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Abstract

Tolerance graphs model interval relations in such a way that
intervals can tolerate a certain degree of overlap without
being in conflict. This class of graphs has attracted many
research efforts, mainly due to its interesting structure
and its numerous applications, especially in DNA sequence
analysis and resource allocation, among others. In one
of the most natural generalizations of tolerance graphs,
namely multitolerance graphs, two tolerances are allowed
for each interval — one from the left and one from the
right side of the interval. Then, in its interior part, every
interval tolerates the intersection with others by an amount
that is a convex combination of its two border-tolerances.
In the comparison of DNA sequences between different
organisms, the natural interpretation of this model lies on
the fact that, in some applications, we may want to treat
several parts of the genomic sequences differently. That
is, we may want to be more tolerant at some parts of
the sequences than at others. These two tolerances for
every interval — together with their convex hull — define an
infinite number of the so called tolerance-intervals, which
make the multitolerance model inconvenient to cope with.
In this article we introduce the first non-trivial intersection
model for multitolerance graphs, given by objects in the 3-
dimensional space called trapezoepipeds. Apart from being
important on its own, this new intersection model proves to
be a powerful tool for designing efficient algorithms. Given
a multitolerance graph with n vertices and m edges, we
present algorithms that compute a minimum coloring and a
maximum clique in optimal O(nlogn) time, and a maximum
weight independent set in O(m + nlogn) time. Moreover,
our results imply an optimal O(nlogn) time algorithm for
the maximum weight independent set problem on tolerance
graphs, thus closing the complexity gap for this problem.
Additionally, by exploiting more the new 3D-intersection
model, we completely classify multitolerance graphs in the
hierarchy of perfect graphs.
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1 Introduction.

A graph G = (V, E) on n vertices is a tolerance graph
if there exists a collection I = {I, | v € V} of closed
intervals on the real line and a set t = {t, | v € V}
of positive numbers, such that for any two vertices
u,v € V, wv € E if and only if |I, N I,| > min{t,, ¢, },
where |I| denotes the length of the interval I. The
pair (I,t) is called a tolerance representation of G. If G
has a tolerance representation (I,t), such that ¢, < ||
for every v € V, then G is called a bounded tolerance
graph and (I, t) a bounded tolerance representation of G.

Tolerance graphs have been introduced in [§], in or-
der to generalize some of the well known applications of
interval graphs. If in the definition of tolerance graphs
we replace the operation “min” between tolerances
by “max”, we obtain the class of maz-tolerance graphs.
Both tolerance and max-tolerance graphs have attracted
many research efforts [2,4,5,9-11,15,16,20,21] as they
find numerous applications, especially in bioinformat-
ics, constrained-based temporal reasoning, and resource
allocation problems, among others [10,11,15,16]. In par-
ticular, one of their applications is in the comparison of
DNA sequences from different organisms or individuals
by making use of a software tool like BLAST [1].

BLAST takes a special genomic sequence ) as a
parameter and returns all sequences from its compre-
hensive database that share a strong similarity with at
least some part of the input query sequence ). The re-
turned sequences from BLAST, together with the corre-
sponding parts of ( with which they share a strong sim-
ilarity, can be viewed as a tolerance or a max-tolerance
graph (depending on the interpretation of “strong sim-
ilarity”). Moreover, a subset of the returned sequences
which share with each other a certain part of @, are said
to build a cluster. Such maximal clusters are exactly the
maximal cliques of the corresponding tolerance (or max-
tolerance) graph; it turns out that these clusters can
be interpreted as functional domains carrying biologi-
cally meaningful information. There exist efficient algo-
rithms that output all (at most O(n?)) possible maxi-
mal cliques of a max-tolerance graph [15,16], while the
number of maximal cliques in a tolerance graph may be
exponential [10].
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In some circumstances, we may want to treat dif-
ferent parts of the above genomic sequences in BLAST
non-uniformly, since for instance some of them may be
biologically less significant or we have less confidence
in the exact sequence due to sequencing errors in more
error prone genomic regions. That is, we may want
to be more tolerant at some parts of the sequences
than at others. This concept leads naturally to the
notion of multitolerance (known also as bitolerance)
graphs [11,22]. The main idea is to allow two different
tolerances [; and r; to each interval, one to the left and
one to the right side, respectively. Then, every interval
tolerates in its interior part the intersection with other
intervals by an amount that is a convex combination
of I; and r;.

Formally, let T =[l,7] be a closed interval on the
real line and Iy, € I be two numbers between [ and r,
called tolerant points. For every A € [0,1], we define the
interval Ij, »,(A) = [l + (re = DA, It + (r — l)A], which
is the convex combination of [I,[;] and [r,r]. Further-
more, we define the set Z(I,l;,r) = {I;,r,(A) | A €
[0,1]} of intervals. That is, Z(1,1;, r;) is the set of all in-
tervals that we obtain when we linearly transform [, ;]
into [r,r]. For an interval I, the set of tolerance-
intervals 7 of I is defined either as 7 = Z(I,l;,r¢) for
some values I, 7 € I of tolerant points, or as 7 = {R}.
A graph G = (V, E) is a multitolerance graph if there ex-
ists a collection I = {I, | v € V'} of closed intervals and
a family ¢t = {7, | v € V'} of sets of tolerance-intervals,
such that: for any two vertices u,v € V, uv € F if and
only if there exists an element Q, € 7, with Q, C I,,
or there exists an element @, € 7, with @, C I,,. Then,
the pair (I,t) is called a multitolerance representation
of G. Note that, in general, the adjacency of two ver-
tices u and v in a multitolerance graph G depend on
both sets of tolerance-intervals 7, and 7,. However,
since the real line R is not included in any finite in-
terval, if 7, = {R} for some vertex u of G, then the
adjacency of u with another vertex v of G depends only
on the set of tolerance-intervals 7, of v. If G has a mul-
titolerance representation (I,t), in which 7, # {R} for
every v € V, then G is called a bounded multitolerance
graph and (I,t) a bounded multitolerance representation
of G.

A graph G = (V, E) with n vertices is the intersec-
tion graph of a family F' = {S1,...,S,} of subsets of a
set S if there exists a bijection p: V — F such that for
any two distinct vertices u,v € V, wv € FE if and only
if p(u) N p(v) # 0. Then, F is called an intersection
model of G. Note that every graph has a trivial inter-
section model based on adjacency relations [18]. Note
also that a multitolerance representation is not an inter-
section model, since two intervals may intersect without
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the corresponding vertices being necessarily adjacent.
Some intersection models provide a natural and intu-
itive understanding of the structure of a class of graphs,
and turn out to be very helpful in the design of effi-
cient algorithms that solve optimization problems [18].
Therefore, it is of great importance to establish non-
trivial intersection models for families of graphs. In par-
ticular, many important graph classes can be described
as intersection graphs of set families that are derived
from some kind of geometric configuration.

For instance, a permutation (resp. parallelogram
and trapezoid) graph is the intersection graph of line
segments (resp. parallelograms and trapezoids) between
two parallel lines L; and Ly [7]. Such a representation
with line segments (resp. parallelograms and trapezoids)
is called a permutation (resp. parallelogram and trape-
zoid) representation of this graph. Recently, two nat-
ural intersection models for max-tolerance graphs [15]
and for tolerance graphs [20] have been presented,
given by semi-squares on the plane [15] and by paral-
lelepipeds in the 3-dimensional space [20], respectively.
These two representations have been used to design effi-
cient algorithms for several generally NP-hard optimiza-
tion problems on tolerance and max-tolerance graphs,
see [15,16,20].

Bounded multitolerance graphs (also known as
bounded bitolerance graphs [3, 11, 14]) coincide with
trapezoid graphs [11,22], which have received consid-
erable attention in the literature, see [11]. However, the
intersection model of trapezoids between two parallel
lines can not cope with general multitolerance graphs,
in which the set 7, of tolerance-intervals for a vertex v
can be 7, = {R}. Therefore, the only way until now to
deal with general multitolerance graphs was to use the
inconvenient multitolerance representation, which uses
an infinite number of tolerance-intervals. This is the
main reason why, despite their apparent practical in-
terpretation, only little is known about multitolerance
graphs, e.g. that the minimum fill-in problem can be
solved efficiently and that the difference between the
pathwidth and the treewidth is at most one [22].

Our contribution In this article we introduce the
first non-trivial intersection model for general multitol-
erance graphs, given by objects in the 3-dimensional
space, called trapezoepipeds. 'This trapezoepiped rep-
resentation unifies in a simple and intuitive way the
widely known trapezoid representation for bounded
multitolerance graphs and the parallelepiped represen-
tation for tolerance graphs [20]. The main idea is to
exploit the third dimension to capture the information
of the vertices with 7, = {R} as the set of tolerance-
intervals. This intersection model can be constructed in
linear time given a multitolerance representation.

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.



Apart of being important on its own, the trape-
zoepiped representation can be also used to design
efficient algorithms. Given a multitolerance graph
with n vertices and m edges, we present algorithms that
compute a minimum coloring and a maximum clique
in O(nlogn) time (which turns out to be optimal), and
a maximum weight independent set in O(m + nlogn)
time (where Q(nlogn) is a lower bound for the com-
plexity of this problem [6]). Moreover, we present a
variation of the latter algorithm that computes a maxi-
mum weight independent set in optimal O(nlogn) time,
when the input is a tolerance graph, thus closing the
complexity gap of [20]. Note here that, although the
parallelepiped representation of tolerance graphs is sim-
ilar to the trapezoepiped representation of multitoler-
ance graphs, the coloring and clique algorithms pre-
sented in [20] do not extend to the case of multitol-
erance graphs, and thus the here presented algorithms
are new. On the contrary, the algorithm presented
in [20] for the maximum weight independent set with
complexity O(n?) on tolerance graphs can be extended
with the same time complexity to the case of multi-
tolerance graphs; nevertheless we present here new al-
gorithms for this problem that achieve better running
times O(m + nlogn) for multitolerance graphs and op-
timal O(nlogn) for tolerance graphs.

Moreover, we prove several structural results on the
class of multitolerance graphs, using our new intersec-
tion model and some known results from the hierar-
chy of perfect graphs given in [11]. In particular, we
prove that multitolerance graphs strictly include tol-
erance and trapezoid graphs, as well as that they are
strictly included in weakly chordal and in co-perfectly
orderable graphs. Furthermore, we prove that multi-
tolerance graphs are incomparable with alternately ori-
entable and cocomparability graphs, i.e. none of these
classes includes the other one. These results comple-
ment the hierarchy of perfect graphs given in [11]. The
resulting hierarchy of classes of perfect graphs is com-
plete, i.e. all inclusions are strict.

Notation In this article we follow standard nota-
tion and terminology, see for instance [11]. We con-
sider finite, simple, and undirected graphs. Given a
graph G = (V, E), we denote by n the cardinality of V.
An edge between vertices u and v is denoted by wwv,
and in this case vertices v and v are said to be adja-
cent. G denotes the complement of G, i.e. G = (V, E),
where uv € E if and only if uv ¢ E. Given a subset of
vertices S C V, the graph G[S] denotes the graph in-
duced by the vertices in S, i.e. G[S] = (S, F), where
for any two vertices u,v € S, wv € F if and only
ifuv € E. A subset S C V is an independent set in G if
the graph G[S] has no edges. For a subset K C V, the
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induced subgraph G[K] is a complete subgraph of G, or a
clique, if each two of its vertices are adjacent. The max-
imum cardinality of a clique in G is denoted by w(G)
and is termed the cligue number of G. A proper color-
ing of G is an assignment of different colors to adjacent
vertices, which results in a partition of V' into indepen-
dent sets. The minimum number of colors for which
there exists a proper coloring is denoted by x(G) and is
termed the chromatic number of G. A proper coloring
of G with x(G) colors, i.e. a partition of V' into x(G)
independent sets, is a minimum coloring of G.

Organization of the paper We present the new
intersection model for multitolerance graphs in Sec-
tion 2. In Section 3 we present a canonical repre-
sentation of multitolerance graphs and an algorithm
that computes it in O(nlogn) time.  Then, us-
ing this algorithm, we present in Section 4 optimal
O(nlogn) time coloring and clique algorithms for mul-
titolerance graphs. In Section 5 we present algo-
rithms that compute a maximum weight independent
set in O(m + nlogn) time on a multitolerance graph,
and in optimal O(nlogn) time on a tolerance graph. In
Section 6 we classify multitolerance graphs in the hier-
archy of perfect graphs of [11]. Finally, we discuss the
presented results and further research in Section 7.

2 An intersection model for multitolerance
graphs.

In this section we present a 3D intersection model for
general multitolerance graphs, which unifies the inter-
section model of trapezoids in the plane for bounded
multitolerance graphs [11] and that of parallelepipeds in
the 3-dimensional space for tolerance graphs [20]. Given
a multitolerance graph G = (V, E) along with a multi-
tolerance representation (I,t) of G, recall that vertex
v € V corresponds to an interval I, = [l,,r,] on the
real line and a set 7, of tolerance-intervals, where either
Ty = Z(Iy, 1, ,71,) for some values Iy, 7, € I, of toler-
ant points, or 7, = {R}.

v?

DEFINITION 2.1. Given a multitolerance representa-
tion of a multitolerance graph G = (V,E), vertex
v € V is bounded if 7, = Z(Iy,ls,,7:,) for some values
ly, 7, € I,. Otherwise, v is unbounded. Vg and Vi
are the sets of bounded and unbounded wvertices in V,
respectively. Clearly V =Vg U Vy.

DEFINITION 2.2. For a vertex v € Vi (resp. v € Vi)
i a multitolerance representation of G, the values
ty1 = ltv -1, and ty,2 =Ty — Ty, (Tesp' ty1 =1tv2 :OO)
are the left tolerance and the right tolerance of v,
respectively. Moreover, if v € Vi, then t, = oo is the
tolerance of v.
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Figure 1: Trapezoids T, and T, correspond to bounded vertices u and v, respectively, while T',, corresponds to

an unbounded vertex w.

It can be now easily seen by Definition 2.2 that if
we set t, 1 = t, 2 for every vertex v € V, then we obtain
a tolerance representation, in which ¢, =t, 2 is the
(unique) tolerance of v. We may assume w.l.o.g. that
no two bounded vertices share an endpoint or toler-
ant point, i.e. {ly,ry,le,,7e,} N {loyTo,le,,me,} = 0
for all u,v € Vg with u#v [22]. Furthermore, by
possibly performing a small shift of the endpoints
and the tolerant points, we may assume w.l.o.g. that
ty1,tp,2 > 0 for every v € V and that the left and
right tolerances for every bounded vertex are distinct,
fe. {tu1,tu2}N{tv1,tv2} =0 for all u,v € Vg with
u # v. Similarly, if t,1 # |1, (resp. ty2 # |I,]) for
a bounded vertex v € Vg, we may assume w.l.o.g. that
also ty o # |I,| (resp. ty,1 # |Iy]). That is, for every
v € Vp, either t,1 = ty2 = |L,], or t,1 < |I,| and
ty2 < |Iy|. For more details in the cases of tolerance
and bounded multitolerance graphs we refer to [11].

Let now L; and Lo be two parallel lines at unit
distance in the Euclidean plane. In the following we
define for every vertex v € V a trapezoid T, in the
plane between the lines L; and Ls. The values tan ¢
and cot ¢ = tai 3 denote the tangent and the cotangent
of a slope ¢, respectively. Furthermore, ¢ = arccotz is
the slope ¢, for which cot ¢ = .

DEFINITION 2.3. Given an interval I, = [l,,7] and
tolerances ty,,1,ty.2, T, is the trapezoid in R? defined
by the points c,,b, on Ly and a,,d, on Lo, where
ay = ly, by = 1y, ¢, = min{r,,l, +t,1}, and d, =
max {ly, 7, — tyo}. The values ¢, 1 = arccot (¢, — ay)
and ¢, 2 = arccot (b, — d,) are the left slope and the
right slope of T,, respectively. Moreover, for every
unbounded vertex v € Vi, ¢y, = ¢y1 = ¢y,2 15 the slope
of Ts.

An example is depicted in Figure 1, where T“
and T, correspond to bounded vertices u and v, and T\,
corresponds to an unbounded vertex w. For each of
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these trapezoids, the corresponding interval (together
with the associated tolerant points, if the vertex is
bounded) is drawn above the trapezoid for better vis-
ibility. The left (resp. right) tolerant points are de-
picted by a square (resp. cycle). Observe that when
a vertex v is bounded, the values ¢, and d, coin-
cide with the tolerant points l;, and 7., , respectively,
while ¢, 1 = arccott, ; and ¢, 2 = arccott, . On the
other hand, when a vertex v is unbounded, the val-
ues ¢, and d, coincide with the endpoints b, and a,
of I,, respectively, while ¢, 1 = ¢, 2 = arccot|l,|. Ob-
serve also that in both cases where ¢, 1 :tv,zz |1
and t, 1 =t, 9= 00, the trapezoid T, is reduced to

?)|

a line segment (cf. T, and T, in Figure 1). Fur-
thermore, similarly to the above, we can assume
w.l.o.g. that all endpoints and slopes of the trapezoids
are distinct, i.e. {ay, by, cu, dy }N{ay, by, ¢y, dy} = 0 and
{¢u,1a¢u,2}m{¢v,ly¢v,2} = @ for every u,v € V' with
u # v. Since |I,| >0 and ty,1,ty2 > 0 for every ver-
tex v, it follows that 0 < ¢,,1 < sand 0 < ¢y < 3 for
all slopes @y,1, ¢y 2.

DEFINITION 2.4. Let u € Vg be a bounded vertex in
a multitolerance representation and .y, by, cy,d, be the
endpoints of the trapezoid T,. Let x € [ay,d,] and
Yy € [cu,by] be two points on the lines Ly and Ly,
respectively, such that x = Aay + (1 — N)d,, and y =
Ay + (1= )by, for the same value X € [0,1]. Then ¢, (x)
1s the slope of the line segment with endpoints x and y
on the lines Lo and Ly, respectively.

In the example of Figure 1, two points z € [a,, dy)
and y € [cy,b,] are depicted on the lines Ly and L,
respectively, such that z = Aa, + (1 — A\)d, and
y = Acy + (1 — A)b, for the same value A € [0, 1].
Then, the interval [z,y] on the real line, with values z
and y as endpoints, coincides with the tolerance-interval
I,y e, (1=A) = [lut(re, —la) (1=A), b, +(ra—le, ) (1=A)]
of Z(Iy,lt,,7¢,) (cf. the definition of a multitolerance
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representation). Furthermore, for the slope ¢,(z), as
defined in Definition 2.4 (cf. Figure 1), it follows that
cot qu(x) =Yy—-—x = /\(cu - au) + (1 - A)(bu - du)
Therefore, since cot ¢, 1 = ¢, —ay, and cot ¢y, 2 = by, —dy,
the next observation follows.

OBSERVATION 1. Let x = Aay,+(1—MN)d,, for a bounded
vertet w € Vp and some value A € [0,1]. Then,
cot ¢y () = Acot ¢y 1 + (1 — A) cot ¢y, 2.

Note that, in Definition 2.3, the endpoints
@y, by, Cy, d,, of any trapezoid T, (on the lines L; and Lo)
lie on the plane z = 0 in R3. Therefore, since
we assumed that the distance between the lines [,
and Lo is one, these endpoints of T, correspond to the
points (a,,0,0), (by,1,0), (¢y,1,0), and (d,,0,0) in R3,
respectively. For the sake of presentation, we may not
distinguish in the following between these points in R3
and the corresponding real values a,,b,,c,,d,, when-
ever this slight abuse of notation does not cause any
confusion.

We are ready to give the main definition of this ar-
ticle. For a set X of points in R?, denote by Honvex (X)
the convexr hull defined by the points of X. That
is, Ty, = Heconvex @y, by, Cy, dy) for every vertex v € V
by Definition 2.3, where a,,b,, ¢,,d, are points of the
plane z = 0 in R3.

DEFINITION 2.5. Let G = (V,E) be a multitoler-

ance graph with a multitolerance representation
{I, = [av,by], 7w |v €V} and A = max{b, | v €
V} —min{a, | v € V'} be the greatest distance between
two interval endpoints. For every verter v €V, the

trapezoepiped T, of v is the convex set of points in R>
defined as follows:

(a) if toa,tue < || (that is, v is bounded), then
T’u:Hconvem(T a,, b, c dl);

vy Yo Yo oy Yo

(b) if ty = ty1 = ty2 = 0o (that is, v is unbounded),
then T, = H conpez(al,, c,),

v v

where al, = (ay,0,A — cotdy1), b, = (by,1,A —
cot ¢y.2), ¢, = (cy, 1, A—cot ¢, 1), and d), = (d,, 0, A —
cot ¢y 2). The set of trapezoepipeds {T,, | ve V} is a

trapezoepiped representation of G.

Note by the definition of A that A —cot¢, 1 > 0
and A — cot ¢, 2 > 0 for every v € V. Furthermore,
observe that for each interval I,, the trapezoid T, of
Definition 2.3 (see also Figure 1) coincides with the pro-
jection of the trapezoepiped T, on the plane z = 0. An
example of this construction is given in Figure 2. A mul-
titolerance graph G with seven vertices {v1,va,...,v7}
is depicted in Figure 2(a), while the trapezoepiped rep-
resentation of G is illustrated in Figure 2(b). The set of
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bounded and unbounded vertices in this representation
are Vp = {v3,v4,v6,v7} and Viy = {v1,v2,v5}, respec-
tively. We illustrate the endpoints a,,, by,, ¢, , d,, and
a,., by, c, ,d, of T, as well as the relationship between
the interval I,,, and the corresponding trapezoepiped T,
for one unbounded and one bounded vertex, cf. vy
and wvg, respectively. Note that a,, = d,,, a;,, =d,,,
Co, = by, and ¢, =10, , since vy is unbounded. In
the case where t,, 1,ty,2 < |[,|, the trapezoepiped
T,, is three-dimensional, cf. T),, T,,, and T, while
in the border case where t,,1 = ty,2 = |I,| it de-
generates to a two-dimensional rectangle, cf. T,,. In
these two cases, each T, corresponds to a bounded ver-
tex v;. In the remaining case where v; is unbounded,
ie. ty, =ty,,1 = ty,,2 = 00, the trapezoepiped T,,, degen-
erates to an one-dimensional line segment above plane
z =0, cf. T\, T, and T,,.

We now prove that the trapezoepiped representa-
tion forms a 3-dimensional intersection model for the
class of multitolerance graphs (namely, that every mul-
titolerance graph G can be viewed as the intersection
graph of the corresponding trapezoepipeds T,).

THEOREM 2.1. Let G =(V,E) be a multitoler-
ance graph with a multitolerance representation
{I, = [ay,by], 7o | v € V}. Then for every u,v € V,
wv € E if and only if T, NT, # 0.

Clearly, for each v € V the trapezoepiped T, can be
constructed in constant time; therefore the next lemma
follows directly.

LEMMA 2.1. Given a multitolerance representation of a
multitolerance graph G with n vertices, a trapezoepiped
representation of G can be constructed in O(n) time.

3 A canonical representation of multitolerance
graphs.

In this section we introduce a canonical representation
of multitolerance graphs, which is a special kind of a
trapezoepiped representation. Moreover, we present an
efficient algorithm that constructs in O(nlogn) time a
canonical representation of a multitolerance graph G
with n vertices, given any trapezoepiped representa-
tion of G. This algorithm proves to be useful for de-
signing efficient algorithms on multitolerance graphs for
the minimum coloring and the maximum clique prob-
lems with optimal running time O(nlogn), as we will
present in Section 4. First, we state the following defi-
nition, similarly to the case of tolerance graphs [20] (see
also [10,11]).

DEFINITION 3.1. An unbounded vertex v € Vy of a
multitolerance graph G is called inevitable (for a cer-
tain trapezoepiped representation), if replacing T, by

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.



U3

(%)

hvg,,l
vg,14
U2 |

h’l,’g 2
h’U [

1

&

Figure 2: (a) A multitolerance graph G and (b) a trapezoepiped representation R of G. Here, h,, ; = A — cot ¢y, ;
for every bounded vertex v; € Vi and j € {1,2}, while h,, = A — cot ¢,,, for every unbounded vertex v; € V.

H onvex(To, al,, cl) creates a new edge uv in G; then u is
a hovering vertex of v and the set H(v) of all hovering
vertices of v is the hovering set of v. Otherwise, v is

called evitable.

Recall that a;, = d;, and ¢, = b, for every un-
bounded vertex v € Vi, and thus Heonvex (T, @), cl) =

Heonvex (T, al), bl ¢l dl) in Definition 3.1. Therefore,

replacing T, by Heonvex (T, @), ch) in the trapezoepiped
representation of G is equivalent with replacing in
the corresponding multitolerance representation of G
the infinite tolerance t, = oo by the finite tolerances
ty1 =ty = |I,], i.e. with making v a bounded vertex.
Note that the hovering set of an inevitable unbounded
vertex v can have more than one elements, since the re-
placement of T, by Heonvex (T, @l ¢,) may create more
than one new edges in G. Furthermore, uwv ¢ E for ev-
ery hovering vertex u of v, while u can be both bounded
or unbounded. In the next definition we introduce the
notion of a canonical representation of a multitolerance

graph G.

DEFINITION 3.2. A trapezoepiped representation of a
multitolerance graph G is called canonical if every
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unbounded vertex is inevitable.

For example, in the multitolerance graph depicted
in Figure 2, v5 and vs are inevitable unbounded vertices,
v1 and vy are hovering vertices of vy and vs, respectively,
while vy is an evitable unbounded vertex. Therefore,
this representation is not canonical for the graph G.
However, if we replace Ty, by Heonvex(Tv, , @', 1 Chy )y We
get a canonical representation for G.

3.1 The construction of a canonical representa-
tion. In this section we present Algorithm 1 that con-
structs a canonical representation of a multitolerance
graph G, given a trapezoepiped representation of G. To
this end, we first provide some notions of computational
geometry, which play a crucial role in our algorithm.

DEFINITION 3.3. Let L be a set of line segments in the
plane. The lower envelope Env(L) of L is the set of
those points p = (x,y) of the line segments of L, such
that the point (x,y’") does not belong to any line segment
of L, for any y' < y.

An example of a set L of non-vertical line segments
in the Euclidean plane is illustrated in Figure 3. In this
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figure, the lower envelope Env(L) of L is drawn gray
for better visibility.

Figure 3: A set L = {{1,...,0s} of line segments in
the plane and the lower envelope Hjower (L) of L, which
consists of the line segments {s1,...,s10}.

The lower envelope Env(L) of such a set L consists
also of line segments (cf. Figure 3), and thus Env(L) can
be also specified by the endpoints of its segments. Given
a set of n line segments in the plane, the lower envelope
of these segments can be computed in O(nlogn) time
using the algorithm presented in [13]. During the
computation of Env(L) by this algorithm, we can in the
same time also store for every line segment s of Env(L)
the line segment ¢ of L, in which s belongs.

We define now two subsets U; and Us of the set of
inevitable unbounded vertices.

DEFINITION 3.4. Let v € Vi be an inevitable un-
bounded vertex. Then, v € Uy (resp. v € Usy) if there
exists at least one hovering vertex uw € H(v) of v, such
that u is unbounded (resp. u is bounded).

Note that, given a trapezoepiped representation of a
multitolerance graph G, the sets U; and U, are not nec-
essarily disjoint, since an unbounded vertex may have
both unbounded and bounded hovering vertices. On the
other hand, since every inevitable unbounded vertex has
at least one hovering vertex (cf. Definition 3.1), Uy UUs
coincides with the set of inevitable unbounded vertices.

We associate now with every unbounded vertex
v € Vi the point p, = (2,,¥,) in the Euclidean plane,
where z, =a, and y, = A —cot¢,. Moreover, we
associate with every bounded vertex u € Vg three
points py,1 = (Iu,layu,l) = (@y, A — cot ¢u,1)a Pu,2
(xu,27 yu,2) = (du, A—cot ¢u,2)7 and Pu,3 = (xu,Sa yu,3) =
(by, A) in the plane. Furthermore, we associate with
every bounded vertex u € Vg two line segments £, 1 =
(pu,lapu,Q) and gu,? = (pu,Zapu,3) in the plane, which
have the points py, 1, Pu,2 and py 2, Pu,3 as endpoints, re-
spectively.

An example of this construction is given in Figure 4,
where the points p,, and p,, are associated with the
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Algorithm 1 Construction of a canonical representa-
tion of a multitolerance graph G

Input: A trapezoepiped representation R of a given
multitolerance graph G = (V, E)

Output: A canonical representation R’ of G and a
hovering vertex u for every inevitable unbounded
vertex v of G

L+ 0; R+ R; R+ R\{T, | veVg}
for every vertex v € V do
if v € Vy then
Py < (ava A — cot (bv)
else {v € Vp}
DPv,1 — (av7 A — cot ¢v,1);
DPv,2 — (dva A— cot ¢v,2); Dv,3 — (b'ua A)
7 Zv,l = (pv,lapv,Z); E’U,Q = (pv,Zapv,?));
L+ LU {€v717€1,72}
8: Compute the set U; of inevitable unbounded ver-
tices in R” and a hovering vertex u € Vi of v, for
every v € Uy, by the algorithm of [20)]

9: Compute the lower envelope Env(L) of L by the
algorithm of [13]
{During the computation of Env(L), store for every
line segment s of Env(L), the line segment £, 1
or £, 9 of L, in which s belongs}

10: for every vertex v € V,, \ U do
11:  if v lies above a segment s of Env(L) then

{U € Uy \ Ul}
12: Let £, or £,2 be the line segment of L, in
which s belongs
13: u € Vg is a hovering vertex of v
14:  else {v is evitable unbounded}
15: Replace T, by Heonvex (T, @, c) in R/

{v is made bounded}

16: return R’

unbounded vertices v; and wvs, respectively, while the
points py,. 1, Pu,2, Pu,3 and the line segments ¢, 1, £,, o are
associated with the bounded vertex w.

In the following, let L = {l,1,0y2 | u € Vp}
be the 2|Vp| line segments that are associated with
the bounded vertices u € V. For an arbitrary point
p = (z,y) in the plane, we say that p lies above Env(L)
(resp. above the line segment ¢,; or f,o of L) if
there exists a point p’ = (z,y’) of Env(L) (resp. of £, 1
or {y), such that y > 3. The next lemma, which is
crucial for the analysis of Algorithm 1, characterizes the
vertices of Uy using the lower envelope Env(L) of L.

LEMMA 3.1. Let v € Vi be an unbounded vertex and
Dy = (X4, Yy) be the associated point in the plane. Then,
v € Uy if and only if p, lies above Env(L). Furthermore,
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if py lies above the segment £, 1 or £, of L, then the
bounded vertex u is a hovering vertex of v.

Yu,3
Yoo
y'Ul

Yu,1 |-

Yu,2

unbounded vertices
bounded vertex uw € Vg is
a hovering vertex of both v; and wve: (a) the
trapezoids T, Ty,, Ty, and (b) the line seg-
ments {1,022 of vertex w and the points
DuysDvy, Of  vertices wi,ve, respectively, where
Yug = A —cot(du1), Yu2 = A —cot(Pu2), Yu3z = A,
and y, ; = A — cot(¢y, ;) for every j =1,2.

inevitable

Figure 4: Two
v1,v9 € Uy, where the

The next theorem shows that, given a trape-
zoepiped representation, we can construct by Algo-
rithm 1 a canonical representation in O(nlogn) time.
This result plays a central role in the time complexity
analysis of the algorithms of Section 4.

THEOREM 3.1. FEwvery trapezoepiped representation of a
multitolerance graph G with n vertices can be trans-
formed by Algorithm 1 to a canonical representation
of G in O(nlogn) time.

4 Coloring and clique Algorithms in O(nlogn)
time.

In this section we present optimal O(nlogn) time
algorithms for the minimum coloring and the maximum
clique problems on a multitolerance graph G with n
vertices, given any trapezoepiped representation of G.
These algorithms mainly use Algorithm 1 to compute
efficiently a canonical representation of GG, as well as
the coloring and clique algorithms for trapezoid graphs
in [6], respectively.
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Algorithm 2 Computation of a minimum coloring of a
multitolerance graph G

Input: A trapezoepiped representation R of a given
multitolerance graph G = (V, E)
Output: A minimum coloring of G

1: Construct a canonical representation R’ of G by Al-
gorithm 1, where a hovering vertex u, is associated
with every inevitable unbounded vertex v

2: Let Vp and Vi be the bounded and (inevitable)
unbounded vertices of G in R’, respectively

3: Color G[Vpg] by the algorithm of [6]

4: for every vertex v € Vy do
5. Create a pointer from the hovering vertex u, of v
to the vertex v
6: for every vertex u € Vp that has at least one pointer
do
7:  Assign the color of u to every vertex v € Vi that
is reachable from u by a sequence of pointers

THEOREM 4.1. A minimum coloring of a multitoler-
ance graph G with n vertices can be computed by Al-
gorithm 2 in optimal O(nlogn) time.

THEOREM 4.2. A maximum clique of a multitolerance
graph G with n vertices can be computed in optimal
O(nlogn) time.

Proof. First we compute a canonical representation of G
in O(nlogn) time by Algorithm 1. By the correctness of
Algorithm 2, cf. the proof of Theorem 4.1, it follows that
X(G) = x(G[Vg]), where x(H) denotes the chromatic
number of a given graph H. Since multitolerance graphs
are perfect graphs [22], w(G) = x(G) and w(G[Vp]) =
X(G[VB]), where w(H) denotes the clique number of
a given graph H. Therefore w(G) = w(G[Vs]). We
compute now a maximum clique @ of the bounded
multitolerance (i.e. trapezoid) graph G[Vg] in O(nlogn)
time by the algorithm presented in [6] for trapezoid
graphs. Then, since w(G) = w(G[Vp]), @ is a maximum
clique of G as well. Finally, since Q(nlogn) is a
lower bound for the time complexity of the maximum
clique problem on tolerance graphs [20] and on trapezoid
graphs [6], it follows that the clique algorithm for
multitolerance graphs has also optimal running time.

5 Weighted independent
O(m + nlogn) time.

set algorithm in

In this section we present Algorithm 3 that computes
the value of a maximum weight independent set of a
multitolerance graph G = (V, E) with n vertices and
m edges in O(m + nlogn) time, given a trapezoepiped
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representation of G and a weight w(v) > 0 for every
v € V. A slight modification of this algorithm computes
in the same time also a maximum weight independent
set of G, instead of its value. Although the algorithm
presented in [20] for the maximum weight independent
set on tolerance graphs with complexity O(n?) can be
extended with the same time complexity to the case
of multitolerance graphs with a given trapezoepiped
representation, we present here a new algorithm for
multitolerance graphs that achieves a better running
time O(m +nlogn). Thus this algorithm improves also
the best known running time of O(n?) for the maximum
weight independent set on tolerance graphs [20]. Note
here that Q(nlogn) is a lower bound for the time
complexity of this problem on trapezoid graphs [6], and
thus also on multitolerance graphs.

First, given a trapezoepiped representation of a
multitolerance graph G = (V| E), we sort on the line Lo
the points {a,,d, | v € V} of the trapezoids T,
v € V, and we visit these points sequentially from
right to left. Note that a, = d, for every unbounded
vertex v € V. A vertex v is called processed only after
we visit the endpoint a, of T,,. During the execution
of the algorithm we maintain two finite sets M and H
of O(n) weighted markers each on the line L, which are
placed at some points c,, where v € V. We maintain the
sets M and H in such a way that values can be inserted
to and deleted from these sets, as well as the predecessor
or successor of a given query value can be found. Using
binary search trees, for instance AVL-trees, all these
operations can be executed in O(logn) time [12]. In the
following of the analysis of Algorithm 3, we will use for
simplicity of the presentation the variable m to denote
a marker of the set M (rather than the number of edges
of G); furthermore, we will refer by |E| to the number
of edges of G. For every marker m € M (resp. h € H),
we denote by p,, (resp. pn) the point of Lq, at which
the marker m (resp. h) is placed.

The markers of the set M are placed at points ¢,
on the line Ly, for some bounded vertices v € Vg. After
an iteration of the algorithm, where the vertices of the
set U C V have been processed, the weight W (m) of a
marker m placed at the point ¢, on the line L; equals the
maximum weight of an independent set, which includes
only vertices u € U such that ¢, < ¢,. Moreover, a
marker m is placed at ¢, only if such a maximum weight
independent set includes the (bounded) vertex v.

The markers of the set H are placed at points ¢,
on the line Ly, where v € V. After an iteration of
the algorithm, where the vertices of the set U C V
have been processed, there is a weighted marker h € H
placed at the point ¢, on L, for every unbounded
vertex v € V,, N U, while the weight w(h) of h equals
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Algorithm 3 Maximum weight independent set of a
multitolerance graph G

Input: A trapezoepiped representation of a given mul-
titolerance graph G = (V, E)

Output: The value of a maximum weight independent
set of G

1: Place a marker mg at the point p,,, = max{b, | v €
V} +1 of the line L,

2: W(mg) < 0; M < {mg}

3: for every v € Vp do {initialization}

4: W(’U) 0

5.  Compute the value w, = > {w(u) | v € Vy, ¢, €

(vabv)}

6: for every u € N(v) do

7: if w € Vy and ¢, € (¢, by) then {v is not a
hovering vertex of u}
8: Wy +— Wy — w(u)

9: for every point p € {a,,d, | v € V} from right to
left do {p lies on the line Lo}

10:  if p = a, for some v € Viy then {the unbounded
vertex v is being processed }

11: Insert a new marker h € H at the point p;, = ¢,

12: w(h) < w(v)

13: m < the leftmost marker of M to the right
of ¢, on Ly

14: Remove all markers m’ € M to the left of m,

for which W(m/) < W(m) + w(H [pm’, Pm.))

15:  if p = d, for some v € Vg then

16: m < the leftmost marker of M to the right
of b, on Ly

17: W(w) < (w(v) + wy) + W(m) + w(H [by, pm,))
{do not modify the markers of M}

18:  if p = a, for some v € Vg then {the bounded

vertex v is being processed }

19: m < the leftmost marker of M to the right
of ¢, on Ly

20: if W(v) > W(m)+ w(H|cy,pm)) then

21: Insert a new marker m’ € M at the point
Pm/ = Cy

22: W(m') + W(v)

23: Remove all markers m” € M to the left m/,
for which W (m") < W(m/)+w(H[pm:, Pm))

24: return W(m) + w(H[e,pm)), where

c=min{c, | v €V} —1 and m is the leftmost
marker of M

the weight w(v) of vertex v. Furthermore, in the
AVL-tree of the set H, we store at every internal
vertex x also a label with the total weight of the tree
that consists of x and its right subtree. Note that
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after an insertion of a new marker h to the AVL-tree
that stores H, we can update in O(logn) time these
labels of the internal vertices, as follows. First, we
need to update a constant number of labels during
the “trinode restructure” operation (for more details,
see [12]). Then, following the path from the interval
vertex that stores the new marker h to the root, we add
the weight w(h) of h to the label of every internal vertex
that has h in its right subtree.

For every two points ¢ and ¢’ on Ly, where ¢ < ¢/,
denote for simplicity by Hl[g,q') (resp. Hlg, +o0)) the
set of the markers h in the current set H that have
been placed in the semi-closed interval [g,q’) (resp. in
the subline [¢, +00)) of L;. Denote also by w(H]g,q’))
(resp. w(H|[q, +o0))) the sum of the weights of the mark-
ers h € Hlq,q') (resp. h € H[g,+o0)). For simplicity,
in the case where ¢’ = ¢, we set w(H]gq,q)) =0. Fur-
thermore, note that if ¢ < ¢’ < ¢”, then w(H]gq,q")) =
w(H|q,q¢")) +w(H|[q,q")). For every point q on L;, we
can compute in O(logn) time the value w(H|[q, +0)),
as follows. First, we locate in O(logn) time the left-
most marker i € H that has been placed at a point ¢/,
such that ¢ < ¢’. Then, we follow in the AVL-tree
of H the path from the root to the internal vertex x
that stores h and sum up the label stored at x and
the labels stored at the internal vertices of this path,
at which we follow the left child. Furthermore, since
w(Hlg,¢')) = w(Hlg, +o0)) — w(H[q', +o0)) for every
two points ¢, ¢’ on the line L such that g < ¢/, we can
compute the value w(H]q,¢')) in O(logn) time as well.

The correctness and the running time of Algo-
rithm 3 are provided by the next theorem.

THEOREM 5.1. A maximum weight independent set of
a multitolerance graph G = (V, E) with n vertices can be
computed using Algorithm 3 in O(|E| 4+ nlogn) time.

5.1 An optimal O(nlogn) time algorithm for
tolerance graphs. In this section we prove that if
the input graph G = (V,E) is a tolerance graph
with n vertices, we can slightly modify Algorithm 3,
such that it computes a maximum weight independent
set of G in optimal O(nlogn) time. In particular,
if G is a tolerance graph, the trapezoepiped T, of
every bounded vertex v € Vg in the trapezoepiped
representation of G reduces to a parallelepiped, since
in this case ¢,1 = ¢y2. Using this property of the
trapezoepiped representation of tolerance graphs, we
manage to compute the values w, for all v € Vg in
O(nlogn) time, instead of O(|E| 4+ nlogn) time in
lines 3-8 of Algorithm 3. Therefore, since the execution
of all the remaining lines of Algorithm 3 (except lines 3-
8) can be done in O(nlogn) time, the next theorem
follows.
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THEOREM 5.2. A maximum weight independent set of
a tolerance graph G = (V, E) with n vertices edges can
be computed in O(nlogn) time, which is optimal.

6 Classification of multitolerance graphs.

In this section we classify the class of multitolerance
graphs inside the hierarchy of perfect graphs given
in [11] (in Figure 2.8). The resulting hierarchy of
classes of perfect graphs is complete, i.e. all inclusions
are strict!. This hierarchy is presented in Figure 5.
We prove these results by using the trapezoepiped
representation of multitolerance graphs presented in
Section 2, as well as some known results on the hierarchy
of perfect graphs given in [11].

First we briefly review the classes shown in Fig-
ure 5. A graph is perfect if the chromatic number of ev-
ery induced subgraph equals the clique number of this
subgraph. A graph G is called alternately orientable if
there exists an orientation F' of G which is transitive on
every chordless cycle of length at least 4, i.e. the direc-
tions of the oriented edges must alternate. A graph G
is called weakly chordal (or weakly triangulated) if G
has no induced subgraph isomorphic to the chordless
cycle C,, with n vertices, or to its complement C,,, for
any n > 5. A vertex order < of a graph G is called
perfect if and only if G contains no induced path abed
with a < b and d < ¢. A graph G is called co-perfectly
orderable if its complement G admits a perfect order.
Moreover, a comparability graph is a graph which can
be transitively oriented and a cocomparability graph is a
graph whose complement is a comparability graph. For
more definitions we refer to [11].

We can summarize the results of this section in the
following theorem.

THEOREM 6.1. Multitolerance graphs:

(a) strictly include tolerance and trapezoid graphs,

(b)

are strictly included in weakly chordal graphs and
in co-perfectly orderable graphs,

(c)

are incomparable with alternately orientable and
with cocomparability graphs.

Tt was claimed in [22] (in Theorem 3.1(b)) that tolerance
graphs are strictly included in multitolerance graphs; however,
in the proof of that theorem only inclusion has been shown, and
not strict inclusion. We prove strict inclusion in Theorem 6.1(a).
Moreover, it has been correctly shown in [22] that a multitolerance
graph does not contain any chordless cycle C,, where n > 5.
We prove in Theorem 6.1(b) that actually the same holds also
for the complements C, of Cp, where n > 5, and thus every
multitolerance graph is weakly chordal.
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Figure 5: The classification of multitolerance graphs in the hierarchy of perfect graphs in [11]. This hierarchy is

complete, i.e. every inclusion is strict.

7 Conclusions and further research.

In this article we proposed the first non-trivial in-
tersection model for general multitolerance graphs,
given by objects in the 3-dimensional space, called
trapezoepipeds.  This trapezoepiped representation
unifies in a simple and intuitive way the well known
trapezoid representation for bounded multitolerance
graphs and the recently introduced parallelepiped
representation for tolerance graphs in [20]. Using this
representation, we presented efficient algorithms that
compute a minimum coloring, a maximum clique, and
a maximum weight independent set on a multitolerance
graph, respectively. The running times of the first
two algorithms are optimal, while the third algorithm
improves the best known running time for the maxi-
mum weight independent set on tolerance graphs. In
particular, a variation of the latter algorithm computes
a maximum weight independent set of a tolerance
graph in optimal time, closing thus the complexity
gap of [20]. Furthermore, we proved several structural
results on the class of multitolerance graphs, which
complement the hierarchy of perfect graphs given
in [11]. The proposed intersection model provides
geometric insight for multitolerance graphs and it can
be expected to prove useful in deriving new algorithmic
and structural results. The recognition problem for
general multitolerance graphs, remains an interesting
open problem. On the contrary, it is known that
trapezoid (i.e. bounded multitolerance) graphs can be
recognized efficiently [17,19], while it is NP-complete to
recognize tolerance and bounded tolerance graphs [21],
as well as max-tolerance graphs [15].
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