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Abstract. Tolerance graphs model interval relations in such a way
that intervals can tolerate a certain degree of overlap without being
in conflict. This class of graphs, which generalizes in a natural way
both interval and permutation graphs, has attracted many research
efforts since their introduction in [9], as it finds many important
applications in constraint-based temporal reasoning, resource allocation,
and scheduling problems, among others. In this article we propose the
first non-trivial intersection model for general tolerance graphs, given
by three-dimensional parallelepipeds, which extends the widely known
intersection model of parallelograms in the plane that characterizes
the class of bounded tolerance graphs. Apart from being important on
its own, this new representation also enables us to improve the time
complexity of three problems on tolerance graphs. Namely, we present
optimal O(n logn) algorithms for computing a minimum coloring and
a maximum clique, and an O(n2) algorithm for computing a maximum
weight independent set in a tolerance graph with n vertices, thus
improving the best known running times O(n2) and O(n3) for these
problems, respectively.
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1 Introduction

A graph G = (V,E) on n vertices is a tolerance graph if there is a set
I = {Ii | i = 1, . . . , n} of closed intervals on the real line and a set
T = {ti | i = 1, . . . , n} of positive real numbers, called tolerances, such
that for any two vertices vi, vj ∈ V , vivj ∈ E if and only if |Ii ∩ Ij | ≥
min{ti, tj}, where |I| denotes the length of the interval I. These sets of
intervals and tolerances form a tolerance representation of G. If G has



a tolerance representation such that ti ≤ |Ii| for i = 1, . . . , n, then G
is called a bounded tolerance graph and its representation is a bounded
tolerance representation.

Tolerance graphs were introduced in [9], mainly motivated by the need
to solve scheduling problems in which resources that would be normally
used exclusively, like rooms or vehicles, can tolerate some sharing among
users. Since then, tolerance graphs have been widely studied in the liter-
ature [1, 2, 5, 10, 11, 14, 16, 20], as they naturally generalize both interval
graphs (when all tolerances are equal) and permutation graphs (when
|Ii| = ti for i = 1, . . . , n) [9]. For more details, see [12].

Notation. All the graphs considered in this paper are finite, simple, and
undirected. Given a graph G = (V,E), we denote by n the cardinality of
V . An edge between vertices u and v is denoted by uv, and in this case
vertices u and v are said to be adjacent. G denotes the complement of G,
i.e. G = (V,E), where uv ∈ E if and only if uv /∈ E. Given a subset of
vertices S ⊆ V , the graph G[S] denotes the graph induced by the vertices
in S, i.e. G[S] = (S, F ), where for any two vertices u, v ∈ S, uv ∈ F if
and only if uv ∈ E. A subset S ⊆ V is an independent set in G if the
graph G[S] has no edges. For a subset K ⊆ V , the induced subgraph
G[K] is a complete subgraph of G, or a clique, if each two of its vertices
are adjacent (equivalently, K is an independent set in G). The maximum
cardinality of a clique in G is denoted by ω(G) and is termed the clique
number of G. A proper coloring of G is an assignment of different colors to
adjacent vertices, which results in a partition of V into independent sets.
The minimum number of colors for which there exists a proper coloring is
denoted by χ(G) and is termed the chromatic number of G. A partition
of V into χ(G) independent sets is a minimum coloring of G.

Motivation and previous work. Besides generalizing interval and permu-
tation graphs in a natural way, the class of tolerance graphs has other
important subclasses and superclasses. Let us briefly survey some of them.

A graph is perfect if the chromatic number of every induced subgraph
equals the clique number of that subgraph. Perfect graphs include many
important families of graphs, and serve to unify results relating color-
ings and cliques in those families. For instance, in all perfect graphs, the
graph coloring problem, maximum clique problem, and maximum inde-
pendent set problem can all be solved in polynomial time using the El-
lipsoid method [13]. Since tolerance graphs were shown to be perfect [10],
there exist polynomial time algorithms for these problems. However, these
algorithms are not very efficient and therefore, as it happens for most



known subclasses of perfect graphs, it makes sense to devise specific fast
algorithms for these problems on tolerance graphs.

A comparability graph is a graph which can be transitively oriented.
A co-comparability graph is a graph whose complement is a compara-
bility graph. Bounded tolerance graphs are co-comparability graphs [9],
and therefore all known polynomial time algorithms for co-comparability
graphs apply to bounded tolerance graphs. This is one of the main rea-
sons why for many problems the existing algorithms have better running
time in bounded tolerance graphs than in general tolerance graphs.

A graph G = (V,E) is the intersection graph of a family
F = {S1, . . . , Sn} of distinct nonempty subsets of a set S if there exists
a bijection µ : V → F such that for any two distinct vertices u, v ∈ V ,
uv ∈ E if and only if µ(u) ∩ µ(v) 6= ∅. In that case, we say that F is an
intersection model of G. It is easy to see that each graph has a trivial
intersection model based on adjacency relations [18]. Some intersection
models provide a natural and intuitive understanding of the structure of a
class of graphs, and turn out to be very helpful to find efficient algorithms
to solve optimization problems [18]. Therefore, it is of great importance
to establish non-trivial intersection models for families of graphs. A graph
G on n vertices is a parallelogram graph if we can fix two parallel lines
L1 and L2, and for each vertex vi ∈ V (G) we can assign a parallelo-
gram P i with parallel sides along L1 and L2 so that G is the intersection
graph of {P i | i = 1, . . . , n}. It was proved in [1, 17] that a graph is a
bounded tolerance graph if and only if it is a parallelogram graph. This
characterization provides a useful way to think about bounded tolerance
graphs. However, this intersection model cannot cope with general toler-
ance graphs, in which the tolerance of an interval can be greater than its
length.

Our contribution. In this article we present the first non-trivial inter-
section model for general tolerance graphs, which generalizes the widely
known parallelogram representation of bounded tolerance graphs. The
main idea is to exploit the third dimension to capture the information
given by unbounded tolerances, and as a result parallelograms are re-
placed with parallelepipeds. The proposed intersection model is very in-
tuitive and can be efficiently constructed from a tolerance representation
(actually, we show that it can be constructed in linear time).

Apart from being important on its own, this new representation proves
to be a powerful tool for designing efficient algorithms for general toler-
ance graphs. Indeed, using our intersection model we improve the best ex-



isting running times of three problems on tolerance graphs. We present al-
gorithms to find a minimum coloring and a maximum clique in O(n log n)
time, which turns out to be optimal. The best existing algorithm was
O(n2) [11, 12]. We also present an algorithm to find a maximum weight
independent set in O(n2) time, whereas the best known algorithm was
O(n3) [12]. We note that [20] proposes an O(n2 log n) algorithm to find a
maximum cardinality independent set on a general tolerance graph, and
that [12] refers to an algorithm transmitted by personal communication
with running time O(n2 log n) to find a maximum weight independent set
on a general tolerance graph; to the best of our knowledge, this algorithm
has not been published.

It is important to note that the complexity of recognizing bounded
and general tolerance graphs is a challenging open problem [3,12,20], and
this is the reason why we assume throughout this paper that along with
the input tolerance graph we are also given a tolerance representation of
it. The only “positive” result in the literature concerning recognition of
tolerance graphs is a linear time algorithm for the recognition of bipartite
tolerance graphs [3].

Organization of the paper. We provide the new intersection model of
general tolerance graphs in Section 2. In Section 3 we present a canonical
representation of tolerance graphs, and then show how it can be used
in order to obtain optimal O(n log n) algorithms for finding a minimum
coloring and a maximum clique in a tolerance graph. In Section 4 we
present an O(n2) algorithm for finding a maximum weight independent
set. Finally, Section 5 is devoted to conclusions and open problems. Some
proofs have been omitted due to space limitations; a full version can be
found in [19].

2 A New Intersection Model for Tolerance Graphs

One of the most natural representations of bounded tolerance graphs
is given by parallelograms between two parallel lines in the Euclidean
plane [1, 12, 17]. In this section we extend this representation to a three-
dimensional representation of general tolerance graphs.

Given a tolerance graph G = (V,E) along with a tolerance representa-
tion of it, recall that vertex vi ∈ V corresponds to an interval Ii = [ai, bi]
on the real line with a tolerance ti ≥ 0. W.l.o.g. we may assume that
ti > 0 for every vertex vi [12].
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Fig. 1. Parallelograms P i and P j correspond to bounded vertices vi and vj , respec-
tively, whereas P k corresponds to an unbounded vertex vk.

Definition 1. Given a tolerance representation of a tolerance graph G =
(V,E), vertex vi is bounded if ti ≤ |Ii|. Otherwise, vi is unbounded. VB
and VU are the sets of bounded and unbounded vertices in V , respectively.
Clearly V = VB ∪ VU .

We can also assume w.l.o.g. that ti = ∞ for any unbounded vertex
vi, since if vi is unbounded, then the intersection of any other interval
with Ii is strictly smaller than ti. Let L1 and L2 be two parallel lines at
distance 1 in the Euclidean plane.

Definition 2. Given an interval Ii = [ai, bi] with tolerance ti, P i is the
parallelogram defined by the points ci, bi in L1 and ai, di in L2, where
ci = min {bi, ai + ti} and di = max {ai, bi − ti}. The slope φi of P i is
φi = arctan

(
1

ci−ai

)
.

An example is depicted in Figure 1, where P i and P j correspond to
bounded vertices vi and vj , and P k corresponds to an unbounded vertex
vk. Observe that when vertex vi is bounded, the values ci and di coincide
with the tolerance points defined in [7, 12, 15], and φi = arctan

(
1
ti

)
. On

the other hand, when vertex vi is unbounded, the values ci and di coincide
with the endpoints bi and ai of Ii, respectively, and φi = arctan

(
1
|Ii|

)
.

Observe also that in both cases ti = bi− ai and ti =∞, parallelogram P i
is reduced to a line segment (c.f. P j and P k in Figure 1). Since ti > 0 for
every vertex vi, it follows that 0 < φi <

π
2 . Furthermore, we can assume

w.l.o.g. that all points ai, bi, ci, di and all slopes φi are distinct [7,12,15].

Observation 1 Let vi ∈ VU , vj ∈ VB. Then |Ii| < tj if and only if
φi > φj.

We are ready to give the main definition of this article.



Definition 3. Let G = (V,E) be a tolerance graph with a tolerance rep-
resentation {Ii = [ai, bi], ti | i = 1, . . . , n}. For every i = 1 . . . , n, Pi is the
parallelepiped in R3 defined as follows:

(a) If ti ≤ bi − ai (that is, vi is bounded), then Pi = {(x, y, z) ∈
R3 | (x, y) ∈ P i, 0 ≤ z ≤ φi}.

(b) If ti > bi − ai (vi is unbounded), then Pi = {(x, y, z) ∈ R3 | (x, y) ∈
P i, z = φi}.

The set of parallelepipeds {Pi | i = 1, . . . , n} is a parallelepiped represen-
tation of G.
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Fig. 2. The intersection model for tolerance graphs: (a) a set of intervals Ii = [ai, bi]
and tolerances ti, i = 1, . . . , 8, (b) the corresponding tolerance graph G and (c) a
parallelepiped representation of G.

Observe that for each interval Ii, the parallelogram P i of Definition 2
(see also Figure 1) coincides with the projection of the parallelepiped Pi on
the plane z = 0. An example of the construction of these parallelepipeds
is given in Figure 2, where a set of eight intervals with their associated
tolerances is given in Figure 2(a). The corresponding tolerance graph



G is depicted in Figure 2(b), while the parallelepiped representation is
illustrated in Figure 2(c). In the case ti < bi− ai, the parallelepiped Pi is
three-dimensional, c.f. P1, P3, and P5, while in the border case ti = bi−ai
it degenerates to a two-dimensional rectangle, c.f. P7. In these two cases,
each Pi corresponds to a bounded vertex vi. In the remaining case ti =∞
(that is, vi is unbounded), the parallelepiped Pi degenerates to a one-
dimensional line segment above plane z = 0, c.f. P2, P4, P6, and P8.

We prove now that these parallelepipeds form a three-dimensional
intersection model for the class of tolerance graphs (namely, that every
tolerance graph G can be viewed as the intersection graph of the corre-
sponding parallelepipeds Pi).

Theorem 1. Let G = (V,E) be a tolerance graph with a tolerance repre-
sentation {Ii = [ai, bi], ti | i = 1, . . . , n}. Then for every i 6= j, vivj ∈ E
if and only if Pi ∩ Pj 6= ∅.

Proof. We distinguish three cases according to whether vertices vi and
vj are bounded or unbounded:

(a) Both vertices are bounded, that is ti ≤ bi − ai and tj ≤ bj − aj . It
follows that vivj ∈ E(G) if and only if P i ∩ P j 6= ∅ [12]. However,
due to the definition of the parallelepipeds Pi and Pj , in this case
Pi ∩ Pj 6= ∅ if and only if P i ∩ P j 6= ∅ (c.f. P1 and P3, or P5 and P7,
in Figure 2).

(b) Both vertices are unbounded, that is ti = tj = ∞. Since no two
unbounded vertices are adjacent, vivj /∈ E(G). On the other hand,
the line segments Pi and Pj lie on the disjoint planes z = φi and
z = φj of R3, respectively, since we assumed that the slopes φi and
φj are distinct. Thus, Pi ∩ Pj = ∅ (c.f. P2 and P4).

(c) One vertex is unbounded (that is, ti = ∞) and the other is bounded
(that is, tj ≤ bj − aj). If P i ∩ P j = ∅, then vivj /∈ E and Pi ∩ Pj = ∅
(c.f. P1 and P6). Suppose that P i ∩P j 6= ∅. We distinguish two cases:
(i) φi < φj . It is easy to check that |Ii ∩ Ij | ≥ tj and thus vivj ∈ E.

Since P i ∩ P j 6= ∅ and φi < φj , then necessarily the line segment
Pi intersects with the parallelepiped Pj on the plane z = φi, and
thus Pi ∩ Pj 6= ∅ (c.f. P1 and P2).

(ii) φi > φj . Clearly |Ii ∩ Ij | < ti = ∞. Furthermore, since φi > φj ,
Observation 1 implies that |Ii ∩ Ij | ≤ |Ii| < tj . It follows that
|Ii ∩ Ij | < min{ti, tj}, and thus vivj /∈ E. On the other hand,
z = φi for all points (x, y, z) ∈ Pi, while z ≤ φj < φi for all points
(x, y, z) ∈ Pj , and therefore Pi ∩ Pj = ∅ (c.f. P3 and P4). aa



Clearly, for each vi ∈ V the parallelepiped Pi can be constructed in
constant time. Therefore, given a tolerance representation of a tolerance
graph G with n vertices, a parallelepiped representation of G can be
constructed in O(n) time.

3 Coloring and Clique Algorithms in O(n log n)

In this section we present optimal O(n log n) algorithms for constructing a
minimum coloring and a maximum clique in a tolerance graph G = (V,E)
with n vertices, given a parallelepiped representation of G. These algo-
rithms improve the best known running time O(n2) of these problems on
tolerance graphs [11, 12]. First, we introduce a canonical representation
of tolerance graphs in Section 3.1, and then we use it to obtain the algo-
rithms for the minimum coloring and the maximum clique problems in
Section 3.2.

3.1 A canonical representation of tolerance graphs

We associate with every vertex vi of G the point pi = (xi, yi) in the
Euclidean plane, where xi = bi and yi = π

2 − φi. Since all endpoints of
the parallelograms P i and all slopes φi are distinct, all coordinates of the
points pi are distinct as well. Similarly to [11, 12], we state the following
two definitions.

Definition 4. An unbounded vertex vi ∈ VU of a tolerance graph G is
called inevitable (for a certain parallelepiped representation), if replacing
Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} creates a new edge in G.
Otherwise, vi is called evitable.

Definition 5. Let vi ∈ VU be an inevitable unbounded vertex of a toler-
ance graph G (for a certain parallelepiped representation). A vertex vj is
called a hovering vertex of vi if aj < ai, bi < bj, and φi > φj.

It is now easy to see that, by Definition 5, if vj is a hovering vertex of
vi, then vivj /∈ E. Note that, in contrast to [11], in Definition 4, an isolated
vertex vi might be also inevitable unbounded, while in Definition 5, a
hovering vertex might be also unbounded. Definitions 4 and 5 imply the
following lemma:

Lemma 1. Let vi ∈ VU be an inevitable unbounded vertex of the tolerance
graph G (for a certain parallelepiped representation). Then, there exists
a hovering vertex vj of vi.



Definition 6. A parallelepiped representation of a tolerance graph G is
called canonical if every unbounded vertex is inevitable.

For example, in the tolerance graph depicted in Figure 2, v4 and v8
are inevitable unbounded vertices, v3 and v6 are hovering vertices of v4
and v8, respectively, while v2 and v6 are evitable unbounded vertices.
Therefore, this representation is not canonical for the graph G. However,
if we replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} for i = 2, 6, we
get a canonical representation for G.

In the following, we present an algorithm that constructs a canonical
representation of a given tolerance graph G.

Definition 7. Let α = (xα, yα) and β = (xβ, yβ) be two points in the
plane. Then α dominates β if xα > xβ and yα > yβ. Given a set A of
points, the point γ ∈ A is called an extreme point of A if there is no point
δ ∈ A that dominates γ. Ex(A) is the set of the extreme points of A.

Algorithm 1 Construction of a canonical representation of a tolerance
graph G
Input: A parallelepiped representation R of a given tolerance graph G with n vertices
Output: A canonical representation R′ of G

Sort the vertices of G, such that ai < aj whenever i < j
`0 ← min{xi : 1 ≤ i ≤ n}; r0 ← max{xi : 1 ≤ i ≤ n}
ps ← (`0 − 1, π

2
); pt ← (r0 + 1, 0)

P ← (ps, pt); R
′ ← R

for i = 1 to n do
Find the point pj having the smallest xj with xj > xi
if yj < yi then {no point of P dominates pi}

Find the point pk having the greatest xk with xk < xi
Find the point p` having the greatest y` with y` < yi
if xk ≥ x` then

Replace points p`, p`+1 . . . , pk with point pi in the list P
else

Insert point pi between points pk and p` in the list P
if vi ∈ VU then {vi is an evitable unbounded vertex}

Replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in R′

else {yj > yi; pj dominates pi}
if vi ∈ VU then {vi is an inevitable unbounded vertex}
vj is a hovering vertex of vi

return R′

Given a tolerance graph G = (V,E) with the set V = {v1, v2, . . . , vn}
of vertices (and its parallelepiped representation), we can assume



w.l.o.g. that ai < aj whenever i < j. Recall that with every vertex vi
we associated the point pi = (xi, yi), where xi = bi and yi = π

2 − φi,
respectively. The following theorem shows that, given a parallelepiped
representation of a tolerance graph G, we can construct in O(n log n) a
canonical representation of G. This result is crucial for the time complex-
ity analysis of the algorithms of Section 3.2.

Theorem 2. Every parallelepiped representation of a tolerance graph G
with n vertices can be transformed by Algorithm 1 to a canonical repre-
sentation of G in O(n log n) time.

3.2 Minimum coloring and maximum clique

In the next theorem we present an optimal O(n log n) algorithm for com-
puting a minimum coloring of a tolerance graph G with n vertices, given
a parallelepiped representation of G. The informal description of the al-
gorithm is identical to the one in [11], which has running time O(n2); the
difference is in the fact that we use our new representation, in order to
improve the time complexity.

Theorem 3. A minimum coloring of a tolerance graph G with n vertices
can be computed in O(n log n) time.

In the next theorem we prove that a maximum clique of a tolerance
graph G with n vertices can be computed in optimal O(n log n) time,
given a parallelepiped representation of G. This theorem follows from
Theorem 2 and from the clique algorithm presented in [6], and it improves
the best known O(n2) running time mentioned in [11].

Theorem 4. A maximum clique of a tolerance graph G with n vertices
can be computed in O(n log n) time.

Based on a lower time bound of Ω(n log n) for computing the length of
a longest increasing subsequence in a permutation [6,8], it turns out that
the time complexity O(n log n) of the presented algorithms for the mini-
mum coloring and the maximum clique problems presented in Theorems 3
and 4 are oprimal.

4 Weighted Independent Set Algorithm in O(n2)

In this section we present an algorithm for computing a maximum weight
independent set in a tolerance graph G = (V,E) with n vertices in O(n2)



time, given a parallelepiped representation of G, and a weight w(vi) > 0
for every vertex vi of G. The proposed algorithm improves the running
time O(n3) of the one presented in [12]. In the following, consider as above
the partition of the vertex set V into the sets VB and VU of bounded and
unbounded vertices of G, respectively.

Similarly to [12], we add two isolated bounded vertices vs and vt to G
with weights w(vs) = w(vt) = 0, such that the corresponding paral-
lelepipeds Ps and Pt lie completely to the left and to the right of all other
parallelepipeds of G, respectively. Since both vs and vt are bounded ver-
tices, we augment the set VB by the vertices vs and vt. In particular,
we define the set of vertices V ′B = VB ∪ {vs, vt} and the tolerance graph
G′ = (V ′, E), where V ′ = V ′B ∪ VU . Since G′[V ′B] is a bounded tolerance
graph, it is a co-comparability graph as well [10, 12]. A transitive orien-
tation of the comparability graph G′[V ′B] can be obtained by directing
each edge according to the upper left endpoints of the parallelograms P i.
Formally, let (V ′B,≺) be the partial order defined on the bounded vertices
V ′B, such that vi ≺ vj if and only if vivj /∈ E and ci < cj . Recall that
a chain of elements in a partial order is a set of mutually comparable
elements in this order [4].

Observation 2 ([12]) The independent sets of G[VB] are in one-to-one
correspondence with the chains in the partial order (V ′B,≺) from vs to vt.

Using a dynamic programming algorithm that exploits the properties
of the new parallelepiped representation of tolerance graphs, we derive
the next theorem. The details can be found in [19].

Theorem 5. A maximum weight independent set of a tolerance graph G
with n vertices can be computed in O(n2) time.

5 Conclusions and Further Research

In this article we proposed the first non-trivial intersection model for gen-
eral tolerance graphs, given by parallelepipeds in the three-dimensional
space. This representation generalizes the parallelogram representation
of bounded tolerance graphs. Using this representation, we presented im-
proved algorithms for computing a minimum coloring, a maximum clique,
and a maximum weight independent set on a tolerance graph. The com-
plexity of the recognition problem for tolerance and bounded tolerance
graphs is the main open problem in this class of graphs. Even when the
input graph is known to be a tolerance graph, it is not known how to
obtain a tolerance representation for it [20].
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