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PAPER AWARD

Two generalizations of the Hartmann–Tzeng (HT) bound on
the minimum distance of q-ary cyclic codes are proposed. The
first one is proven by embedding the given cyclic code into a cyclic
product code. Furthermore, we show that unique decoding up
to this bound is always possible and outline a quadratic-time
syndrome-based error decoding algorithm. The second bound is
stronger and the proof is more involved.

Our technique of embedding the code into a cyclic product
code can be applied to other bounds, too and therefore generalizes
them.

Index Terms—Cyclic Code, Cyclic Product Code, Bound on
the Minimum Distance, Efficient Decoding

I. INTRODUCTION

Cyclic codes play a central role in (distributed) storage and
communication systems. However, determining their minimum
distance from a given defining set is an open research problem.
Many lower bounds on the minimum distance and efficient
decoding algorithms up to these bounds exist.

In the 1970s, Hartmann and Tzeng (HT, [1], [2]) generalized
the well-known bound by Bose, Ray-Chaudhuri [3] and Hoc-
quenghem [4] (BCH). Feng and Tzeng [5], [6] extended the
BCH decoding algorithms [7], [8] to decode in quadratic-time
up to the HT bound. Further extensions of the BCH bound
were inter alia developed by Roos [9], [10], van Lint and
Wilson [11] (denoted as AB or Shifting method), Duursma
and Kötter [12], Boston [13], Duursma and Pellikaan [14] and
Betti and Sala [15].

Our first generalization of the HT bound uses the idea of
cyclic product codes (see [16]–[18] and Ch. 18 in [19]) and
can be applied to other bounds, too. The second approach
also associates another cyclic code, but the direct connection
to cyclic product codes is not clear.

In contrast to our previous contributions [20], [21] we
provide a generalization of the HT bound and show proofs
of the statements by means of cyclic product codes.

Our contribution is structured as follows. In Section II,
we give necessary preliminaries on cyclic codes, recall the
HT bound [1], [2] and provide basic properties of cyclic
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product codes as they were described first in [16]. The first
generalization of the HT bound is proven in Section III and
the second one in Section IV. The syndrome-based decoding
approach up to the first bound is described in Section V.
Section VI concludes our paper.

II. CYCLIC CODES AND CYCLIC PRODUCT CODES

A. Notation

Let Z denote the set of integers, Fq the finite field of order
q and Fq[X] the polynomial ring over Fq with indeterminate
X . A vector of length n is denoted by a lowercase bold letter
as v = (v0 v1 . . . vn−1). An m × n matrix is denoted by a
capital bold letter as M = ‖mi,j‖m−1,n−1i=0,j=0 . A set is denoted
by a capital letter sans serif like D.

A linear [n, k]q code of length n and dimension k over Fq
is denoted by a calligraphic letter like C and its minimum
Hamming distance by d.

B. Cyclic Codes

An [n, k]q cyclic code C with distance d is an ideal in
the ring Fq[X]/(Xn − 1) generated by g(X). The generator
polynomial g(X) has roots in the splitting field Fqs , where
n | (qs − 1). The primitive element of order n is α and the
defining set DC of an [n, k]q cyclic code C is:

DC =
{

0 ≤ i ≤ n− 1 | g(αi) = 0
}
. (1)

Furthermore, we introduce the following short-hand notations
for a given z ∈ Z:

D
[z,⊗]
C

def
=
{

(i · z) mod n | i ∈ DC
}
,

D
[z,+]
C

def
=
{

(i+ z) | i ∈ DC
}
.

(2)

Let us recall the HT bound [1], [2] and present it in polynomial
form, which we use later on.

Theorem 1 (HT Bound [1], [2]). Let an [n, k]q cyclic code C
with minimum distance d be given and α denotes a primitive
element of order n. Assume there exist an integer f and a
nonzero integer m with gcd(n,m) = 1, such that:
∞∑
i=0

c(αf+im+j)Xi ≡ 0 mod Xδ−1 ∀j = 0, . . . , ν, (3)



holds for all c(x) ∈ C and some integers δ ≥ 2 and ν ≥ 0.
Then, d ≥ δ + ν.

Note that for ν = 0, the HT bound becomes the BCH
bound [3], [4].
Let A and B be [n1, k1]q and [n2, k2]q linear codes over Fq
with minimum Hamming distance d1 and d2. For simplicity,
we assume that the first k1|k2 symbols are the information
symbols of A|B.

Definition 1 (Product Code). The direct product A⊗B is an
[n1n2, k1k2]q code with distance d1d2 which consists of all
n1 × n2 matrices whose rows are all codewords of A and
whose columns are all codewords of B.

We recall Thm. 1 of Burton and Weldon [16]. Throughout
the paper, we restrict ourselves to the case where both codes
are over the same alphabet.

Theorem 2 (Cyclic Product Code). Let an [n1, k1]q cyclic
code A with minimum distance d1 and a second [n2, k2]q
cyclic code B with minimum distance d2 be given. The product
code C = A⊗B is an [n1n2, k1k2]q cyclic code (with distance
d = d1d2) provided that the two lengths n1 and n2 are
relatively prime, i.e., an1 + bn2 = 1 for some integers a
and b. Let the n1 × n2 matrix M = ‖mi,j‖n1−1,n2−1

i=0,j=0 be a
codeword of C (as in Def. 1). Then, the univariate polynomial
c(X) =

∑n1n2−1
i=0 ciX

i ∈ Fq[X] with

ci = mi mod n1,i mod n2 ∀i = 0, 1, . . . , n1n2 − 1 (4)

is a codeword of the cyclic product code C that is an ideal in
the ring Fq[X]/(Xn1n2 − 1).

Let us outline how the defining set DC of C = A ⊗ B can
be obtained from DA and DB. We summarize the results of
Lin and Weldon [18], Thm. 4.

Theorem 3 (Defining Set and Generator Polynomial of a
Cyclic Product Code). Let A and B, respectively [n1, k1]q and
[n2, k2]q , be cyclic codes with defining sets DA and DB and
generator polynomials g1(X) and g2(X). Let an1 + bn2 = 1
for some integers a and b. Then, the generator polynomial
g(X) of the cyclic product code A⊗ B is:

g(X) = gcd
(
Xn1n2 − 1, g1(Xbn2) · g2(Xan1)

)
. (5)

Let BA = D
[b,⊗]
A and let AB = D

[a,⊗]
B as given in (2). The

defining set of the cyclic product code C is:

DC =

{{ n2−1⋃
i=0

B
[in1,+]
A

}
∪
{ n1−1⋃

i=0

A
[in2,+]
B

}}
.

Let us restate Thm. 2 of [21] on the minimum distance of
cyclic codes using cyclic product codes.

Theorem 4 (BCH Bound Generalization). Let an [n1, k1]q
cyclic code A with minimum distance d1 and a second
[n2, k2]q cyclic code B with minimum distance d2 and with
gcd(n1, n2) = 1 be given. Let α be a primitive element of
order n1 in Fqs1 , β of order n2 in Fqs2 respectively and

let two integers f1, f2 and two nonzero integers m1,m2 with
gcd(n1,m1) = gcd(n2,m2) = 1 be given. For all codewords
a(X) ∈ A and b(X) ∈ B

∞∑
i=0

a(αf1+im1) · b(βf2+im2)Xi ≡ 0 mod Xδ−1 (6)

holds for some integer δ ≥ 2. Then, we obtain:

d1 ≥ d∗ =

⌈
δ

d2

⌉
. (7)

Note that the expression of (6) is in Fqs [X], where s =
lcm(s1, s2).

Proof: From Thm. 3 we know that (6) corresponds to
δ − 1 consecutive zeros in the defining set DC of C = A⊗ B
and therefore its distance d = d1d2 is greater than or equal to
δ.

Moreover, this yields the following explicit relation.

Proposition 1 (BCH Bound of the Cyclic Product Code). Let
the integers f1, f2,m1 6= 0,m2 6= 0 and δ ≥ 2 and two cyclic
codes A and B with an1 + bn2 = 1 be given as in Thm. 4.
Then, the two integers:

f =f1 · b2n2 + f2 · a2n1 and

m =m1 · b2n2 +m2 · a2n1
denote the parameters such that:

∞∑
i=0

c(γf+im)Xi ≡ 0 mod Xδ−1 (8)

holds for all c(X) ∈ A ⊗ B, where γ is a primitive element
of order n1n2 in Fqs [X].

Proof: Let g1(X) be the generator polynomial of A and
g2(X) that of B. From Thm. 3 we know that if αi is a root of
g1(X), then γbi is a root of g(X) as in (5) and γai is a root of
g(X) if βi is a root of g2(X). Therefore we want f + im ≡
b(f1 + im1) mod n1 and f + im ≡ a(f2 + im2) mod n2 and
the Chinese-Remainder-Theorem gives the result.

Example 1 (BCH Bound of the Cyclic Product Code).
Let A be the binary reversible [17, 9]2 code with DA =
{1, 2, 4, 8,−8,−4,−2,−1} and let B denote the binary [3, 2]2
single parity check code with DB = {0}. Let α ∈ F28 and
β ∈ F24 denote elements of order 17 and 3, respectively. Then,
we know that for f1 = −4, f2 = −1 and m1 = m2 = 1
Thm. 4 holds for δ = 10 and therefore d1 ≥ 5, which is the
true minimum distance of A.

Since −1 · 17 + 6 · 3 = 1, according to Thm. 3 the defining
set of the cyclic product code A⊗ B is DA⊗B:

=
{
{3, 5, 6, 7, 10, 11, 12, 14} ∪ {20, 22, 23, 24, 27, 28, 29, 31}

∪ {37, 39, 40, 41, 44, 45, 46, 48} ∪ {0} ∪ {3} ∪ · · · ∪ {48}
}

={0, 3, 5, 6, 7, 9, 11, 12, 14, 15, 18, 20, 21, 22, 23, 24, 27, 28,

29, 30, 31, 33, 36, 37, 39, 40, 41, 42, 44, 45, 46, 48}

and Proposition 1 gives f = 22 and m = 20.



III. GENERALIZED HT BOUND I: USING CYCLIC
PRODUCT CODE

In this section, we consider the first generalization of
Thm. 4.

Theorem 5 (Generalized HT Bound I). Let an [n1, k1]q cyclic
code A with minimum distance d1 and a second [n2, k2]q
cyclic code B with minimum distance d2 and gcd(n1, n2) = 1
be given. Let α be a primitive element of order n1 in Fqs1 , β
of order n2 in Fqs2 , respectively, and let two integers f1 and
f2 and two nonzero integers m1 and m2 with gcd(n1,m1) =
gcd(n2,m2) = 1 be given. For all codewords a(X) ∈ A and
b(X) ∈ B

∞∑
i=0

a(αf1+im1+j)·b(βf2+im2+j)Xi

≡ 0 mod Xδ−1 ∀j = 0, . . . , ν (9)

holds for some integers δ ≥ 2 and ν ≥ 0. Then, the minimum
distance d1 of A is lower bounded by:

d1 ≥ d∗∗
def
=

⌈
δ + ν

d2

⌉
. (10)

Proof: From the generator polynomial of the cyclic
product code A ⊗ B (see Thm. 3) we know that whenever
a(X) ∈ A or b(X) ∈ B have a zero, then a codeword of the
cyclic product code A⊗B is also zero at the evaluated point
(as stated in Lemma 1). Therefore, δ+ν is the HT bound (see
Thm. 1) of A⊗ B and d1d2 ≥ δ + ν.

IV. GENERALIZED HT BOUND II: USING A SECOND
CYCLIC CODE

In this section, we consider the second generalization of
Thm. 4 and the proof of the statement is more involved.

Theorem 6 (Generalized HT Bound II). Let an [n1, k1]q
cyclic code A with minimum distance d1 and a second
[n2, k2]q cyclic code B with minimum distance d2 and with
gcd(n1, n2) = 1 be given. Let α be a primitive element of
order n1 in Fqs1 , β of order n2 in Fqs2 respectively and let two
integers f1 and f2 and two nonzero integers m1 and m2 with
gcd(n1,m1) = gcd(n2,m2) = 1 be given. For all codewords
a(X) ∈ A and b(X) ∈ B

∞∑
i=0

a(αf1+im1+j)·b(βf2+im2)Xi

≡ 0 mod Xδ−1 ∀j = 0, . . . , ν (11)

holds for some integers δ ≥ 2 and ν ≥ 0. Then, the minimum
distance d1 of A is lower bounded by:

d1 ≥ d∗∗∗
def
=

⌈
δ

d2
+ ν

⌉
. (12)

Proof: Let a(X) =
∑
i∈Y aiX

i with Y = {i1, i2, . . . , iy}
and b(X) =

∑
i∈Z biX

i with Z = {j1, j2, . . . , jz}. We

combine the ν + 1 sequences (multiplying each of it by
λi ∈ Fqs , s = lcm(s1, s2)) and obtain:
∞∑
i=0

(
λ0
∑
`∈Z

b`β
`(f2+im2)(ai1α

i1(f1+im1) + · · ·+

aiyα
iy(f1+im1)) + λ1

∑
`∈Z

b`β
`(f2+im2)(ai1α

i1(f1+im1+1) + . . .

+ aiyα
iy(f1+im1+1)) + · · ·+ λν

∑
`∈Z

b`β
`(f2+im2)

(ai1α
i1(f1+im1+ν) + · · ·+ aiyα

iy(f1+im1+ν))Xi ≡ 0 mod Xδ−1.

Simplified, this result in:
∞∑
i=0

b(βf2+im2)
(∑
`∈Y

a`α
`(f1+im1)(λ0 + α`λ1 + . . .

+ α`νλν)
)
Xi ≡ 0 mod Xδ−1.

(13)

We want to annihilate the first ν terms and guarantee that the
linear combination is nonzero. The corresponding (ν + 1) ×
(ν + 1) system of equations:

1 αi1 αi12 · · · αi1ν

1 αi2 αi22 · · · αi2ν

...
1 αiν+1 αiν+12 · · · αiν+1ν



λ0
λ1
...
λν

 =


0
...
0
1

 . (14)

has a unique nonzero solution due to full rank of the square
Vandermonde matrix of order ν + 1 generated by the distinct
elements αi1 , αi2 , . . . , αiν+1 .

Let Ỹ def
= Y \ {i1, i2, . . . , iν} and (13) leads to:

∞∑
i=0

b(βf2+im2)
(∑
`∈Ỹ

aiα
`(f1+im1)(λ0 + α`λ1 + · · ·+

α`νλν)
)
Xi ≡ 0 mod Xδ−1.

This leads to (for the sake of clarity, we let m1 = m2 = 1):∑
i∈Ỹ

(
aiα

if1
∑
j∈Z

(
bjβ

jf2
∏̀
∈Z
6̀=j

(1−Xαiβ`)
) ∏
h∈Ỹ
h 6=i

∏
p∈Z

(1−Xαhβp)
)

∏
i∈Ỹ

( ∏
j∈Z

(1−Xαiβj)
)

≡ 0 mod Xδ−1,

where the numerator is a nonzero linear combination of the
polynomials

∏
(h,l)6=(i,j)(1−Xαhβl). It is easily shown that

all of those polynomials are distinct and linearly independent
(it requires that gcd(n1, n2) = gcd(n1,m1) = gcd(n2,m2) =
1). Hence, the numerator is a nonzero polynomial. Its degree
is smaller than or equal to z−1+z(y−ν−1) = z(y−ν)−1
and therefore with d1 ≥ y and d2 ≥ z, the statement follows.

V. DECODING UP TO GENERALIZED HT BOUND I

Let r(X) = a(X) + e(X) be the received polynomial,
where e(X) =

∑
i∈E eix

i ∈ Fq[X] is the error word and
E = {j1, j2, . . . , jt} ⊆ {0, . . . , n1 − 1} is the set of error



positions of cardinality |E| = t and a(X) is a codeword of a
given [n1, k1]q code A.

We describe how to decode up to the generalized bound
from Thm. 5. Therefore, we want to decode t ≤ τ errors,
where

τ ≤ d∗∗ − 1

2
=
δ + ν − 1

2d2
. (15)

Let b(X) ∈ B be of weight d2 and α ∈ Fqs1 , β ∈ Fqs2 and
the integers f1, f2,m1 6= 0,m2 6= 0 be given such that Thm. 5
for δ and ν holds. Denote s = lcm(s1, s2). We define ν + 1
syndrome polynomials S(j)(X) ∈ Fqs [X] for j = 0, . . . , ν as
follows:

S(j)(X)
def≡

∞∑
i=0

r(αf1+im1+j) · b(βf2+im2+j)Xi mod Xδ−1

=

δ−2∑
i=0

e(αf1+im1+j) · b(βf2+im2+j)Xi. (16)

This generalizes our previous approach [20] to ν+1 syndrome
sequences of length δ−1. Hence, we obtain ν+1 key equations
with a common error-locator polynomial Λ(X) ∈ Fqs [X] of
degree d2t (compare also [20], Equation (20)):

Ω(j)(X) ≡ Λ(X) · S(j)(X) mod Xδ−1, j = 0, . . . , ν,

where the degree of Ω(j)(X) is less than d2t. Solving these
ν + 1 key equations jointly is a multi-sequence shift-register
synthesis problem for sequences of equal length; for efficient
algorithms see e.g. Feng–Tzeng [5], [6].

The basic task is to solve the following linear system of
equations for Λ(X) = Λ0 +Λ1X+ · · ·+Λd2tX

d2t, which we
normalized such that Λ0 = 1:

S(0)

S(1)

...
S(ν)

 ·


Λd2t
...

Λ2

Λ1

 =


T(0)

T(1)

...
T(ν)

 , (17)

where each sub-matrix S(j) is a (δ − 1− d2t)× (d2t) matrix
and T(j) is a column vector of length δ− 1− d2t as follows:

S(j) =


S
(j)
0 S

(j)
1 . . . S

(j)
d2t−1

S
(j)
1 S

(j)
2 . . . S

(j)
d2t

...
...

S
(j)
δ−2−d2t S

(j)
δ−1−d2t . . . S

(j)
δ−3

 (18)

and T(j) = (S
(j)
d2t

, S
(j)
d2t+1 , . . . , S

(j)
δ−2)T . In the following, de-

note S
def
= (S(0)T , S(1)T , . . . , S(ν)T )T . In order to guarantee

unique decoding, we have to prove that the syndrome matrix
S from (17) has full rank if (15) is fulfilled. For simplicity, we
consider only a single parity check code for B with d2 = 2.

Theorem 7 (Decoding up to Generalized HT Bound I for a
single parity check code with d2 = 2). Let B be a single parity
check code with d2 = 2 and let gcd(n1, n2) = gcd(n1,m1) =
gcd(n2,m2) = 1 hold. Moreover, let (15) be fulfilled and let
ν+1 syndrome sequences of length δ−1 be defined as in (16).

Then, the syndrome matrix S with the submatrices from (18)
has rank(S) = 2t.

Proof: Let us w.l.o.g. assume that b(X) = 1 + X and
f1 = f2 = 0. Then, the ν + 1 syndrome polynomials in
Fqs [X] are S(j)(X) =

∑δ−2
i=0 e(α

im1+j)(1 + βim2+j)Xi for
j = 0, 1, . . . , ν. Similar to [6], Section VI, we can decompose
the syndrome matrix into three matrices as follows.

S =

S(0)

...
S(ν)

 = X ·Y ·X =

X(0)

...
X(ν)

 ·Y ·X,
where X is a (ν + 1)(δ − 1 − 2t) × 2t matrix over Fqs and
Y and X are 2t× 2t matrices over Fq and Fqs , respectively.
The decomposition provides the following matrices with κ =
δ − 2− 2t:

X(j) =


αj1j . . . αjtj

αj1(j+m1) . . . αjt(j+m1)

...
...

αj1(j+m1(κ)) . . . αjt(j+m1(κ))

βjαj1j . . . βjαjtj

βj+m2αj1(j+m1) . . . βj+m2αjt(j+m1)

...
...

βj+m2(κ)tαj1(j+m1(κ)) . . . βj+m2(κ)αjt(j+m1(κ))

 ,

and Y = diag(ej1 , ej2 , . . . , ejt , ej1 , ej2 , . . . , ejt) and

X =



1 αj1m1 . . . αj1m1(2t−1)

1 αj2m1 . . . αj2m1(2t−1)

...
...

1 αjtm1 . . . αjtm1(2t−1)

1 βm2αj1m1 . . . (βm2αj1m1)(2t−1)

1 βm2αj2m1 . . . (βm2αj2m1)(2t−1)

...
...

1 βm2αjtm1 . . . (βm2αjtm1)(2t−1)


.

Since Y is a diagonal matrix, it is non-singular. From
gcd(n1, n2) = gcd(n1,m1) = gcd(n2,m2) = 1 we know that
X is a Vandermonde matrix and has full rank. Hence, Y·X is a
non-singluar 2t×2t matrix and therefore rank(S) = rank(X).
In order to analyze the rank of X, we proceed similarly as
in [6], Sec. VI. We use the matrix operation from [11] (see
Corollary 1 in the appendix) to rewrite X = A ∗B, where

A =


1 . . . 1 1 . . . 1
αj1 . . . αjt βαj1 . . . βαjt

...
...

αj1ν . . . αjtν (βαj1)ν . . . (βαjt)ν


and B = X(0).

Since gcd(n1, n2) = gcd(n1,m1) = gcd(n2,m2) = 1,
both matrices A and B are Vandermonde matrices with ranks:

rank(A) = min{ν + 1, 2t}, rank(B) = min{δ− 1− 2t, 2t}.



Note that w.l.o.g. we can always define m1,m2, δ and ν such
that ν + 1 ≤ δ − 1. Therefore, from (15) we obtain:

t ≤ d∗∗ − 1

2
=
δ + ν − 1

2d2
≤ 2(δ − 1)− 1

2d2
<
δ − 1

d2
. (19)

Hence, investigating all possible four cases of rank(A) +
rank(B) gives:

2t+ 2t = 4t > 2t,

2t+ ν + 1 > 2t,

δ − 1− 2t+ 2t = δ − 1 > 2t,

δ − 1− 2t+ ν + 1 ≥ 2d2t− 2t+ 1 = 2t+ 1 > 2t,

where the last two above inequalities used (19) and d2 =
2. Thus, rank(A) + rank(B) > 2t. With Corollary 1 in the
appendix, we have proven the statement.

Therefore, the joint key equation (17) has a unique solution,
which can be found by multi-sequence shift-register synthesis
with O(sn2) operations over Fqs [5], [6]. The extension of
the proof for decoding up to t ≤ τ errors as in (15) to
other associated codes B with d2 ≥ 2 is straight-forward.
The decomposition of the syndrome matrix S can be done
similarly and we can prove that it has rank d2t. The details
of the root-finding of Λ(X) to obtain the error-locations and
the determination of the error-values can be found in Sec. 6
of [21].

VI. CONCLUSION

We presented two techniques to generalize the HT bound
on the minimum Hamming distance of q-ary cyclic codes.
The first one is directly related to cyclic product codes and
facilitates a syndrome-based algebraic decoding algorithm.
The second approach’s connection to product codes is an open
topic as well as a decoding approach up to this bound.

Probably, it is possible to generalize other bounds (Roos,
van Lint–Wilson) on the minimum distance of cyclic codes
by embedding the given code into a cyclic product code.
Furthermore, it seems possible to apply this approach similarly
to the wider class of linear codes.
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APPENDIX

The following corollary follows directly from Thm. 4 [11].

Corollary 1 (vLW-Matrix Product and Rank). Let the follow-
ing matrix operation be defined as in [11]:

X = A ∗B =


a1,1b1 a1,2b2 . . . a1,2tb2t

a2,1b1 a2,2b2 . . . a2,2tb2t

...
...

aν+1,1b1 aν+1,2b2 . . . aν+1,2tb2t

 ,

where A is a (ν + 1) × 2t matrix, B is a (δ − 1 − 2t) × 2t
matrix and bi denotes the i-th column of B, and X has 2t
columns. If rank(A) + rank(B) > 2t, then rank(X) = 2t.
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