
The Longest Path Problem is Polynomial
on Interval Graphs

Kyriaki Ioannidou1?, George B. Mertzios2??, and Stavros D. Nikolopoulos1?

1 Department of Computer Science, University of Ioannina, Greece
{kioannid, stavros}@cs.uoi.gr

2 Department of Computer Science, RWTH Aachen University, Germany
mertzios@cs.rwth-aachen.de

Abstract. The longest path problem is the problem of finding a path of
maximum length in a graph. Polynomial solutions for this problem are
known only for small classes of graphs, while it is NP-hard on general
graphs, as it is a generalization of the Hamiltonian path problem.
Motivated by the work of Uehara and Uno in [20], where they left
the longest path problem open for the class of interval graphs, in this
paper we show that the problem can be solved in polynomial time on
interval graphs. The proposed algorithm runs in O(n4) time, where n
is the number of vertices of the input graph, and bases on a dynamic
programming approach.

Keywords: Longest path problem, interval graphs, polynomial algo-
rithm, complexity, dynamic programming.

1 Introduction

A well studied problem in graph theory with numerous applications is the Hamil-
tonian path problem, i.e., the problem of determining whether a graph is Hamil-
tonian; a graph is said to be Hamiltonian if it contains a Hamiltonian path, that
is, a simple path in which every vertex of the graph appears exactly once. Even if
a graph is not Hamiltonian, it makes sense in several applications to search for a
longest path, or equivalently, to find a maximum induced subgraph of the graph
which is Hamiltonian. However, finding a longest path seems to be more difficult
than deciding whether or not a graph admits a Hamiltonian path. Indeed, it has
been proved that even if a graph has a Hamiltonian path, the problem of finding
a path of length n − nε for any ε < 1 is NP-hard, where n is the number of
vertices of the graph [15]. Moreover, there is no polynomial-time constant-factor
approximation algorithm for the longest path problem unless P=NP [15]. For
related results see also [7–9,22,23].

It is clear that the longest path problem is NP-hard on every class of graphs
on which the Hamiltonian path problem is NP-complete. The Hamiltonian path
? This research is co-financed by E.U.-European Social Fund (80%) and the Greek

Ministry of Development-GSRT (20%).
?? This research is partially supported by Empirikion Foundation, Greece.

problem is known to be NP-complete in general graphs [10, 11], and remains
NP-complete even when restricted to some small classes of graphs such as split
graphs [13], chordal bipartite graphs, split strongly chordal graphs [17], circle
graphs [5], planar graphs [11], and grid graphs [14]. However, it makes sense
to investigate the tractability of the longest path problem on the classes of
graphs for which the Hamiltonian path problem admits polynomial time solu-
tions. Such classes include interval graphs [16], circular-arc graphs [6], convex
bipartite graphs [17], and co-comparability graphs [4]. Note that the problem
of finding a longest path on proper interval graphs is easy, since all connected
proper interval graphs have a Hamiltonian path which can be computed in linear
time [2]. On the contrary, not all interval graphs are Hamiltonian; in the case
where an interval graph has a Hamiltonian path, it can be computed in linear
time [16]. However, in the case where an interval graph is not Hamiltonian, there
is no known algorithm for finding a longest path on it.

In contrast to the Hamiltonian path problem, there are few known polynomial
time solutions for the longest path problem, and these restrict to trees and some
small graph classes. Specifically, a linear time algorithm for finding a longest path
in a tree was proposed by Dijkstra around 1960, a formal proof of which can
be found in [3]. Later, through a generalization of Dijkstra’s algorithm for trees,
Uehara and Uno [20] solved the longest path problem for weighted trees and block
graphs in linear time and space, and for cacti in O(n2) time and space, where n
and m denote the number of vertices and edges of the input graph, respectively.
More recently, polynomial algorithms have been proposed that solve the longest
path problem on bipartite permutation graphs in O(n) time and space [21], and
on ptolemaic graphs in O(n5) time and O(n2) space [19].

Furthermore, Uehara and Uno in [20] introduced a subclass of interval
graphs, namely interval biconvex graphs, which is a superclass of proper in-
terval and threshold graphs, and solved the longest path problem on this class
in O(n3(m+ n log n)) time. As a corollary, they showed that a longest path of
a threshold graph can be found in O(n+m) time and space. They left open the
complexity of the longest path problem on interval graphs.

In this paper, we resolve the open problem posed in [20] by showing that
the longest path problem admits a polynomial time solution on interval graphs.
Interval graphs form an important and well-known class of perfect graphs [13];
a graph G is an interval graph if its vertices can be put in a one-to-one corre-
spondence with a family of intervals on the real line, such that two vertices are
adjacent in G if and only if their corresponding intervals intersect. In particular,
we propose an algorithm for solving the longest path problem on interval graphs
which runs in O(n4) time using a dynamic programming approach. Thus, not
only we answer the question left open by Uehara and Uno in [20], but also im-
prove the known time complexity of the problem on interval biconvex graphs, a
subclass of interval graphs [20].

Interval graphs form a well-studied class of perfect graphs, have important
properties, and admit polynomial time solutions for several problems that are
NP-complete on general graphs (see e.g. [1, 13, 16]). Moreover, interval graphs

have received a lot of attention due to their applicability to DNA physical map-
ping problems [12], and find many applications in several fields and disciplines
such as genetics, molecular biology, scheduling, VLSI circuit design, archaeology
and psychology [13].

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a
graph G, we denote its vertex and edge set by V (G) and E(G), respectively. An
undirected edge is a pair of distinct vertices u, v ∈ V (G), and is denoted by uv.
We say that the vertex u is adjacent to the vertex v or, equivalently, the vertex
u sees the vertex v, if there is an edge uv in G. Let S be a set of vertices of a
graph G. Then, the cardinality of the set S is denoted by |S| and the subgraph
of G induced by S is denoted by G[S]. The set N(v) = {u ∈ V (G) : uv ∈ E(G)}
is called the neighborhood of the vertex v ∈ V (G) in G, sometimes denoted
by NG(v) for clarity reasons. The set N [v] = N(v) ∪ {v} is called the closed
neighborhood of the vertex v ∈ V (G).

A simple path of a graph G is a sequence of distinct vertices v1, v2, . . . , vk
such that vivi+1 ∈ E(G), for each i, 1 ≤ i ≤ k − 1, and is denoted by
(v1, v2, . . . , vk); throughout the paper all paths considered are simple. We
denote by V (P) the set of vertices in the path P , and define the length
of the path P to be the number of vertices in P , i.e., |P | = |V (P)|.
We call right endpoint of a path P = (v1, v2, . . . , vk) the last vertex vk of
P . Moreover, let P = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj , vj+1, vj+2, . . . , vk) and
P0 = (vi, vi+1, . . . , vj) be two paths of a graph. Sometimes, we shall denote the
path P by P = (v1, v2, . . . , vi−1, P0, vj+1, vj+2, . . . , vk).

2.1 Structural Properties of Interval Graphs

A graph G is an interval graph if its vertices can be put in a one-to-one corre-
spondence with a family F of intervals on the real line such that two vertices
are adjacent in G if and only if the corresponding intervals intersect; F is called
an intersection model for G [1]. The class of interval graphs is hereditary, that
is, every induced subgraph of an interval graph G is also an interval graph. Ra-
malingam and Rangan [18] proposed a numbering of the vertices of an interval
graph; they stated the following lemma.

Lemma 1. (Ramalingam and Rangan [18]): The vertices of any interval graph
G can be numbered with integers 1, 2, . . . , |V (G)| such that if i < j < k and
ik ∈ E(G), then jk ∈ E(G).

As shown in [18], the proposed numbering, which results after sorting the
intervals of the intersection model of a graph G on their right ends [1], can
be obtained in O(|V (G)| + |E(G)|) time. An ordering of the vertices according
to this numbering is found to be quite useful in solving some graph-theoretic
problems on interval graphs [1, 18]. Throughout the paper, such an ordering is

called a right-end ordering of G. Let u and v be two vertices of G; if π is a
right-end ordering of G, denote u <π v if u appears before v in π. In particular,
if π = (u1, u2, . . . , u|V (G)|) is a right-end ordering of G, then ui <π uj if and
only if i < j.

Lemma 2. Let G be an interval graph, and let π be a right-end ordering of G.
Let P = (v1, v2, . . . , vk) be a path of G, and let v` /∈ V (P) be a vertex of G such
that v1 <π v` <π vk and v`vk /∈ E(G). Then, there exist two consecutive vertices
vi−1 and vi in P , 2 ≤ i ≤ k, such that vi−1v` ∈ E(G) and v` <π vi.

2.2 Normal Paths

Our algorithm for constructing a longest path of an interval graph G uses a
specific type of paths, namely normal paths.

Definition 1. Let G be an interval graph, and let π be a right-end ordering
of G. The path P = (v1, v2, . . . , vk) of G is called a normal path, if v1 is the
leftmost vertex of V (P) in π, and for every i, 2 ≤ i ≤ k, the vertex vi is the
leftmost vertex of N(vi−1) ∩ {vi, vi+1, . . . , vk} in π.

The notion of a normal path of an interval graph G is a generalization of the
notion of a typical path of G; the path P = (v1, v2, . . . , vk) of an interval graph
G is called a typical path, if v1 is the leftmost vertex of V (P) in π. The notion
of a typical path was introduced by Arikati and Rangan [1], in order to solve the
path cover problem on interval graphs; they proved the following result.

Lemma 3. (Arikati and Rangan [1]): Let P be a path of an interval graph G.
Then, there exists a typical path P ′ in G such that V (P ′) = V (P).

The following lemma is the basis of our algorithm for solving the longest path
problem on interval graphs.

Lemma 4. Let P be a path of an interval graph G. Then, there exists a normal
path P ′ of G, such that V (P ′) = V (P).

3 Interval Graphs and the Longest Path Problem

In this section we present our algorithm, which we call Algorithm LP Interval,
for solving the longest path problem on interval graphs; it consists of three phases
and works as follows:

• Phase 1: it takes an interval graph G and constructs the auxiliary interval
graph H;

• Phase 2: it computes a longest path P on H using Algorithm LP on H;
• Phase 3: it computes a longest path P̂ on G from the path P ;

The proposed algorithm computes a longest path P of the graph H using
dynamic programming techniques and, then, computes a longest path P̂ of G
from the path P . We next describe in detail the three phases of our algorithm
and prove properties of the constructed graph H which will be used for proving
the correctness of the algorithm.

3.1 The interval graph H

In this section we present Phase 1 of the algorithm: given an interval graph
G and a right-end ordering π of G, we construct the interval graph H and a
right-end ordering σ of H.

I Construction of H and σ: Let G be an interval graph and
let π = (v1, v2, . . . , v|V (G)|) be a right-end ordering of G. Initially, set
V (H) = V (G), σ = π, and A = ∅. Traverse the vertices of π from left to
right and do the following: for every vertex vi add two vertices ai,1 and
ai,2 to V (H) and make both these vertices to be adjacent to every ver-
tex in NG[vi] ∩ {vi, vi+1, . . . , v|V (G)|}; add ai,1 and ai,2 to A. Update σ
such that a1,1 <σ a1,2 <σ v1, and vi−1 <σ ai,1 <σ ai,2 <σ vi for every i,
2 ≤ i ≤ |V (G)|.

We call the constructed graph H the stable-connection graph of the graph G.
Hereafter, we will denote by n the number |V (H)| of vertices of the graph H
and by σ = (u1, u2, . . . , un) the constructed ordering of H. By construction, the
vertex set of the graph H consists of the vertices of the set C = V (G) and the
vertices of the set A. We will refer to C as the set of the connector vertices c of
the graph H and to A as the set of stable vertices a of the graph H; we denote
these sets by C(H) and A(H), respectively. Note that |A(H)| = 2|V (G)|.

By the construction of the stable-connection graph H, all neighbors of a
stable vertex a ∈ A(H) are connector vertices c ∈ C(H), such that a <σ c.
Moreover, observe that all neighbors of a stable vertex form a clique in G and,
thus, also in H. For every connector vertex ui ∈ C(H), we denote by uf(ui)

and uh(ui) the leftmost and rightmost neighbor of ui in σ, respectively, which
appear before ui in σ, i.e., uf(ui) <σ uh(ui) <σ ui. Note that uf(ui) and uh(ui)

are distinct stable vertices, for every connector vertex ui.

Lemma 5. Let G be an interval graph. The stable-connection graph H of G is
an interval graph, and the vertex ordering σ is a right-end ordering of H.

Definition 2. Let H be the stable-connection graph of an interval graph G, and
let σ = (u1, u2, . . . , un) be the right-end ordering of H. For every pair of indices
i, j, 1 ≤ i ≤ j ≤ n, we define the graph H(i, j) to be the subgraph H[S] of H,
induced by the the set S = {ui, ui+1, . . . , uj} \ {uk ∈ C(H) : uf(uk) <σ ui}.

The following properties hold for every induced subgraph H(i, j), 1 ≤ i ≤
j ≤ n, and they are used for proving the correctness of Algorithm LP on H.

Observation 1 Let uk be a connector vertex of H(i, j), i.e., uk ∈ C(H(i, j)).
Then, for every vertex u` ∈ V (H(i, j)), such that uk <σ u` and uku` ∈
E(H(i, j)), u` is also a connector vertex of H(i, j).

Observation 2 No two stable vertices of H(i, j) are adjacent.

Lemma 6. Let P = (v1, v2, . . . , vk) be a normal path of H(i, j). Then:

Algorithm LP on H

Input: a stable-connection graph H, a right-end ordering σ = (u1, u2, . . . , un) of H.
Output: a longest binormal path of H.

for j = 1 to n
for i = j downto 1

if i = j and ui ∈ A(H) then

`(ui; i, i)← 1; P (ui; i, i) = (ui);
if i 6= j then

for every stable vertex uk ∈ A(H), i ≤ k ≤ j − 1
`(uk; i, j)← `(uk; i, j−1); P (uk; i, j) = P (uk; i, j−1); {initialization}

if uj is a stable vertex of H(i, j), i.e., uj ∈ A(H) then

`(uj ; i, j)← 1; P (uj ; i, j) = (uj);
if uj is a connector vertex of H(i, j), i.e., uj ∈ C(H) and i ≤ f(uj) then

execute process(H(i, j));
compute the max{`(uk; 1, n) : uk ∈ A(H)} and the corresponding path P (uk; 1, n);

where the procedure process() is as follows:

process(H(i, j))

for y = f(uj) + 1 to j − 1
for x = f(uj) to y − 1 {ux and uy are adjacent to uj}

if ux, uy ∈ A(H) then

w1 ← `(ux; i, j − 1); P ′
1 = P (ux; i, j − 1);

w2 ← `(uy;x+ 1, j − 1); P ′
2 = P (uy;x+ 1, j − 1);

if w1 + w2 + 1 > `(uy; i, j) then

`(uy; i, j)← w1 + w2 + 1; P (uy; i, j) = (P ′
1, uj , P

′
2);

return the value `(uk; i, j) and the path P (uk; i, j), ∀ uk ∈ A(H(f(uj) + 1, j − 1));

Fig. 1. The algorithm for finding a longest binormal path of H.

(a) For any two stable vertices vr and v` in P , vr appears before v` in P if and
only if vr <σ v`.

(b) For any two connector vertices vr and v` in P , if v` appears before vr in P
and vr <σ v`, then vr does not see the previous vertex v`−1 of v` in P .

3.2 Finding a longest path on H

In this section we present Phase 2 of Algorithm LP Interval. Let G be an interval
graph and let H be the stable-connection graph of G constructed in Phase 1. We
next present Algorithm LP on H, which computes a longest path of the graph
H. Let us first give some definitions and notations necessary for the description
of the algorithm.

Definition 3. Let H be a stable-connection graph, and let P be a path of H(i, j),
1 ≤ i ≤ j ≤ n. The path P is called binormal if P is a normal path of H(i, j),
both endpoints of P are stable vertices, and no two connector vertices are con-
secutive in P .

Algorithm LP Interval

Input: an interval graph G and a right-end ordering π of G.
Output: a longest path P̂ of G.

1. Construct the stable-connection graph H of G and the right-end ordering σ of H;
let V (H) = C∪A, where C = V (G) and A are the sets of the connector and stable
vertices of H, respectively;

2. Compute a longest binormal path P of H, using Algorithm LP on H;
let P = (v1, v2, . . . , v2k, v2k+1), where v2i ∈ C, 1 ≤ i ≤ k, and v2i+1 ∈ A, 0 ≤ i ≤ k;

3. Compute a longest path P̂ = (v2, v4, . . . , v2k) of G, by deleting all stable vertices
{v1, v3, . . . , v2k+1} from the longest binormal path P of H;

Fig. 2. The algorithm for solving the longest path problem on an interval graph G.

Notation 1 Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be
the right-end ordering of H. For every stable vertex uk ∈ A(H(i, j)), we denote
by P (uk; i, j) a longest binormal path of H(i, j) with uk as its right endpoint,
and by `(uk; i, j) the length of P (uk; i, j).

Since any binormal path is a normal path, Lemma 6 also holds for binormal
paths. Moreover, since P (uk; i, j) is a binormal path, it follows that its right
endpoint uk is also the rightmost stable vertex of P in σ, due to Lemma 6(a).

Algorithm LP on H, which is presented in Figure 1, computes for every in-
duced subgraph H(i, j) and for every stable vertex uk ∈ A(H(i, j)), the length
`(uk; i, j) and the corresponding path P (uk; i, j). Since H(1, n) = H, it follows
that the maximum among the values `(uk; 1, n), where uk ∈ A(H), is the length
of a longest binormal path P (uk; 1, n) of H. In Section 4.2 we prove that the
length of a longest path of H equals to the length of a longest binormal path
of H. Thus, the binormal path P (uk; 1, n) computed by Algorithm LP on H is
also a longest path of H.

3.3 Finding a longest path on G

During Phase 3 of our Algorithm LP Interval, we compute a path P̂ from the
longest binormal path P of H, computed by Algorithm LP on H, by simply
deleting all the stable vertices of P . In Section 4.2 we prove that the resulting
path P̂ is a longest path of the interval graph G.

In Figure 2, we present our Algorithm LP Interval for solving the longest path
problem on an interval graph G; note that Steps 1, 2, and 3 of the algorithm
correspond to the presented Phases 1, 2, and 3, respectively.

4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and compute its time
complexity. More specifically, in Section 4.1 we show that Algorithm LP on H

computes a longest binormal path P of the graph H (in Lemma 13 we prove
that this path is also a longest path of H), while in Section 4.2 we show that
the length of a longest binormal path P of H is equal to 2k + 1, where k is the
length of a longest path of G. Finally, we show that the path P̂ constructed at
Step 3 of Algorithm LP Interval is a longest path of G.

4.1 Correctness of Algorithm LP on H

We next prove that Algorithm LP on H correctly computes a longest binormal
path of the graph H. The following lemmas appear useful in the proof of the
algorithm’s correctness.

Lemma 7. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be
the right-end ordering of H. Let P be a longest binormal path of H(i, j) with uy
as its right endpoint, let uk be the rightmost connector vertex of H(i, j) in σ,
and let uf(uk)+1 ≤σ uy ≤σ uh(uk). Then, there exists a longest binormal path P ′

of H(i, j) with uy as its right endpoint, which contains the connector vertex uk.

Lemma 8. Let H be a stable-connection graph, and let σ be the right-end or-
dering of H. Let P = (P1, v`, P2) be a binormal path of H(i, j), and let v` be a
connector vertex of H(i, j). Then, P1 and P2 are binormal paths of H(i, j).

Lemma 9. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be
the right-end ordering of H. Let P1 be a binormal path of H(i, j − 1) with ux as
its right endpoint, and let P2 be a binormal path of H(x + 1, j − 1) with uy as
its right endpoint, such that V (P1) ∩ V (P2) = ∅. Suppose that uj is a connector
vertex of H and that ui ≤σ uf(uj) ≤σ ux. Then, P = (P1, uj , P2) is a binormal
path of H(i, j) with uy as its right endpoint.

Lemma 10. Let H be a stable-connection graph, and let σ be the right-end
ordering of H. For every induced subgraph H(i, j) of H, 1 ≤ i ≤ j ≤ n, and
for every stable vertex uy ∈ A(H(i, j)), Algorithm LP on H computes the length
`(uy; i, j) of a longest binormal path of H(i, j) which has uy as its right endpoint
and, also, the corresponding path P (uy; i, j).

Proof (sketch). Let P be a longest binormal path of the stable-connection graph
H(i, j), which has a vertex uy ∈ A(H(i, j)) as its right endpoint. Consider first
the case where C(H(i, j)) = ∅; the graph H(i, j) is consisted of a set of stable ver-
tices A(H(i, j)), which is an independent set, due to Observation 2. Therefore, in
this case Algorithm LP on H sets `(uy; i, j) = 1 for every vertex uy ∈ A(H(i, j)),
which is indeed the length of the longest binormal path P (uy; i, j) = (uy) of
H(i, j) which has uy as its right endpoint. Therefore, the lemma holds for every
induced subgraph H(i, j), for which C(H(i, j)) = ∅.

We examine next the case where C(H(i, j)) 6= ∅. Let
C(H) = {c1, c2, . . . , ck, . . . , ct} be the set of connector vertices of H, where
c1 <σ c2 <σ . . . <σ ck <σ . . . <σ ct. Let σ = (u1, u2, . . . , un) be the vertex
ordering of H constructed in Phase 1. Recall that, by the construction of H,
n = 3t, and A(H) = V (H) \ C(H) is the set of stable vertices of H.

Let H(i, j) be an induced subgraph of H, and let ck be the rightmost con-
nector vertex of H(i, j) in σ. The proof of the lemma is done by induction on
the index k of the rightmost connector vertex ck of H(i, j). More specifically,
given a connector vertex ck of H, we prove that the lemma holds for every in-
duced subgraph H(i, j) of H, which has ck as its rightmost connector vertex
in σ. To this end, in both the induction basis and the induction step, we dis-
tinguish three cases on the position of the stable vertex uy in the ordering σ:
ui ≤σ uy ≤σ uf(ck), uh(ck) <σ uy ≤σ uj , and uf(ck)+1 ≤σ uy ≤σ uh(ck). In each
of these three cases, we examine first the length of a longest binormal path of
H(i, j) with uy as its right endpoint and, then, we compare this value to the
length of the path computed by Algorithm LP on H. Moreover, we prove that
the path computed by Algorithm LP on H is indeed a binormal path with uy
as its right endpoint. ut

Due to Lemma 10, and since the output of Algorithm LP on H is the maxi-
mum among the lengths `(uy; 1, n), uy ∈ A(H(1, n)), along with the correspond-
ing path, it follows that Algorithm LP on H computes a longest binormal path of
H(1, n) with right endpoint a vertex uy ∈ A(H(1, n)). Thus, since H(1, n) = H,
we obtain the following result.

Lemma 11. Let G be an interval graph. Algorithm LP on H computes a longest
binormal path of the stable-connection graph H of the graph G.

4.2 Correctness of Algorithm LP Interval

We next show that Algorithm LP Interval correctly computes a longest path of
an interval graph G. The correctness proof is based on the following property: for
any longest path P of G there exists a longest binormal path P ′ of H, such that
|P ′| = 2|P |+ 1 and vice versa (this property is proved in Lemma 12). Therefore,
we obtain that the length of a longest binormal path P of H computed by
Algorithm LP on H is equal to 2k+ 1, where k is the length of a longest path P̂
of G. Next, we show that the length of a longest binormal path of H equals to
the length of a longest path of H. Finally, we show that the path P̂ computed
at Step 3 of Algorithm LP Interval is indeed a longest path of G.

Lemma 12. Let H be the stable-connection graph of an interval graph G. Then,
for any longest path P of G there exists a longest binormal path P ′ of H, such
that |P ′| = 2|P |+ 1 and vice versa.

Proof. Let σ be the right-end ordering of the graph H constructed in Phase 1.
(=⇒) Let P = (v1, v2, . . . , vk) be a longest path of G, i.e., |P | = k. We will

show that there exists a binormal path P ′ of H such that |P ′| = 2k+1. Since G is
an induced subgraph of H, the path P of G is a path of H as well. We construct
a path P̂ of H from P , by adding to P the appropriate stable vertices, using the
following procedure. Initially, set P̂ = P and for every subpath (vi, vi+1) of the
path P̂ , 1 ≤ i ≤ k− 1, do the following: consider first the case where vi <σ vi+1;
then, by the construction of H, vi+1 is adjacent to both stable vertices ai,1 and

ai,2 associated with the connector vertex vi. If ai,1 has not already been added
to P̂ , then replace the subpath (vi, vi+1) by the path (vi, ai,1, vi+1); otherwise,
replace the subpath (vi, vi+1) by the path (vi, ai,2, vi+1). Similarly, in the case
where vi+1 <σ vi, replace the subpath (vi, vi+1) by the path (vi, ai+1,1, vi+1) or
(vi, ai+1,2, vi+1), respectively. Finally, consider the endpoint v1 (resp. vk) of P̂ .
If a1,1 (resp. ak,1) has not already been added to P̂ , then add a1,1 (resp. ak,1)
as the first (resp. last) vertex of P̂ ; otherwise, add a1,2 (resp. ak,2) as the first
(resp. last) vertex of P̂ .

By the construction of P̂ it is easy to see that for every connector vertex v
of P we add two stable vertices as neighbors of v in P̂ , and since in H there are
exactly two stable vertices associated with every connector vertex v, it follows
that every stable vertex of H appears at most once in P̂ . Furthermore, since we
add in total k+1 stable vertices to P , where |P | = k, it follows that |P̂ | = 2k+1.
Denote now by P ′ a normal path of H such that V (P ′) = V (P̂). Such a path
exists, due to Lemma 4. Due to the above construction, the path P̂ is consisted of
k+ 1 stable vertices and k connector vertices. Thus, since no two stable vertices
are adjacent in H due to Observation 2, and since P ′ is a normal path of H, it
follows that P ′ is a binormal path of H. Thus, for any longest path P of G there
exists a binormal path P ′ of H, such that |P ′| = 2|P |+ 1.

(⇐=) Consider now a longest binormal path P ′ = (v1, v2, . . . , v`) of H. Since
P ′ is binormal, it follows that ` = 2k + 1, and that P ′ has k connector vertices
and k+ 1 stable vertices, for some k ≥ 1. We construct a path P by deleting all
stable vertices from the path P ′ of H. By the construction of H, all neighbors of
a stable vertex a are connector vertices and form a clique in G; thus, for every
subpath (v, a, v′) of P ′, v is adjacent to v′ in G. It follows that P is a path of G.
Since we removed all the k+ 1 stable vertices of P ′, it follows that |P | = k, i.e.,
|P ′| = 2|P |+ 1.

Summarizing, we have constructed a binormal path P ′ of H from a longest
path P of G such that |P ′| = 2|P |+1, and a path P of G from a longest binormal
path P ′ of H such that |P ′| = 2|P |+ 1. This completes the proof. ut

Lemma 13. For any longest path P and any longest binormal path P ′ of H, it
holds |P ′| = |P |.

Let P be the longest binormal path of H computed in Step 2 of Algorithm
LP Interval, using Algorithm LP on H. Then, in Step 3 Algorithm LP Interval
computes the path P̂ by deleting all stable vertices from P . By the construction
of H, all neighbors of a stable vertex a are connector vertices and form a clique
in G; thus, for every subpath (v, a, v′) of P , v is adjacent to v′ in G. It follows
that P̂ is a path of G. Moreover, since P is binormal, it has k connector vertices
and k + 1 stable vertices, i.e., |P | = 2k + 1, where k ≥ 1. Thus, since we have
removed all k + 1 stable vertices of P , it follows that |P̂ | = k and, thus, P̂ is a
longest path of G due to Lemma 12. Thus, we have proved the following result.

Theorem 1. Algorithm LP Interval computes a longest path of an interval
graph G.

4.3 Time Complexity

Let G be an interval graph on |V (G)| = n vertices and |E(G)| = m edges. It
has been shown that we can obtain the right-end ordering π of G, which results
from numbering the intervals after sorting them on their right ends, in O(n+m)
time [1, 18].

First, we show that Step 1 of Algorithm LP Interval, which constructs the
stable-connection graph H of the graph G, takes O(n2) time. Indeed, for every
connector vertex ui, 1 ≤ i ≤ n, we can add two stable vertices in V (H) in O(1)
time and we can compute the specific neighborhood of ui in O(n) time.

Step 2 of Algorithm LP Interval includes the execution of Algorithm
LP on H. The subroutine process() takes O(n2) time, due to the O(n2) pairs
of the neighbors ux and uy of the connector vertex uj in the graph H(i, j). Ad-
ditionally, the subroutine process() is executed at most once for each subgraph
H(i, j) of H, 1 ≤ i ≤ j ≤ n, i.e., it is executed O(n2) times. Thus, Algorithm
LP on H takes O(n4) time.

Step 3 of Algorithm LP Interval can be executed in O(n) time since we
simply traverse the vertices of the path P , constructed by Algorithm LP on H,
and delete every stable vertex.

Theorem 2. A longest path of an interval graph can be computed in O(n4) time.

5 Concluding Remarks

In this paper we presented a polynomial-time algorithm for solving the longest
path problem on interval graphs, which runs in O(n4) time and, thus, provided
a solution to the open problem stated by Uehara and Uno in [20] asking for the
complexity status of the longest path problem on interval graphs. It would be
interesting to see whether the ideas presented in this paper can be applied to
find a polynomial solution to the longest path problem on convex and biconvex
graphs, the complexities of which still remain open [20].

References

1. S.R. Arikati and C. Pandu Rangan, Linear algorithm for optimal path cover prob-
lem on interval graphs, Inform. Proc. Lett. 35 (1990) 149–153.

2. A.A. Bertossi, Finding Hamiltonian circuits in proper interval graphs, Inform.
Proc. Lett. 17 (1983) 97–101.

3. R. Bulterman, F. van der Sommen, G. Zwaan, T. Verhoeff, A. van Gasteren, and
W. Feijen, On computing a longest path in a tree, Inform. Proc. Lett. 81 (2002)
93–96.

4. P. Damaschke, J.S. Deogun, D. Kratsch, and G. Steiner, Finding Hamiltonian paths
in cocomparability graphs using the bump number algorithm, Order 8 (1992) 383–
391.

5. P. Damaschke, The Hamiltonian circuit problem for circle graphs is NP-complete,
Inform. Proc. Lett. 32 (1989) 1–2.

6. P. Damaschke, Paths in interval graphs and circular arc graphs. Discrete Math.
112 (1993) 49–64.

7. T. Feder and R. Motwani, Finding large cycles in Hamiltonian graphs, Proc. 16th
annual ACM-SIAM Symp. on Discrete Algorithms (SODA), ACM (2005) 166–175.

8. H.N. Gabow, Finding paths and cycles of superpolylogarithmic length, Proc. 36th
annual ACM Symp. on Theory of Computing (STOC), ACM (2004) 407–416.

9. H.N. Gabow and S. Nie, Finding long paths, cycles and circuits, 19th annual In-
ternational Symp. on Algorithms and Computation (ISAAC), LNCS 5369 (2008)
752–763.

10. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-completeness, W.H. Freeman, San Francisco, 1979.

11. M.R. Garey, D.S. Johnson, and R.E. Tarjan, The planar Hamiltonian circuit prob-
lem is NP-complete, SIAM J. Computing 5 (1976) 704–714.

12. P.W. Goldberg, M.C. Golumbic, H. Kaplan, and R. Shamir, Four strikes against
physical mapping of DNA, Journal of Computational Biology 2 (1995) 139–152.

13. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete
Mathematics, Vol. 57), North-Holland Publishing Co., Amsterdam, The Nether-
lands, 2004.

14. A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter, Hamiltonian paths in grid
graphs, SIAM J. Computing 11 (1982) 676–686.

15. D. Karger, R. Motwani, and G.D.S. Ramkumar, On approximating the longest
path in a graph, Algorithmica 18 (1997) 82–98.

16. J.M. Keil, Finding Hamiltonian circuits in interval graphs, Inform. Proc. Lett. 20
(1985) 201–206.

17. H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156
(1996) 291–298.

18. G. Ramalingam and C. Pandu Rangan, A unified approach to domination problems
on interval graphs, Inform. Proc. Lett. 27 (1988) 271–274.

19. Y. Takahara, S. Teramoto, and R. Uehara, Longest path problems on ptolemaic
graphs, IEICE Trans. Inf. and Syst. 91-D (2008) 170–177.

20. R. Uehara and Y. Uno, Efficient algorithms for the longest path problem, 15th an-
nual International Symp. on Algorithms and Computation (ISAAC), LNCS 3341
(2004) 871–883.

21. R. Uehara and G. Valiente, Linear structure of bipartite permutation graphs and
the longest path problem, Inform. Proc. Lett. 103 (2007) 71–77.

22. S. Vishwanathan, An approximation algorithm for finding a long path in Hamil-
tonian graphs, Proc. 11th annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), ACM (2000) 680–685.

23. Z. Zhang, and H. Li, Algorithms for long paths in graphs, Theoret. Comput. Sci.
377 (2007) 25–34.

