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Abstract. The boundary element method (BEM) is a popular tool for waattsring prob-
lems. To reduce the number of degrees of freedom requiregyattition of unity BEM (PU-
BEM) was developed in which the approximation space is badavith a linear combination
of plane-waves. Recent work has shown that the element emdsose susceptible to errors
in the approximation than the mid-element regions. In tlaigsgy we propose that this is due to
the reduced order of continuity in the Lagrangian shape fiemccomponent of the basis func-
tions. It will demonstrated that choosing trigonometri@aphs functions, rather than classical
guadratic shape functions, provides accuracy benefits.
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1. INTRODUCTION

The boundary element method (BEM) was first used to solve #mhbltz equation
by Banaugh and Goldsmith [1]. Since then, the BEM has becowsdlaestablished technique
for wide range of problems. In particular, the BEM’s formtiga is useful for problems with
infinite domains as it automatically satisfies boundary @k at infinity and no domain
truncation is required.

BabusSka and Melenk developed the partition of unity metf2pah which, for acous-
tics, the approximation domain may be enriched by a linearlgpation of plane waves. This
was developed for the FEM by Laghrouckeal. [3], for the collocation BEM by Perrey-
Debainet al. [4], and for the Galerkin BEM by Bériogt al. [5]. The partition of unity
boundary element method (PU-BEM) significantly reducesiimaber of degrees of freedom
per wavelengthz, required for a prescribed error.

Trevelyan and Coates [6] presented an adaptive basis footloeation PU-BEM. They
noted that residual errors were largest at the ends of esm#rwas suggested that this was
due to the lack of continuity in the quadratic shape funciosed. This paper will introduce a
novel set of shape functions that provide greater congringtween elements and, thus, reduce
these residual errors.



2. PARTITION OF UNITY BOUNDARY ELEMENT METHOD

LetQ c R? be a domain, with no exterior boundary and with a smoothatiescatterer
of boundaryf) = T'. In the frequency domain, propagation of sound waves isigeeby the
Helmholtz equation,

V2p(q) + K°¢(q) =0, qeQ, (1)

whereV? is the Laplacian operatap, € C is a wave potential, anklis the wavenumber.
The derivation of the classical, polynomial basis BEM fari€lwell known [7]. Using
this method, the wave potential on the boundary of a scaiitereritten as

J
6°(a) = Y N;(€)g5, (2)
j=1

where¢* is the potential ady, described by the local coordinaten element, J is the number
of shape functionsl; is the jth shape function and, is its associated potential. In the PU-
BEM, the approximation space is enriched by a linear contlwnaof plane waves at each
element node, thus the potential on the boundary of a seaiteexpressed as

J M
o°(a) =Y Ni(€) Y A5, exp (ikds,-a), [d5,|=1, 3)
j=1 m=1
whereM is the number of plane wave basis functions per node on theegieds,,, € R* are
the prescribed directions of the plane waves in the bastAjp € C are their amplitudes
which are sought as the solution to the BEM system.

M may be chosen such that a prescribed satisfied, locally and globally. For FEM
and BEM approximations; > 10 is, generally, required; however, it has been shown that, fo
the PU-BEM,r ~ 3 is sufficient for an accuracy 1% [4].

3. TRIGONOMETRIC SHAPE FUNCTIONS

Quadratic shape functions are commonly used in the bothEhed&nd BEM; however,
no study of shape functions has been carried out for the PM-BE

Quadratic shape functions only provi@é continuity. Here, we propose a novel set of
shape functions, using trigonometric functions, whichviie C'! continuity; in some cases, it
is possible to obtain>. For a 3-noded, continuous element, these shape functiens a

Ni(¢&) = —i cos(m&) — %sin (gf) + i, (4)
No(€) = 5 cos(me) + 5. ©
N3(&) = —i cos(m&) + % sin <g§) + i (6)

These shape functions can be seen in Figure 1a alongsidadiiteonal quadratic shape
functions (Figure 1b). The added continuity of these newpsHanctions can be observed at
the element ends where they have zero gradient, giVingontinuity. If adjoined elements are
the same length(/>° continuity is obtained.
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(a) Trigonometric shape functions (b) Quadratic shape functions

Figure 1. Shape functions for 3-noded element with locatdoatel € [—1, 1]

4. NUMERICAL RESULTS

4.1. Scattering by a circular cylinder

Consider a cylindrical scatterer, of unit radius, impindgggda unit-amplitude, incident
plane wave propagating in the directidh The boundary conditiord¢/0n = 0, is chosen,
wheren is the outward pointing, unit normal; this is known as thersbhard condition. The
analytical solution for the total field is known [8]. Errortsamulations £, are calculated using
Lo norms: 1 - |

_ L
£ e )
where® are potentials calculated from the PU-BEM, abfl are potentials calculated analyt-
ically.

Figure 2 shows a comparison of errors from PU-BEM simulatjaof this problem,
using trigonometric and quadratic shape functions ovenge@f wavelengths. CHIEF points
were used to overcome the nonuniqueness problem [9] and/itens matrices were solved
using singular value decomposition.
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Figure 2. Errors analysis for the hard, unit-radius, cyiical scatter problem: incident wave
d' = (1,0)

Figure 2 shows clearly that trigonometric shape functiawide an accuracy benefit;
however, a plot of the errors over the surface of the cylinsleequired to demonstrate where



these accuracy improvements originate. Figure 3 shows gaason of the errors arising
from each type of shape functiong [0, 1] is a local coordinate that runs clockwise around the
entire cylinder starting from the cartesian coordindtd)). Using quadratic shape functions,
the error peaks are prominent at the end of the two elemergmglhe trigonometric shape
functions has significantly reduced the magnitude of thesese
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Figure 3. Error|¢p — ¢, over surface of circular cylinder problerin= 50

4.2. Scattering by five cylinders

Consider a set of sound-hard, cylindrical scatterers ofrarly radii, centred at arbitrary
coordinates, impinged by a unit-amplitude, incident plamae of directiond!. Linton and
Evans [10] published an analytical solution for this probjdoy means of an infinite series.
PU-BEM simulations were run, using quadratic and trigonmimeshapes functions, for the
problem of five, sound-hard, unit-radius cylinders equafiaced at = 3 from the origin.
This problem is chosen because it contains internal reflestbetween cylinders; this can be
seen in the real part of the potential solution, plotted mjuiFe 4.

Figure 4. lllustration of the internal reflections causedh®yfive-cylinder geometry = 0.25

Figure 5 shows the error§, from using both types of shape function, over a range of
wavelengths. It is clear that the trigonometric shape fionstprovide an accuracy benefit for
the majority of simulations. This is because of the incrdasmtinuity, of the shape functions,
between elements.
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Figure 5. Error analysis for the five-cylinder scatterer jhean: incident waved' =

(1/v2,1/v2)

4.3. Scattering by a capsule

Scattering by a capsule introduce§'ageometry (see Figure 6). Regions where lines
and arcs blend together are susceptible to errors. To ige¢stthe ability of trigonometric
shape functions to capture the effect of these this type ohdary, the capsule in Figure 6 was
devised; elements of equal length (i.e. elements ends-al, 1/3, 2/3) were used to maximise
the continuity of the shape functions. As all geometry poute evaluated analytically, this
does not affect the accuracy of evaluation of the integndternels.
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Figure 6. Capsule discretised by three equal-length elesnen

Figure 7 shows the error§, from using both types of shape function, over a range of
wavelengths; exact solution$, were evaluated using a converged method of fundamental
solutions (MFS) approach. The trigonometric shape funstroduce a clear accuracy benefit
at lower wavenumbers; however, at higher wavenumbers, ¢heflts are reduced. This is
because, at high wavenumbers, there are a large numbenefigives in the expansion which
become the most dominant part of the basis, i.e. the obdereéibct of the shape functions is
reduced.

Figure 8 shows the absolute difference, along the surfatieec$catterer, between the
PU-BEM and converged MFS solution. Significant errors ateleenent ends (denoted by the
dashed lines) have been reduced by the trigonometric shayoéidns. Significant errors at
the blend points between the lines and arcs have also beeceddhowever, these errors are



still large in comparison to the errors over the rest of thertaary. The trigonometric shape
functions, though continuous through these points, aresufficient to describe, ideally, the
effect the geometry has on the wave potential in those areas.
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Figure 7. Error analysis for the hard capsule probldm:= (0.5, /3/2)
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Figure 8. Error|¢ — ¢**|, over surface of capsule problein= 25

5. CONCLUSIONS

Using the PU-BEM for wave scattering simulations, erroes faund to be at a maxi-
mum at the element ends. This is due to a lack of continuitth@element ends, associated
with Lagrangian shapes functions. Trigopnometric shapetfans increase the continuity at the
element ends and, thereby, improve the approximation @ngiat of such problems. It should
be noted that these accuracy gains are not replicable foewise quadratic BEM simulations.

For geometries withC'! continuity, the PU-BEM is susceptible to errors at geometry
blend points. Though trigonometric shape functions do igieven accuracy benefit, more con-
tinuity is required. One possible approach is to use nofeumirational B-splines (NURBS)
which can represent circular arcs analytically.
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