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In this talk we review the theoretical status of the lifetime ratios of heavy hadrons
and of the B-mixing quantities ∆Ms, ∆Γs and φs. While ∆Ms and ∆Γs suffer from
large uncertainties due to the badly known decay constants, the ratio ∆Γs/∆Ms can be
determined with almost no non-perturbative uncertainties, therefore it can be used to
look for possible new physics effects.

1. Introduction

The heavy quark expansion (HQE)is the theoretical framework to describe inclusive

decays (see e.g.1 and references therein). In this approach the decay rate is expanded

in inverse powers of the heavy b-quark mass: Γ = Γ0 + Λ2/m2
b Γ2 + Λ3/m3

b Γ3 +

. . .. Γ0 is the decay of a free heavy b-quark, according to this contribution all b-

mesons have the same lifetime. The first correction arises at order 1/m2
b, due to the

kinetic and the chromomagnetic operator. At order 1/m3
b the spectator quark gets

involved for the first time. Although being suppressed by three powers of the heavy

b-quark mass, this contributions are numerically enhanced by a phase space factor

of 16π2. Each of the Γi contains perturbatively calculable Wilson coefficients and

non-perturbative parameters, like decay constants or bag parameters. In the case of

exclusive b-hadron decays the non-perturbative parameters are given by the meson

distribution amplitudes, see e.g. 2 This approach clearly has to be distinguished from

QCD inspired models. It is derived directly from QCD and the basic assumptions

(convergence of the expansion in αs and Λ/mb) can be simply tested by comparing

experiment and theory for different quantities (see e.g. 3).

2. Lifetimes

The lifetime ratio of two heavy mesons reads
τ1

τ2
= 1 +

Λ3

m3
b

(

Γ
(0)
3 +

αs

4π
Γ

(1)
3 + . . .

)

+
Λ4

m4
b

(

Γ
(0)
4 + . . .

)

Neglecting small isospin or SU(3) violating effects one has no 1/m2
b corrections a

and a deviation of the lifetime ratio from one starts at order 1/m3
b. For the ratio

aIn the case of τΛb
/τBd

these effects are expected to be of the order of 5%.
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τB+/τBd
the leading term Γ

(0)
3 has been determined quite some time ago e.g. in

4. For a quantitative treatment of the lifetime ratios NLO QCD corrections are

mandatory - Γ
(1)
3 has been determined in 5. Subleading effects of O(1/mb) turned

out to be negligible 6. Using the result from 5 with matrix elements from 7 and the

values Vcb = 0.0415, mb = 4.63 GeV and fB = 216 MeV 8 we obtain a value, which

is in excellent agreement with the experimental number 9:

τ(B+)

τ(B0
d) NLO

= 1.063± 0.027,
τ(B+)

τ(B0
d) Exp

= 1.076± 0.008.

To improve the theoretical accuracy further more precise lattice values are neces-

sary, in particular of the appearing color-suppressed operators. In the lifetime ratio

τBs
/τBd

a cancellation of weak annihilation contributions arises, that differ only

by small SU(3)-violation effects. One expects a number that is very close to one
4,5,10,11. The experimental number 9 is slightly smaller

τ(Bs)

τ(Bd)Theo

= 1.00 ± 0.01,
τ(Bs)

τ(Bd)Exp

= 0.950± 0.019.

Here an increased experimental precision is needed to find out, whether there is

discrepancy. Next we consider two hadrons, where the theoretical situation is much

worse compared to the mesons discussed above. The lifetime of Bc has been inves-

tigated in 12 in LO QCD.

τ(Bc)LO = 0.52+0.18
−0.12 ps, τ(Bc)Exp = 0.460 ± 0.066 ps.

In addition to the b-quark now also the c-charm quark can decay, giving rise to the

biggest contribution to the total decay rate. The current experimental number is

taken from 13,9. In the case of the Λb-baryon the NLO-QCD corrections are not

complete and there are only preliminary lattice studies for a part of the arising

matrix elements, see e.g. 14, so the theoretical error has to be met with some

skepticism. Moreover there are some discrepancies in the experimental numbers
9,15.

τ(Λb)

τ(Bd)Theo

= 0.88 ± 0.05 ,
τ(Λb)

τ(Bd)Exp

= 0.912 ± 0.032 .

3. Mixing Parameters

The mixing of the neutral B-mesons is described by the off diagonal elements Γ12 and

M12 of the mixing matrix. Γ12 stems from the absorptive part of the box diagrams -

only internal up and charm quarks contribute, while M12 stems from the dispersive

part of the box diagram, therefore being sensitive to heavy internal particles like the

top quark or heavy new physics particles (see eg. 16 or reference in 17). |M12|, |Γ12|

and φ = arg(−M12/Γ12) can be related to three physical observables (see 17,18 for

a detailed description):

• Mass difference ∆M ≈ 2|M12|
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• Decay rate difference ∆Γ ≈ 2|Γ12| cosφ

• Flavor specific or semi-leptonic CP asymmetries: afs = Im Γ12

M12
= ∆Γ

∆M
tanφ.

Calculating the box diagram with internal top quarks one obtains

M12,q =
G2

F

12π2
(V ∗

tqVtb)
2M2

W S0(xt)BBq
f2

Bq
MBq

η̂B

The Inami-Lim function S0(xt = m̄2
t /M

2
W ) 19 is the result of the box diagram with-

out any gluon corrections. The NLO QCD correction is parameterized by η̂B ≈ 0.84
20. The non-perturbative matrix element is parameterized by the bag parameter B

and the decay constant fB. Using the conservative estimate fBs
= 240±40 MeV 17

and the bag parameter B from JLQCD 21 we obtain in units of ps−1 (experiment

from 9,22,23)

∆MTheo
s = 19.3 ± 6.4 ± 1.9, ∆MExp

s = 17.77± 0.12

The first error in the theory prediction stems from the uncertainty in fBs
and the

second error summarizes the remaining theoretical uncertainties. The determination

of ∆Md is affected by even larger uncertainties because here one has to extrapolate

the decay constant to the small mass of the down-quark. The ratio ∆Ms/∆Md is

theoretically better under control since in the ratio of the non-perturbative param-

eters many systematic errors cancel, but on the other hand it is affected by large

uncertainties due to |Vts|
2/|Vtd|

2. To be able to distinguish possible new physics

contributions to ∆Ms from QCD uncertainties much more precise numbers for fBs

are needed.

In order to determine the decay rate difference of the neutral B-mesons and flavor

specific CP asymmetries a precise determination of Γ12 is needed, which can be

written as

Γ12 =
Λ3

m3
b

(

Γ
(0)
3 +

αs

4π
Γ

(1)
3 + . . .

)

+
Λ4

m4
b

(

Γ
(0)
4 + . . .

)

The arising diagrams are similar to the ones of the lifetime predictions. The leading

term Γ
(0)
3 was determined in 24. The numerical and conceptual important NLO-

QCD corrections (Γ
(1)
3 ) were determined in 25,18. Subleading 1/m-corrections,

i.e. Γ
(0)
4 were calculated in 11,26 and even the Wilson coefficients of the 1/m2-

corrections (Γ
(0)
5 ) were calculated and found to be small 17,27. In 17 a strategy was

worked out to reduce the theoretical uncertainty in Γ12/M12 by almost a factor of

3, see Fig. (1) for an illustration. in the new approach one gets

∆Γs

∆Ms

= 10−4 ·

[

46.2 + 10.6
B′

S

B
− 11.9

BR

B

]
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Fig. 1. Error budget for the theoretical determination of ∆Γs/∆Ms. Compared to previous ap-
proaches (left) the new strategy lead to a reduction of the theoretical error by almost a factor of
three.

The dominant part of ∆Γ/∆M can now be determined without any hadronic un-

certainties and we obtained the following final numbers (see 17)

∆Γs = (0.096 ± 0.039)ps−1,
∆Γs

Γs

= 0.147± 0.060,

as
fs = (2.06 ± 0.57) · 10−5,

∆Γs

∆Ms

= (49.7 ± 9.4) 10−4,

φs = 0.0041± 0.0008 = 0.24◦ ± 0.04 .

New physics (see e.g. 16 and references in 17) is expected to have almost no impact

on Γ12, but it can change M12 considerably – we denote the deviation factor by the

complex number ∆. Therefore one can write

Γ12,s = ΓSM
12,s, M12,s = MSM

12,s · ∆s; ∆s = |∆s|e
iφ∆

s

With this parameterisation the physical mixing parameters can be written as

∆Ms = 2|MSM
12,s| · |∆s|,

∆Γs = 2|Γ12,s| · cos
(

φSM
s + φ∆

s

)

,

∆Γs

∆Ms

=
|Γ12,s|

|MSM
12,s|

·
cos

(

φSM
s + φ∆

s

)

|∆s|
,

as
fs =

|Γ12,s|

|MSM
12,s|

·
sin

(

φSM
s + φ∆

s

)

|∆s|
. (1)
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Fig. 2. Current experimental bounds in the complex ∆s-plane. The bound from ∆Ms is given
by the red (dark-grey) ring around the origin. The bound from ∆Γs/∆Ms is given by the yellow
(light-grey) region and the bound from as

fs
is given by the light-blue (grey) region. The angle φ∆

s

can be extracted from ∆Γs (solid lines) with a four fold ambiguity - one bound coincides with the
x-axis! - or from the angular analysis in Bs → J/Ψφ (dashed line). If the standard model is valid
all bounds should coincide in the point (1,0). The current experimental situation shows a small
deviation, which might become significant, if the experimental uncertainties in ∆Γs, as

sl
and φs

will go down in near future.

Note that Γ12,s/M
SM
12,s is now due to the improvements in 17 theoretically very well

under control. Combining the current experimental numbers with the theoretical

predictions one can extract bounds in the imaginary ∆s-plane by the use of Eqs.

(1), see Fig. (2). The width difference ∆Γs/Γs was investigated in 29,23. The semi-

leptonic CP asymmetry in the Bs system has been determined in 23,30 (see 17 for

more details). Therefore we use as experimental input

∆Γs = 0.17 ± 0.09 ps−1, φs = −0.79 ± 0.56.

as
sl = (−5.2 ± 3.9) · 10−3 .

4. Conclusion and outlook

We have reviewed the theoretical status of lifetimes of heavy hadrons and the mea-

sureable mixing quantities of the neutral B-mesons. Both classes of quantities can

be described with the help of the HQE - a systematic expansion based simply on

QCD.
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The theoretical uncertainty in the mixing parameters ∆M and ∆Γ is completely

dominated by the decay constant. Here some progress on the non-perturbative side

is mandatory. In ∆Ms/∆Md the dominant uncertainty is given by |Vts/Vtd|
2. In

τ(Bc) and τ(Λb) the important NLO-QCD are missing or are incomplete, moreover

we have only preliminary lattice studies of the non-perturbative matrix elements.

Theoretical predictions of τB+/τBd
are in excellent agreement with the experimental

numbers. We do not see any signal of possible duality violations in the HQE. To

become even more quantitative in the prediction of τB+/τBd
the non-perturbative

estimates of the bag parameters - in particular of the color-suppressed ones - have

to be improved. In 17 a method was worked out to reduce the theoretical error in

∆Γ/∆M considerably. For a further reduction of the theoretical uncertainty in the

mixing quantities the unknown matrix elements of the power suppressed operators

have to be determined. Here any non-perturbative estimate would be very desirable.

A first step in that direction was performed in 31. If accurate non-perturbative

parameters are available one might think about NNLO calculations (αs/mb- or α2
s-

corrections) to reduce the remaining µ-dependence and the uncertainties due to the

missing definition of the b-quark mass in the power corrections.

The improvements for ∆Γ/∆M apply to afs and Φq as well.

The relatively clean standard model predictions for the mixing quantities can

now be used to look for new physics effects in Bs-mixing. From the currently avail-

able experimental bounds on ∆Γs and afs one already gets some hints for deviations

from the standard model. To settle this issue we are eagerly waiting for more data

from TeVatron, LHCb 23 and SUPER-B 32!
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