www.informit.com/articles/article.aspx?p=1404056

2. BACKGROUND
This study forms the third in a sequence of three investiga-

tions into design patterns. We begin by briefly outlining the
nature of a design pattern, and then describe the outcomes
from each of the preceding studies that helped to motivate
the question for the one described here.

2.1 Studying Design Patterns
The very nature of a design pattern makes it difficult

to conduct empirical studies of its use or misuse, at least
through the vehicle of conventional laboratory experiments.
Essentially a pattern forms a knowledge schema through
which the expertise of a group of designers can be recorded
in such a way that it can be reused by others [2]. Hence the
use of a pattern involves a creative activity, during which
the pattern is interpreted within the context of the particu-
lar design task. This is turn means that for any experimental
studies of design patterns, the experience and skills of the
participants will form quite significant confounding factors.

There is therefore good reason to study design patterns
by using a wide range of empirical study forms: experi-
ments, case studies (especially in an industry setting), and
surveys—and then to triangulate between the outcomes of
these as fully as possible. We examine this range of options
more fully in the discussion that follows.

2.2 The Mapping Study
A mapping study is a form of Systematic Literature Re-

view that has as its research question the issue of determin-
ing the range and size of the set of studies addressing a fairly
broad topic [6]. One of the aims of such a study is to deter-
mine whether there are enough primary studies available to
provide scope to undertake an actual SLR with a much more
focused research question. Obviously some blurring of the
boundaries can occur—as was the case for our own mapping
study where we did analyse and interpret the data for some
of the patterns in more detail [14].

We conducted a systematic and thorough search over the
period 1995-2009, which identified 611 candidate papers, al-
though the number that met our inclusion/exclusion crite-
ria was quite small. The final set for analysis included only
10 papers, describing 11 experimental studies. To augment
this, we then re-examined the papers that we had classi-
fied as ‘observational’ (i.e. lacking experimental rigour) and
included seven of these that offered reasonably good causal
links between the reported observations and the conclusions.
All of the studies involved patterns that were catalogued
in the GoF (which includes 23 patterns in all), but only a
sub-set of these were studied, and only three (Composite,
Observer and Visitor) had been studied very extensively.

The added value provided by the observational studies,
and particularly by one that was very clearly reported [11],
suggested to us that a survey of experienced developers could
potentially provide a fuller profile of the complete set of
patterns from the GoF.

2.3 The First Survey
We conducted this over the summer of 2010, using an on-

line data collection form (SurveyMonkey). Our respondents
came from three groups.

• The authors of all of the papers that we identified as
being about design patterns in our mapping study (not
just empirical papers). We sent out 877 invitations,

although returned e-mails indicated that only 681 of
the addresses were still valid. We refer to this group
as the Authors.

• People who were recommended by the Authors (our
invitation to the Authors did ask them to pass it on to
anyone who might have appropriate knowledge). We
refer to these respondents as the Snowball group.

• Members of a research mail-list that was identified in
the course of our survey, termed the Mail-list group.

After removing unusable responses, we were left with 206 re-
sponses: 128 Authors; 41 Snowball; and 37 Mail-list. Anal-
ysis of the demographic questions addressing such issues as
years of experience with object-oriented development, and
years of experience with patterns indicated that the profiles
of the three groups were sufficiently close for them to be
analysed as a single dataset. We also examined whether the
respondents who categorised themselves as primarily work-
ing as developers had significantly different views from those
who considered themselves as being primarily researchers
and teachers (see below).

Respondents were asked to complete a ‘rating’ question
by providing an assessment of ‘usefulness’ for all 23 of the
GoF patterns (there was also an option for indicating ‘no
experience’). They were then asked to perform a ‘ranking’
exercise by identifying up to three patterns that they consid-
ered to be particularly useful, and also up to three patterns
that they did not consider to be useful. As might be ex-
pected, there were more positive ‘votes’ than negative ones.
We also provided an option for respondent’s to comment on
why they considered a pattern to be useful or not useful,
and encouraged them to use this option to provide causal
reasoning for their choices.

Our findings are reported elsewhere [13], where we review
the assessments for all 23 of the patterns. The two patterns
that were rated most highly, with relatively few reservations
being entered, were Observer and Composite. At the other
end of the spectrum there was a distinct group of patterns
that were considered to be of little or no use, most notably
Memento (with no positive votes at all), and Flyweight which
had 21 negative votes and only two positive ones.

While the views of the different groups (developers versus
the combined group of teachers and researchers) expressed
in the ranking question were similar for most patterns, Fa-
cade is one where there was some difference. Developers
all viewed it positively, with all of the negative votes com-
ing from teachers and researchers. Developers also tended
to be more negative about Singleton, although both groups
held rather mixed views overall. The responses to the rating
question were generally consistent with these profiles.

In assessing the validity of the outcomes we do need to
recognise that our sample included many people with higher
degrees, particularly among the teachers and researchers,
and also a large proportion of people who had authored pat-
terns. So this group may not be fully representative of the
target population (software developers) for which they acted
as a surrogate, and may have a more favourable (or critical)
attitude towards design patterns.

Table 1 shows the number of ‘votes’ cast for the three pat-
terns that we examine in this study. The figures in brackets
indicate the percentage of the total of 389 positive and 113
negative votes that were made across the 23 patterns.

Table 1: Votes Cast for Each Pattern
Pattern Positive Votes Negative Votes
Visitor 26 (6.7%) 11 (9.7%)
Singleton 22 (5.7%) 14 (12.4%)
Facade 26 (6.7%) 7 (6.2%)
Total 74 (19.1%) 32 (28.2%)

While these three patterns attracted a broadly similar
proportion of positive votes to many other patterns, they
also attracted a disproportionately large number of negative
votes. The qualitative comments also indicated mixed views,
especially for Singleton and Visitor and were used as the ba-
sis for our second survey, described in the next section. The
purpose of the second survey was to collect qualitative data
that could identify the characteristics of these three patterns
that led to such contrasting views about their value.

For the reader who may be unfamiliar with these three
patterns, we provide a very brief summary of each of them
below, to help with interpreting the comments we report.

2.3.1 The Visitor Pattern
This is a behavioural pattern that acts as an intermedi-

ary to the services provided by a composite set of objects,
translating requests it receives into a set of requests to the
objects. Its use makes it possible to add new functionality
(for a client of these objects) simply by modifying/enhancing
the Visitor. In exchange, the ability to modify the composite
set of objects is made more difficult by its use, and the Visi-
tor has to have knowledge about the ‘state vectors’ of those
objects [3]. There are some implementational issues for Vis-
itor, particularly with the use of ‘double despatch’ for many
languages, which “lets visitors request different operations
on each class of element” [4]. The use of this, along with
the use of polymorphism, significantly complicates testing
of systems that employ Visitor [1].

2.3.2 The Singleton Pattern
This is a creational pattern that “ensures a class only has

one instance”, with a single global access point. (A good
example of a situation where this might be appropriate is
for a spooler object managing a printer.) There are subtle
issues with Singleton though, see reference [3] for a fuller
discussion of these.

2.3.3 The Facade Pattern
Facade is a structural pattern that is intended to “provide

a unified interface to a set of interfaces in a subsystem” [4].
Essentially, this can act as ‘glue code’ to hide individual
components that are only of specialist interest and to provide
a simple interface for a complex subsystem. Facade accepts
a request from another object and delegates elements of this
to appropriate objects in the subsystem, without the user
needing to know that this is being done.

3. METHOD
Following up an initial study with a second, deeper, study

that uses the same participants, or a subset of these, is cat-
egorised as a multi-method study. An example of this is to
follow up a largely quantitative survey (such as our first sur-
vey) with a set of semi-structured interviews with selected
participants, in order to obtain more in-depth explanatory

(qualitative) data, as described by Mingers [8]. This ap-
proach has the benefit that the researchers retain control of
the sampling process—and so are able to identify the most
appropriate interview candidates.

The nature of our first survey, where the sampling frame
was determined largely by expertise, rather than by loca-
tion, made the use of semi-structured interviews impractical.
We therefore decided to employ a second, more qualitative
follow-on survey of the group as a surrogate for using inter-
views, with its form reflecting this role. As a consequence,
we retained little control of the sampling process, as well as
being unable to probe and follow through on issues as deeply
as would be possible using interviews.

For our follow-on survey, the population of interest (the
sampling frame) consisted of those people who had taken
part in our first survey. By re-surveying this group, we were
able to probe more deeply on the issues of interest, while
accepting that we would probably have a much lower number
of responses (the norm for surveys is usually quoted as 10-
20% [9]). Our first survey did include a question at the end
to ask if respondents were willing to take part in any further
study on design patterns. 11 respondents declined, leaving
us with a sampling frame of 195 experienced pattern users.

In the rest of this section, we describe the design of the
follow-on survey, and then report on how it was conducted.

3.1 Design of the Follow-on Survey
Guidelines for conducting semi-structured interviews sug-

gest providing a short explanation of the purpose of the re-
search at the start of an interview [9, 10]. Therefore, to help
motivate possible respondents for the follow-on survey, we
produced a four-sided ‘executive summary’ of the key out-
comes from the first survey, extracted from the full report
provided in reference [13]. This summary provided brief
details of the demographic profiles and presented a chart
showing the votes ‘cast’ in favour of, or against, the use-
fulness of each pattern in response to the ranking question.
The purpose of the summary was to provide a context for
the specific questions asked in the follow-on survey, and to
show why these three patterns were considered as being of
particular interest. A copy of the summary was attached
to the e-mails sent to the respondents from the first sur-
vey who had indicated a willingness to take part in further
study, inviting them to complete this further survey.

We again adopted an on-line model for applying the sur-
vey instrument, but since we aware that any potential re-
spondent had already spent quite substantial time filling in
the first survey, we aimed to keep this as short and focussed
as possible. We therefore confined the demographic element
to one question asking about length of experience with work-
ing with design patterns. Our reasons for doing so were
two-fold: firstly, we were concerned that asking respondents
to provide such material again would deter them from com-
pleting the survey, as they had already entered it once; and
secondly, we expected to be able to retrieve much of this in-
formation from the data of the first survey, by matching the
internet addresses used by the respondents to those recorded
when they completed the first survey.

To provide a quantitative element we sought to determine
how much consensus there was about the set of statements
describing the characteristics of each pattern that we had ex-
tracted from the first survey. So, the respondents were first
presented with each statement and asked to express a level

Table 2: Statements About Characteristics Used in the Questions for Each Pattern
Pattern Statement provided from the first survey
Visitor V1. “We conduct different analyses on Abstract Syntax Trees. Visitor can provide a unique way to do them and

operations are completely independent.”
Visitor V2. “The ability to create many visitors for the same data model. This is very useful for web development. This

combined with the MVC pattern means that we can create a lot of views with ease. For example, we have an
HTML table printer, csv table printer etc., for the same table of information.”

Visitor V3. “The visitor is very useful in the context of language processors. I have used it primarily to support AST/ASG
traversals. The time and effort involved in modifying a visitor hierarchy can be prohibitive but these factors are
balanced by its nature suitability for tree/graph traversals.”

Visitor V4. “I prefer to use multiple despatch, however in systems with multiple dispatch you have to emulate it with a
visitor. The resulting code using visitor is easy to get wrong, hard to maintain, and difficult to understand.

Visitor V5. “Only useful to ship data structures and algorithm separately. But then, you have to fix either a set of data
structures or a set of algorithms (depending on who visits who). So it can be a pain to manage.”

Visitor V6. “To avoid procedural dependencies of conditionals, I prefer to use idioms that utilize polymorphism to resolve
the state of conditionals and the message to send as a consequence of that state. The visitor pattern requires too
much awareness of handshaking to be practical. Supporting implementation details need to be invisible so they
don’t distract from the focus of the role being designed, and provide less opportunity for defects to be injected
into the system.”

Singleton S1. “Singleton is natural for use in logging libraries and to maintain user configurations. It provides the convenience
of a global variable (without the dirty feeling).”

Singleton S2. Singleton is a basic pattern, but still it needs some discipline. In code analysis, global entities (e.g. symbol
table) may need to have a single instance.”

Singleton S3. “I rarely have need of a Singleton as most domain objects are not unique. In maintenance, this is often used
to hold global variables.”

Singleton S4. “Singleton is more an anti-patten and introduces global state.”
Singleton S5. “This pattern introduces ‘temporal coupling’ (the worst kind). I NEVER use this pattern. The last time I

saw it and had to deal with it was 5 years ago and it was extremely painful to retrofit unit tests in that project,
because of the Singletons.”

Facade F1. “Facade helps defining a proper architecture for a distributed system, by enforcing high cohesion and low
coupling.”

Facade F2. “Make a good contract between lower level of application and upper level of application.”
Facade F3. “Nice pattern to help us deal with existing, problematic code. For third-party code, it enables us to rearrange

(group, split, . . .) a broken API so that it resembles what we want/need. For in-house legacy code, it’s a way to
extensively introduce tests by hiding dark sides of the existing implementation using an ideal interface.”

Facade F4. “Acts as a gateway between a subsystem and the rest of the system. Huge fan-in and fan-out, increasing
coupling between parts of the system.”

Facade F5. “Used as simple passthrough classes rather than to actually make the life of a subsystem user any easier.
Coupling is reduced but with no value added and at the expense of another class to maintain.”

of agreement with it, based on a three-point scale (agree,
no opinion, disagree). The set of statements are shown in
Table 2. (We should note that each one was provided by a
different respondent from the first survey.)

The main purpose of the second survey was to collect qual-
itative data that could identify the characteristics of these
three patterns that led to such contrasting views. So, for
each pattern we also invited the respondents to:

• add their own observations about that pattern, and
any thoughts about why it attracts conflicting views;

• provide any examples of good or bad use of that pat-
tern, based on their own experiences.

3.2 Conduct of the Follow-on Survey
Since the population to be surveyed was small, we did

not attempt any sampling within this, and sent our request
to all of the 195 respondents from the first survey who had
indicated willingness to help further, providing them with
the executive summary and inviting them to participate in
the second survey. We also provided a follow-up message a

few weeks later, as this is generally recommended as good
practice with surveys, and one that can help improve the re-
sponse rate. Seven addresses we used were no longer valid,
reducing the size of the population to 188. We received
48 responses. One person completed only the first (demo-
graphic) question, while another answered ‘no opinion’ to all
questions, and offered no comments. After excluding these,
we were left with 46 responses, corresponding to a response
rate of 24.5%.

No issues arose while conducting the survey.

4. RESULTS

4.1 Profile of the Respondents
The only demographic question included was about the

degree of experience that our respondents had with using
design patterns in general. The responses to this are shown
in Table 3. From this we can see that 84.8% of respondents
had six or more years of experience of working with patterns.
(In the first survey, 67.4% of respondents had six or more
years of experience with patterns.)

Table 3: Profile of Respondents’ Experience with
Using Design Patterns

Years of Experience Frequency Percentage
11 to 15 years 20 43.5
6 to 10 years 19 41.3
3 to 5 years 7 15.2
Total 46 100.0

We had originally expected to be able to undertake fuller
profiling by matching up responses with those from the first
survey, using the respondents’ internet addresses, but be-
cause so many of these were allocated dynamically, this un-
fortunately proved to be impractical.

4.2 The Quantitative Responses
As noted above, these responses provided a measure of

how far the respondents agreed with the statements selected
from the original survey. A few respondents did not provide
answers for a small number of these, and these ‘null entries’
were omitted from the analysis rather than treating them as
if they were ‘no opinon’. We examine the profile of responses
for each pattern in turn.

4.2.1 The Visitor Pattern
Figure 1 shows the profile of the responses to the six state-

ments about the Visitor pattern. Only three respondents

!

Figure 1: Responses to the Statements About Visi-
tor

expressed ‘no opinion’ for all six statements. Two of these
had 6–10 years of experience, the third had 3–5 years. Since
V1–V3 are positive statements about the use of Visitor, and
the overall profile for this pattern in the first survey was
positive rather than negative, it is perhaps not surprising
that these are well supported, with relatively few negative
responses. Equally, V4–V6 were statements about the dis-
advantages of using Visitor, and here we see a much lower
level of general agreement, with all three receiving more or
less equal responses for each option.

4.2.2 The Singleton Pattern
The profile of responses for Singleton is shown in Figure

2. Only one respondent (with 6–10 years experience) ex-
pressed ‘no opinion’ for all five statements. S1–S2 are fairly

!

Figure 2: Responses to the Statements About Sin-
gleton

positive statements, S3 and S4 express different views about
the use of Singleton to hold global data (regarded by many
as misuse, a view expressed in S4, while S3 is more neutral),
while S5 is decidedly negative about the pattern. Perhaps
the most interesting answers are those to S3 and S4, which
seem to imply that many respondents seem to consider the
use of Singleton for holding global data as being an accept-
able role.

4.2.3 The Facade Pattern
The profile of responses for Facade is shown in Figure 3.

For this pattern, there were two respondents (both with 6–

!

Figure 3: Responses to the Statements About Fa-
cade

10 years experience) who expressed ‘no opinion’ for all five
statements and one (with 11-15 years) who did not respond
to the questions about this pattern. Again, we see gen-
eral agreement with the positive views expressed in F1–F3.
Statements F4 and F5 express rather contradictory views
about its effect upon coupling, and the responses show much
more support for the view that coupling is increased by the
use of Facade (F4).

4.3 The Qualitative Responses
We received a spread of comments and descriptions of

experiences for each pattern. Table 4 shows the distribution

Table 4: Distribution of Qualitative Responses by
Years of Experience

No. responses Years of Experience Total
provided 3-5 years 6-10 years 11-15 years

6 1 4 7 12
5 0 1 2 3
4 0 2 0 2
3 0 0 4 4
2 0 1 0 1
1 1 2 2 5
0 5 9 5 19

Total 7 19 20 46

of the number of responses per respondent against years of
experience (these were relatively evenly spread across the
three patterns). From this, we can see that only 27 of the 46
respondents provided any qualitative responses at all. With
one exception, it was also those with more experience who
provided these responses.

When considering how to analyse these, we noted that,
as observed by Seaman [10], there is “little guidance in the
literature for the intellectual process of finding patterns and
trends in qualitative data”. For this study, we had six dis-
tinct datasets (‘comments’ and ‘experiences’ for each of the
three patterns), and three reviewers. We adopted the fol-
lowing process for analysing each of the datasets.

1. All three of us individually read the responses and then
wrote a short list of common issues (the categories).

2. We then met and merged our lists, generating an agreed
set of short statements to describe each category.

3. Each of us independently coded the responses using
the agreed set of categories.

4. Finally, we met and reviewed the merged codings, dis-
cussing any for which there were different interpreta-
tions, or where there are not at least two coders in
agreement. Where necessary, we revised the wording
of the statements describing the categories.

The process of discussion involved in steps 2 and 4 above
proved to be a very important element. Responses often
addressed multiple issues, and hence required us to assign
multiple codes to them. Sometimes an issue was addressed
indirectly (as might occur when reference was made to the
comments provided from the first survey), and sometimes
the structure of a response could be difficult to parse. A
few were also considered to offer no clear or usable data and
were discarded (see Table 5 for the distribution of these).
For some responses, the distinction between a ‘comment’
(upon the statements provided) and an ‘experience’ (derived
from the respondent’s own use of the pattern) could also be
indistinct, although we did manage to create separate lists
for each.

The above process worked satisfactorily for all but the
‘comments’ received for the Singleton pattern. The initial
set of statements we produced proved to be difficult to use.
They were redrafted by one of us (DB), after which we suc-
cessfully repeated steps 3 and 4 for the relevant responses.

To provide a check on this process we calculated Kappa
(κ) values to provide an assessment of inter-rater consis-
tency. As we had revised the Visitor categories during dis-
cussion, we omitted that group of ratings, and for simplicity,

Table 5: Distribution of Discarded Responses
Pattern Category Discards
Visitor Comments 6
Visitor Experiences 0
Singleton Comments 6
Singleton Experiences 2
Facade Comments 4
Facade Experiences 3

Table 6: Kappa Values for Inter-rater Agreement
Pattern Form of response Kappa value Interpretation
Visitor Experiences 0.64 Good
Singleton Comments 0.69 Good
Singleton Experiences 0.76 Good
Facade Comments 0.68 Good
Facade Experiences 0.45 Moderate

we also calculated the level of agreement between the two
more experienced coders (DB and SD). The κ values for the
remaining five sets of responses are shown in Table 6, and as
can be seen, we generally achieved a good level of agreement
in our coding.

In the rest of this section we review each set of responses.

4.3.1 Responses to the Comments for Visitor
We began by using a set of four issues, but when we dis-

cussed the coding these were restructured and extended into
a set of seven. The responses provided good support for
all of these. We have listed them in Table 7, and for each
comment, the associated count indicates the number of re-
sponses related to that issue. (Since we were asking why
the responses for the first survey were mixed, it is perhaps
not surprising that these tended to emphasise any problems
with the use of Visitor.)

4.3.2 Experiences with Visitor
Our original set of agreed statements identified four posi-

tive and four negative issues. However, in coding, we made
little use of one of the positive issues and hence dropped
this from the set, on the basis that the concepts concerned
were adequately addressed by the other three. Table 8 sum-
marises these.

As might be expected, these largely reflect the same issues
that were identified in the original comments.

4.3.3 Responses to the Comments for Singleton
As noted above, our first attempt at coding these proved

difficult to use and so we adopted a revised set of wordings

Table 7: Issues Identified in Comments About the
Visitor Pattern

Code Categories Responses
VC1 Very specific and constrained application

domain
5

VC2 Complexity impedes understanding and use 6
VC3 Structure constrains design options 2
VC4 Has a negative effect upon maintenance 4
VC5 Can increase encapsulation and abstraction 3
VC6 Complicated implementation 3
VC7 There may be better solutions 4

Table 8: Issues Identified in Experiences With the
Visitor Pattern

Code Categories Responses
Positive Issues

VE1 Aids creation/use of data structures 4
VE2 Easy to extend functionality 3
VE3 Provides for good abstraction/separation of

concerns
5

Negative Issues
VE4 Hard to change/extend structures 5
VE5 Complex to understand/use 6
VE6 Open to misuse in the wrong situation 3
VE7 Complication of use of double despatch in

some languages
4

Table 9: Issues Identified in Comments About the
Singleton Pattern

Code Categories Responses
SC1 Gets employed to provide global variables 8
SC2 Easy to understand but requires discipline

in use
6

SC3 Needs care with implementation 3
SC4 Complicates testing and maintenance 4
SC5 OK for shared constants, but not for muta-

ble data
2

for the categories, after which coding proceeded without any
real problems. Table 9 shows these.

4.3.4 Experiences with Singleton
Again, although we originally identified eight categories

(three positive, five negative), after coding and discussion,
we decided that three of these (one positive, two negative)
could either be subsumed within the others or was of too
limited a scope to be worth retaining (i.e. only one respon-
dent raised that issue). Our summary of these is given in
Table 10.

4.3.5 Responses to the Comments for Facade
Facade attracted quite a number of comments although

clearly, the respondents felt less strongly about this pattern
than about the other two. Table 11 provides a summary of
these. Although we originally identified six candidate cate-
gories, only three of these were addressed by more than one
comment. These were noticeably less negative than those
for the other two patterns.

4.3.6 Experiences with Facade
Again, we identified fewer categories for this pattern, as

illustrated by Table 12. There were only three issues that
were raised by more than one respondent.

Table 10: Issues Identified in Experiences With the
Singleton Pattern

Code Categories Responses
Positive Issues

SE1 Useful for a limited role 4
SE2 Separates class and instance in the design 2

Negative Issues
SE3 Complicates testing 5
SE4 Gets misused to provide global variables 3
SE5 Increases maintenance/coupling 2

Table 11: Issues Identified in Comments About the
Facade Pattern

Code Categories Responses
FC1 Concept of Facade is commonly misused or

wrongly designed
7

FC2 Useful for integrating legacy code 4
FC3 Its use can reduce coupling 3

Table 12: Issues Identified in Experiences With the
Facade Pattern

Code Categories Responses
Positive Issues

FE1 Means of encapsulating legacy code/data 3
FE2 Benefit of providing good abstraction 7

Negative Issues
FE3 Hard to maintain, loses structure 2

5. RELATED WORK
A survey about the effect of design patterns upon soft-

ware quality that was conducted in 2007 by Khomh and
Guéhéneuc is reported in [5]. They report upon the views
of 20 respondents when asked about a set of ten quality at-
tributes. In terms of comparison with this study, their paper
reports in detail on only three patterns, none of which are
those discussed here. They also provide a summary of the
views about three attributes (expandability, understandabil-
ity and reusability) for all patterns. Overall, we found little
scope for any direct comparison with the our own results.

A recent paper by Williams [12] describes the use of a
follow-on survey on a software engineering topic, which in
this case is to probe views about agile development. How-
ever, this paper focuses on reporting the outcomes of the
study, with no real discussion about the methodological as-
pects.

6. DISCUSSION
We first assess the threats to validity and then consider

the implications for each pattern that arise from the results.
Finally, we review our experiences from using a follow-on
survey as our research approach.

6.1 Threats to Validity—the Survey
For a survey, two key issues that we need to consider are

the design of the survey instrument itself and our sampling
of the population.

Kitchenham and Pfleeger have identified a number of pos-
sible validity issues that can occur with a survey instrument
[7]. For the first survey we were particularly concerned with
content validity, and subjected our instrument to a review
process to ensure that its questions were relevant. For a
follow-on survey such as this, and particularly one that has
the form of asking respondents whether or not they agree
with a number of statements, this is less of an issue, espe-
cially as the statements were not designed by us, but ex-
tracted from the first survey. We therefore did not under-
take a formal review process, and while the questions were
simple, our failure to do so could be considered as a short-
coming. Overall though, we were unable to identify much
guidance on how this type of second probe might be de-
signed and evaluated. (In reference [8] the author notes that
multi-method studies are not particularly common, even in

Information Systems research, which also seems to apply to
follow-on studies of this form.)

Our survey population was well-defined and tightly con-
strained, with no sampling being needed (we simply mailed
to all of the original respondents). As noted above, we were
unable to profile the respondents to this survey as well as
we had expected. However, having already established that
the population formed a reasonably consistent group, and
having obtained some limited data about the demographics
pertaining to our sample, we have no reason to believe that
it is unrepresentative of the population. However, there is
one small caveat here, in that in reporting on our original
survey [13], we did recognise that our sample in the first
survey might not be wholly representative of the wider com-
munity of software developers who employ design patterns
in any way. We should also note that although we received
46 responses, only 27 of these (59%) actually provided the
qualitative information which formed the main reason for
conducting the follow-on survey.

It is also possible that respondents may have been com-
menting upon statements that they had themselves provided
in the first survey. However, as each of the statements we
used was provided by a different person, it seems unlikely
that this would create any significant bias.

6.2 Threats to Validity—the Analysis
The analysis process for a qualitative form of survey such

as this also constitutes a potential threat to validity, not
least because the open nature of the questions led to a wide
range of responses. Our approach to analysis was obviously
open to possible failings in both our selection of the cate-
gories and also our process of assignment to them.

As reported above, selection of the categories was a shared
process, and when we reviewed the outcomes of our assign-
ments to these, we did revise the categories where necessary.
For the experience responses we actually reduced the num-
ber of categories used for each pattern (as a reminder, we
did not retain any category with fewer than two responses
assigned to it). For the comments, we extended the set of
categories for Visitor, revised it for Singleton and reduced
it for Facade. For all three, we were able to come to a good
level of agreement about these assignments.

For assignment to categories we used a mix of independent
coding and then discussion—with the discussion ensuring
that we came to a shared interpretation of the more del-
phic responses (interpretation of these was often the reason
why different coders might assign them to different cate-
gories). While it is difficult to assign a clear measure for
the effectiveness of this process, we would observe that all
of us did modify our position over various interpretations.
(There were 22 cases where two of us changed our position
to agree with the third. For 15 of these, the most experi-
enced researcher in the team (DB) began in the minority
position, while the remaining 7 were apportioned as 5 (CZ)
and 2 (SAD).) In addition, as indicated in Table 6, we did
usually achieve a good level of inter-rater agreement in our
initial coding of responses.

6.3 Implications for the Three Patterns
For each pattern we have examined the statements taken

from the original survey, as well as the quantitative and qual-
itative responses to this survey in order to seek an answer to

our research question(s). We address these for each pattern
in turn below.

6.3.1 Visitor
For the first survey, this was very much the ‘middle case’

among these three patterns. In terms of our main research
question, the quantitative responses from this second sur-
vey showed good agreement with statements V1–V3 (the
‘role’ of the pattern), but a much wider spread for the other
three (which tended to focus upon practical problems that
could arise). If we turn to the qualitative responses, then
similarly, the positive qualities identified are largely design-
related (VC5, VE1, VE2, VE3), while many of the reserva-
tions about the pattern either relate to its implementation
(VC6, VE4, VE7) or to its longer-term effects in terms of
constraining design options (VC2, VC3, VC4, VC7, VE4,
VE5). In contrast, we might note that the textbook by
the GoF does recognise some implementation-related lim-
itations, but does not discuss any design or maintenance
issues related to its use.

The comments themselves have a strong flavour of rather
conditional support for its use, as in the quotations below,
which emphasise that, while useful, it needs to be viewed as
a means to an end and one that is only really applicable to
a limited range of situations.

• “I suspect that the issue is that there are sometimes
other (perhaps better) ways to solve the ‘visitation’
problem.”

• “Visitors are useful in languages that miss a language
mechanism to extend existing encapsulations (such as
Java).”

• “The visitor patterns applies to a relatively small num-
ber of supposed ‘recurring problems’ in OO design.”

• “It is a pattern with limited application.”

• “The visitor pattern tackles occasions when data struc-
tures drive the processes.”

• “In programming languages without multiple despatch,
visitor is the only way to achieve something similar.”

Clearly too, the use of Visitor comes at a price, as indicated
by the following.

• “Enforces a rigid view of algorithms and data struc-
tures.”

• “For structures with complex relationships, or with ele-
ments of varying types, interfaces can likewise become
cumbersome to design and implement.”

• “Double despatch implementation can be cumbersome.”

• “This is a complicated pattern that has its room in our
toolbox, but [we] need to resist using it sometimes.”

• “Poor: complexity, contorted data flow.”

So maybe the comment from one respondent to the effect
that “Visitor is useful when nothing else will do the job,
but better avoided otherwise” sums up this set of comments
well. Many of our respondents had clearly applied Visitor
effectively, but were well aware that its use could imply sub-
stantial design trade-offs.

What therefore can we conclude from this? For both sur-
veys, the responses clearly indicate that it is valued but that
its use should carry a ‘health warning’, in that used outside
of a well-constrained context, it is likely to increase com-
plexity and complicate implementation, testing and mainte-
nance. Essentially then, there is a clear message that this is
a pattern where the price of misuse is particularly high.

6.3.2 Singleton
As indicated by its scores in Table 1, in the first survey

this pattern appears to have polarised the views of our re-
spondants more strongly than any other. This is reflected
in the quantitative responses to the second survey, with few
respondents having ‘no opinion’ and rather mixed responses
to S3 and S4, where its use for global variables is raised.
Turning to the qualitative responses, while there were some
caveats about implementation issues and their consequences
(see SC3, SC4, SE3, SE4 and SE5), the key concern seemed
to be about exercising discipline when using it (SC2, SC3,
SE1), a term also used in S2 (from Table 2) of course. While
this might be reasonably be regarded as an issue for any pat-
tern, in the case of Singleton there seems to be significantly
different ideas about what that discipline should encompass,
particularly with regard to global structures.

(The GoF textbook only discusses what they interpret as
positive consequences of its use, but users seem to have more
reservations, particularly regarding global structures.)

One respondent (bravely) stated that: “I quite like Single-
ton and have used it often in my development work...ensuring
one and only one instance of queue, monitor, factor etc.”.
However, the comment that “Singleton solves a very specific
problem with about as much grace as can be expected” is
probably closer to a median view (if such a position is pos-
sible for Singleton). It was noticeable that the entries under
the experiences of respondents cited only a very limited set
of examples, to the extent that some really doubted that
this really was addressing enough of a recurring problem to
be classified as a pattern.

So, returning to our supplementary research question, we
would suggest that if this pattern belongs in the toolbox
at all, then it should be kept in a very specialist section.
Unfortunately, the relatively simplicity of Singleton makes
it a rather convenient example to use when teaching about
patterns, but here there is a clear message that we should
avoid using it as an example. Indeed, as one respondent
observed: “the globals debate is never-ending”, and maybe
that debate is one that is best left to the experts.

6.3.3 Facade
While Table 1 indicates that this is the lest controversial

of the three patterns considered in our study, it still at-
tracted a significant ‘negative’ vote in the first survey. (But,
as noted earlier, the ‘negative’ votes were all from teachers
and researchers.) The quantitative responses showed gen-
eral agreement with the original comments that dealt with
‘role’, but less so with those that dealt with consequences
(there was particularly little support for F5). From the qual-
itative comments, as FC1 indicates, there was some feeling
in this survey that the negative perceptions expressed in the
first survey might arise at least partly from misuse, as well
as a clear indication that it was particularly valuable for
integrating legacy elements (FC2, FE1).

The individual comments about this pattern show rather

less emotion than was engendered by the other two, and a
number of respondents suggested that the negative views in
the original list probably stemmed largely from a lack of
understanding. Examples of positive views were:

• “Easy to misuse, I use it as a high level API, nothing
else”.

• “Reading the negative comments I get the feeling that
the ‘Facades’ discussed are poorly designed.”

• “I don’t have bad experiences. However it is easy to
use the patten inappropriately, but that is not an issue
of the pattern, but of the designers using it”.

The experiences quoted tended to be split between its use for
legacy code (“when dealing with legacy systems...very useful
to extract a cleaner interface” and “if it provides a coherent
interface to a sub-system whose structure is then hidden, it
has great value”), and its value in actual design (“simplified
API for complex back-end systems to hide their details”,
“front controllers that serve as facades from the presenta-
tion to the application layer”) — while accepting a possible
cost in terms of maintenance (“gets hard to maintain after a
while”). Again, if we consult the ‘consequences’ listed in the
GoF text, the emphasis is placed upon the implementation
benefits, and while users seem to agree about these, they
also have some reservations about longer-term effects.

There are clearly occasions when Facade is appropriate, as
indicated above (integrating legacy code, providing a good
abstraction from complex structures). Indeed, the main con-
cerns expressed are about the ease of misuse and the pos-
sible complications for maintenance. Again, while misuse
can occur for any pattern, the consequences for Facade may
be more significant than for many other patterns—although
this may also reflect its relatively widespread use.

6.4 Use of a Follow-on Survey
To our knowledge, multi-method research has so far not

formed one of the tools for empirical software engineering.
Indeed, as indicated by Mingers in [8], it is relatively un-
common to find it used in IS research too. Although the use
of a follow-on survey is not strictly a multi-method form,
because we were using the follow-on survey as surrogate for
interviews, our study could be considered to have been an
approximation to that form.

If we return to our supplementary research question, this
asks whether the use of a follow-on survey has successfully
enhanced our knowledge about these three patterns, and
helped answer the question posed in the title of the paper.
We would argue that it has done so in two ways.

1. By helping identify those responses from the first sur-
vey that did not address a general issue. (A good ex-
ample is statement S5 from Table 2. The respondents
to the second survey did not consider temporal cou-
pling to be of general concern.)

2. By providing reinforcement for issues that were con-
sidered important, and in some cases, clarification of
what was important about them (such as for Facade).

Overall therefore, we would argue that this study has demon-
strated the value of using a follow-on study to probe into the
underlying rationale for any outcomes. Equally, we do recog-
nise that in this case it was only possible because we were for-
tunate enough to have a relatively large number of responses

to the first survey, without which, a more resource-intensive
form such as semi-structured interviews would probably be
the only option. Also, we cannot readily assess the effective-
ness of using a follow-on survey as a surrogate for interviews
when we lack any comparison with a similar study making
use of (say) semi-structured interviews. Indeed, one of the
limitations of using a follow-on survey was that it was not
possible to probe as effectively as would be possible with an
interview, as was demonstrated by the proportion of respon-
dents who failed to provide any qualitative responses.

So while our answer to the supplementary question “is a
follow-on survey a useful way to investigate these character-
istics?” is positive, we do have to acknowledge that conduct-
ing a second survey is probably not the most effective way
to follow up on a survey—although as here, it may well be
the only pragmatic choice.

7. CONCLUSIONS
Design patterns form a useful element in the software de-

signer’s toolbox, by providing schemas that allow the ex-
change of design experience and knowledge. However, as
demonstrated in our first survey [13], not all patterns from
the GoF are considered to be of equal usefulness, and a
designer needs to be aware of the consequences of using spe-
cific patterns. It is also noticeable that, whereas the GoF
text focuses largely on implementation consequences, our re-
spondents tended to be more concerned about consequential
issues for such activities as maintenance and testing.

As discussed above, our study has demonstrated the value
of performing a qualitative follow-on study to help explain
the outcomes from a more quantitative study. This is par-
ticularly so for a topic such as this, since any form of knowl-
edge schema is inevitably going to be difficult to assess and
evaluate.

The title of our paper asks why the use of these three
patterns is controversial, and the outcomes from this second
study have provided some further insight into this.

• In the case of Visitor, there is a clear message about
the consequences of using it outside of a limited con-
text, with inappropriate use leading to negative effects
for implementation, testing and maintenance for the
reasons provided in our analyses of comments and ex-
periences.

• For Singleton, the messages about this pattern are
rather polarised as far as the acceptability of global
structures is concerned, but taking the issues as a whole,
it seems reasonable to recommend that, at the least,
the use of this pattern as a teaching example should
be avoided.

• While the use of Facade is less controversial, and al-
though it can perform a valuable role for such purposes
as integrating legacy code, there are still significant
negative issues about its use, such as its effect upon
maintenance, that the designer needs to consider.

What is important about this use of follow-on survey is that,
through its use, we are able to provide a stronger rationale
for making the above summaries, based upon the refine-
ments to the evidence provided by the wider set of experts
that we surveyed. So, while we cannot make definitive rec-
ommendations about when or when not to use one of these

patterns, something that is probably not possible for any
context, our survey does provide some further clarification
about the situations where they could or should not be em-
ployed.

Acknowledgment
The authors would like to thank those respondents from the
original survey who were kind enough to give further help by
participating in this second survey. We also thank Gordon
Rugg for suggesting the use of a multi-method approach.

8. REFERENCES
[1] B. Baudry, Y. L. Traon, G. Sunyé, and J.-M. Jézéquel.

Measuring and improving design patterns testability.
In Proceedings of 9th International Software Metrics
Symposium (METRICS’03), pages 50–59, 2003.

[2] F. Détienne. Software Design – Cognitive Aspects.
Springer Practitioner Series, 2002.

[3] E. Freeman and E. Freeman. Head First Design
Patterns. O’Reilly, 2004.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[5] F. Khomh and Y.-G. Guéhéneuc. Do design patterns
impact software quality positively? In Proceedings of
CSMR 2008, pages 274–278, 2008.

[6] B. A. Kitchenham, D. Budgen, and O. P. Brereton.
Using mapping studies as the basis for further
research—a participant-observer case study.
Information & Software Technology, 53(4):638–651,
2011. Special section from EASE 2010.

[7] B. A. Kitchenham and S. L. Pfleeger. Principles of
survey research part 4: Questionnaire evaluation.
ACM Software Engineering Notes, 27(3):20–23, May
2002.

[8] J. Mingers. The paucity of multimethod research: a
review of the information systems literature.
Information Systems Journal, 13(3):233–249, 2003.

[9] B. Oates. Researching Information Systems and
Computing. SAGE, 2006.

[10] C. B. Seaman. Qualitative methods in empirical
studies of software engineering. IEEE Transactions on
Software Engineering, 25(4):557–572, 1999.

[11] P. Wendorff. Assessment of design patterns during
software reengineering: Lessons learned from a large
commercial project. In Proceedings of 5th European
Conference on Software Maintenance and
Reengineering (CSMR’01), pages 77–84. IEEE
Computer Society Press, 2001.

[12] L. Williams. What agile teams think of agile
principles. Communications of the ACM, 55(4):71–76,
2012.

[13] C. Zhang and D. Budgen. A survey of experienced
user perceptions about design patterns. Submitted for
publication., 2011.

[14] C. Zhang and D. Budgen. What do we know about
the effectiveness of software design patterns?
Accepted for publication in IEEE Transactions on
Software Engineering, 2011.

