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Abstract

The standard alpha-factor model for common cause
failure assumes symmetry, in that all components
must have identical failure rates. In this paper,
we generalise the alpha-factor model to deal with
asymmetry, in order to apply the model to power
networks, which are typically asymmetric. For pa-
rameter estimation, we propose a set of conjugate
Dirichlet-Gamma priors, and we discuss how poste-
rior bounds can be obtained. Finally, we demonstrate
our methodology on a simple yet realistic example.
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1 Introduction

When modelling power networks, typically, the basic
event we are interested in are loss of so-called secu-
rity zones. A security zone makes up a collection of
components, so that if one component in the zone
fails, power in the whole zone is lost. Security zones
are typically bounded by circuit breakers, which allow
isolating consequences of faults.

An interesting problem occurs when faults in differ-
ent zones do not occur independently. For example,
power lines in adjacent zones often share transmission
towers. A landslide, for instance, can cause the tower
to collapse, affecting both zones simultaneously. It is
important that the frequency of such events is taken
into account, as otherwise the actual risk to the net-
work might be underestimated.

The standard literature for common cause failure
modelling assumes symmetry [B, 0], however, clearly,
for our purpose, security zones will typically not ex-
hibit symmetry, due to differences in layout, composi-
tion, and age of constituents. In this paper, we adapt
the approach of Troffaes et al. [9] to allow for asym-
metry.
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In doing so, as opposed to existing methods [3] [4], we
enable a more data driven approach to network reli-
ability analysis. Specifically, we allow actual failure
data on the network—which is most informative, but
typically also very sparse—to be combined with say
national average failure rates—such data is typically
far more abundant, but also not necessarily as appli-
cable to the specific network at hand due to specific
local conditions which may be hard to model, let alone
to be quantified.

A key feature of our approach is built-in sensitiv-
ity analysis against ill-known parameters, following
[10, [7, [8, [9). Following recent work on prior-data con-
flict [111, 12}, @], in this paper, we will focus on sen-
sitivity analysis in the so-called learning parameters
of the model, which essentially tells us how much we
should weigh network specific data against our prior
expectations informed by say national averages.

The paper is structured as follows. Section [2| de-
rives the mathematical model for dealing with com-
mon cause failures in asymmetric two component sys-
tems. Section [3| discusses the statistical problem of
how to estimate the parameters of the model. We
construct a likelihood for typical kinds of data avail-
able. We then propose a conjugate prior, which is
an independent product of a Dirichlet (or beta) prior
and two Gamma priors. Finally, we discuss how sen-
sitivity analysis can be performed to obtain posterior
bounds. Section 4] works through an actual example.
Section [f] concludes the paper.

2 Modelling Common Cause Failure
for Asymmetric Components

2.1 Two Component Model

In this discourse, a ‘component’ denotes any subsys-
tem, which, for the purpose of common cause analysis,
we do not subdivide any further. In particular, it does
not need to denote a separate electrical component of



Figure 1: Markov chain for failure with instant repair.
The nodes show non-faulty zones.

the power network. For example, if we are merely
interested in the loss of security zones, a component
could be taken to be such security zone.

Let us call these components A and B. Now, follow-
ing the basic parameter model of Mosleh et al. [5]
(also see [9]), one traditional way to model common
cause failures is to attribute all failures to any of the
following three events:

e A;: independent failure of A
e B;: independent failure of B

e (C'4p: common cause failure of both A and B

These three events are assumed to be generated by
independent Poisson processes. For simplicity, in
this exposition, we assume that repair is immediateﬂ
Figure [I] depicts the corresponding continuous time
Markov chain, along with rates for all transitions.

Following standard notation in common cause failure
modelling, by ¢{* we denote the rate of A7, by ¢f we
denote the rate of By, and by g2 we denote the rate
of C'4g. The subscript of the ¢ denotes the number of
components involved (or is ¢ for ‘total’, as in the next
paragraph). The superscript denotes the particular
component, and is required due to lack of symme-
try. For comparison, in the standard basic parameter
model, we would have qlA =¢P =q.

A key challenge is that we do not observe these events
directly. Indeed, often, we have a good idea of the rate
at which each component fails, that is, we know

=t + g (1)
@ =d® +q (2)

Additionally, we may have a fairly good idea of what
fraction as of faults is due to a common cause. The

INote that, consequently, simultaneous failures due to inde-
pendent causes of the two components have probability zero.

fraction of faults not due to a common cause is oy =
1-— Q9.

For example, say that we have a sequence of 100 inde-
pendent observations in which a fault occurs, and say
that in exactly 18 of those observations, both com-
ponents failed. Then, to a good approximation, as
would simply be 0.18. The parameters a; and as are
called alpha-factors.

So, we have three observable quantities: ¢f', ¢Z, and
ai;—mnote that as = 1 — . From these, we need to
derive three model parameters: gi', ¢, and ¢o. Here,
the only difference with the standard basic parame-
ter model in the literature is that we do not assume
¢ = ¢F (and whence, also not that ¢* = ¢Z). This
difference may seem only very subtle, particularly for
the case where only two components are involved,
however, the consequent mathematical treatment is
notably different to merit a careful consideration, as
follows.

We can easily express a; and as in terms of the above
parameters, once noted that a fraction of faults can
be written as a ratio of fault rates:

g +df
M =" B (3)
9 + 47 +q
09 q2 (4)
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Now, consider the combination ay + 2as:

CattaP +2e @+ P
o1 + 20[2 = ) B = B (5)
q7 +497 +q2 q7 +497 +q2
Consequently,
A B
A, B q; + g
= =t 6
g +qr +q2 oL+ 20, (6)

where the right hand side now consists of observable
quantities. Plugging this expression into our earlier
expression for as, we find:

g2 (a1 + 2a3)
Q2 = A, B
q +q;

so, consequently:

We recovered one of the model parameters. For the
other ones, simply use:

0 =qi* — g (9)
@ =qf — (10)



2.2 Preliminary Example

To demonstrate the theory so far developed, we apply
it on a simple example. Athough in the following, the
probabilities are entirely made up, they are represen-
tative of typical power networks.

Suppose we have a collection of customers supplied
from two security zones, named A and B, where loss
of power in both zones will result in customer inter-
ruption. Suppose, for the sake of argument, that, on
average, per year, we observe 3 faults in zone A, and
5 faults in zone B. We also know that, from histor-
ical data, 15% of all faults in these zones results in
customer interruption. What is the rate at which we
lose customers?

Following the above model, we have:
g =3 (11)
4 =5 (12)
assuming rates are expressed per year, and

ay =0.85 (13)
as =0.15 (14)

Then, following the earlier analysis, we find that:

) A B
_ _ 1
2 a1+2a2(qt +4q;) (15)
0.15
A —1.04 1
O.85+2x0.15<3+5> 043 (16)

The rate at which customer interruption occurs is ex-
actly g2 = 1.043, or about one per year. Note that we
can also derive the rate at which independent failures
occur:

=g~ =3-1043=1957  (17)
P =gl —u=5-1043=3957  (18)

3 Parameter Estimation from Data

An obvious challenge with our statistical model is that
we need to estimate the failure rates of each com-
ponent (or, security zone), as well as the fraction of
double failures. Information relating to these proba-
bilities can come from a variety of sources.

Two options present themselves:

1. Use historical failure data of single and double
failures in the network under study to estimate
the parameters ¢i*, ¢, and ¢y, directly, say using
maximum likelihood. A problem here is that,
typically, for one specific network, not very much
data may be available.

2. Use average nationwide failure rates ¢ and ¢,
along with average nationwide double failure
fraction ao. The methodology of Section 2.1]then
applies to find ¢{*, ¢f, and ¢». As there is far
more nationwide data available, one would hope
that this leads to more accurate estimates for ¢;*,
qP, and ay. A key problem here is that it is not
clear to what extent nationwide averages will also
apply to the specific network under study.

In this treatment, we use both sources of informa-
tion: aggregated nationwide failure probabilities for
components, obtained by averaging, as well as local
data specific to the location of interest. As already
mentioned, the latter sort of data is typically very
sparse, but at the same time also more informative,
as it can incorporate known information about indi-
vidual asset condition, age, location (e.g. exposure to
extreme weather, marine corrosion or industrial pol-
lution), level of utilisation and actual fault history.

We now propose a conjugate Bayesian model for deal-
ing with both types of data. Specifically, we use the
aggregated data to construct a prior, and then use
the likelihood of the local data to update this prior to
a posterior. From a likelihood perspective, the prior
simply represents pseudo counts, so effectively, we are
really simply adding local data to the nationwide data
to obtain a local prediction.

A key question is: how strong should the nationwide
data be weighed in comparison to the local data?
Or, phrased differently: how relevant do we believe
is the nationwide data for making predictions about
the local situation? In conjugate analysis [I], there is
a natural parameter which represents this subjective
judgement. What we will do is perform a sensitiv-
ity analysis against this parameter, very similar to
what is done in for instance the imprecise Dirichlet
model, or more generally, in the exponential family
[10, [6, 11}, 12].

Observe that the expression for go in terms of the
alpha-factors a;, as and total failure rates ¢f!, ¢F
(Eq. (B)) can be written as a function of just the
alpha-factors, times a function of just the total fail-
ure rates. So, inspired by [9], for a joint prior, we use
an independent product of two Gamma distributions,
one on ¢{* and one on ¢, and a Dirichlet (or, beta)
distribution jointly on a; and as. We now elaborate
on this in the following sections.

3.1 Dirichlet Prior for Alpha-Factors

A natural way to estimate alpha-factors goes via a se-
quence of N observations, where n; of those involved
single failures of either A or B (but not both), and



the remaining no involved double failures of both A
and B. The corresponding likelihood is:

N
Pr(ni,ne | a1, a2) = (n )a?lagz. (19)
1

A conjugate prior for the above likelihood is the
Dirichlet density (or, beta density, as we have only
two categories):

flag,as | s,t1,ta) o aftl*lagtrl (20)

with hyperparameters s > 0 and 1, t2 € (0,1) such
that t; +t2 = 1. The posterior density is simply:

flar, ag | ny,ng, s, by, ta) oc @t T ggttna—l
(21)

By Eq. , we will need to find the posterior expec-

tation of
Q2

_— 22

a1 + 2a (22)
where we remind the reader that a; + as = 1, and
typically, aso is expected to be small. As discussed in
great detail in [9], we can do so via Taylor expansion.

For example, with second order expansion:

a2
E|{———— t1,t 23
<O[1+20é2 ni,n2,s,t1, 2> ( )
~ E(O[Q — a§|n1,n2,s,t1,t2) (24)
no + sto ng + sto + 1
= 1-— 25
N +s ( N+s+1 ) (25)

using the well-known properties of the Dirichlet dis-
tribution (for example, see [0, Eq. (10)]); we remind
the reader that N = ny +ny. For this approximation,
the absolute error is less than:

n2+st2n2+st2+1n2+st2+2
N+s N+s+1 N+s+2

(26)

3.2 Gamma Prior for Total Failure Rates

To estimate total failure rates, assume we have ob-
served a component (A or B) for time T', during which
this component failed M times. The likelihood for the
failure rate g; of this component is then:

(7)™ exp(—q,T)
M!

Pr(M [ q,T) = (27)

as we assumed a Poisson process. A conjugate prior
for this likelihood is the Gamma density:

flae | u,v) oc g~ exp(—qeu) (28)

with hyperparameters u > 0 and v > 0. The posterior
density is:

flae | M, T, u,v) oc g™ exp(—qi(u+T)) (29)

By Eq. (8]), of interest is the posterior expectation of
¢+, which is simply:

T M U
E(Qt|M,T,U,v):m?+u+T

V. (30)

Considering this posterior expectation when 7" = 0,
we see that v represents a prior expectation for ¢;, and
considering this posterior expectation when T = u,
we see that u represents the time T needed before
the posterior starts to move away from this prior [9]
Sec. 3.2].

3.3 Full Analysis

Let us put everything together.

For the alpha-factors, suppose our prior expected frac-
tion of single failures is £1, and our prior fraction of
double failures is t5. Moreover, we observed n; single
failures, and ns double failures. We are rather un-
sure about how much weight to assign to the prior,
that is, we are unsure about the hyperparameter s.
Remember, in a likelihood interpretation of Bayesian
inference, s can be thought of the total pseudo count
assigned to the prior. Say, s € [s,3]; for example,
with s = 0 and 3§ = 5, we count the prior for no more
than five observations. As discussed in [9], it seems
quite sensible to perform a sensitivity analysis over s,
to properly cope with prior-data conflict.

For the total failure rates, suppose our prior expected
failure rates are v4 and v®. Moreover, we observed
M*# failures of component A during a time span of
T, and M® failures of component B during a time
span of T. For simplicity we take the observed time
spans for both components to be identical, as this is
the case for our application, but it could be relaxed
easily. Again, we are rather unsure about the hyper-
parameters v and u®—for simplicity, we will also
take these to be equal: u = u? = u? (again this
could be relaxed easily). Here, u can be thought of
a pseudo observation time assigned to the prior. Say,
u € [u,u]; for example, with u = 0 and w = 3, we
count the prior failure rates for no more than 3 years.

Consequently, by Egs. , , and ,

E(q2 | D)= inf E(q2 | D,s,u), (31)

s€[s,3]
u€[u,u)
E(g2 | D) = Sl[lp] E(q2 | D, s,u). (32)
sE|(s,s
u€[u,u)

When we assume independence between the alpha-
factors and the total failure rates, the expectation de-



composes into a product:

E(Q2|D7$au)
777,24-8152 7n2—|—st2—|—1
~ N+s N+s+1
A B MA MB
><u(v +oP)+ + (33)
u—+T
and

D = (ny,ng, M2, MB T t1,ts, v, 0P). (34)

Note that the optimization problem for s and u can
be solved through two independent optimisation prob-
lems, one in just s, and one in just u. For the optimi-
sation in u, due to the monotonicity of the objective
function, it suffices look at just w and w. The objec-
tive function in s is not always monotone (although
it often will be), but nevertheless numerical optimi-
sation is still quite easy. The example provides more
detail.

Note that bounds for the lower and upper posterior
expectations of ¢i* and ¢P can be derived in a very
similar way, through Egs. @ and —We leave this
to the reader.

4 Network Risk Example

4.1 Problem Description

Following is a generic double circuit reliability prob-
lem, based on an actual case study in the North-East
of England.

There are two unequal circuits. Circuit A has an
expected failure rate of 0.3856 per year, based on 2
transformers and 24.1 km of line and cable. Circuit B
has an expected failure rate of 0.3279 per year, based
on 1 transformer and 21.5 km of line and cable. No
adjustments have been made for asset condition. In
the past 12 years, circuit A has experienced 7 failures
in 12 years, and circuit B has experienced 4 failures
in 12 years. Of these failures, 3 were double failures.
For a group of 11 neighbouring (and similar) circuits,
there have been 38 failures, of which 24 were single
failures, and 14 were double failures—these 38 include
the circuit we are studying. On average, for a much
larger group of circuits at that voltage, but not neces-
sarily similar to the double circuit under study, about
18% of all failures are double failures.

4.2 Prior and Data

As global prior for the alpha-factors, we use the global
average: t; = 0.82 and t5 = 0.18. It seems reasonable

to use neighbouring circuits to correct our prior in-
formation about the alpha-factors of our circuit: so
ny = 24 and ny = 14.

For the total failure rates, an expert provided us with
some prior expectations based on global averages of
failures for the particular components that make up
the circuits: v4 = 0.3856 and v® = 0.3279. We have
M4 = 7 failures during T4 = 12 years of circuit A,
and M = 4 failures during T8 = 12 years of circuit
B.

All we need in addition is some assessment about s
(number of total failures needed before we start to
move away from the prior in the direction of the data
for alpha-factors) and u (time needed before starting
to move away from prior in direction of the data for
total failure rates). As discussed in Section we
will perform a sensitivity analysis over intervals for
both s and u. Let us take s = [0,15] and u = [0, 10],
which seem conservative yet reasonable given their
interpretation discussed earlier.

4.3 Posterior Bounds

We must solve the optimisation problems in Eqs.
and , using Eq. . Let

n2+st2 n2+5t2+1
=== [1—
J6) =N < N+s+1>’ (85)

n2+st2n2+st2+1n2+st2+2

e(s) = . (36)

N+s N+s+1 N+s+2
u(e? + o)+ MA+ MB
g(u) = T : (37)

where e(s) represents a bound on the absolute error,
as f(s) is only an approximation (see Eq. ) With

f= 1inf f(s) f= sup f(s) (38)

s€10,15] s€[0,15]
e:= sup e(s) (39)
s€10,15]
and
= inf = mi 4
9= Bl 90 = i, o) “0)
g:= sup g¢g(u)= max g(u), 41
u€[0,10] ( ) u€{0,10} ( ) ( )

where we used that g is a monotone function, we then
have thatEI

(42)
(43)

E(g2| D) = (f —¥®)

f—eyg
E(g2 | D) < (f+®)g

2Instead of & we could use e(arg infee(o,15) f(s)) and
e(argsup,c(o,15) f(s)) to arrive at slightly better error bounds,
but in practice it makes little difference.



By numerical optimisation, we find

f=0212 f=0227 €=0.057 (44)

g=0.824 g=00917 (45)
Concluding,

E(qz | D) >0.128 (46)

E(g2 | D) <0.260 (47)

Note that the absolute error € is rather large in com-
parison to f and f—this is due to the fact that the
data reflects a rather high value for s, and low order
approximations only work well when as is less than
0.1. Using instead a sixth order approximation (the
equations are very easy to compute, but rather long to
write down, see [9] for details; also note that the ap-
proximation scheme is designed for ease of computa-
tion at the expense of requiring the use of higher order
terms, and that more sophisticated techniques might
achieve this accuracy with fewer terms), we find:

237 7 =0.266 (48)

so, because € is quite small,

E(gs | D) ~ 0.194 (50)
E(gz | D) ~ 0.245, (51)

or in other words, we expect a double failure every
four or five years.

5 Conclusions

We have explored a model for dealing with common
cause failures in simple power networks, allowing data
from various sources to be merged into a meaningful
number, or range of numbers when robustness is at
stake.

We assumed immediate repair, which is clearly not
realistic. Non-immediate repair is typically modelled
through continuous time Markov chains [2] Chap-
ters 7-13], which have not yet received that much
attention in the imprecise literature. The other un-
realistic assumption is the Markov assumption itself,
although that assumption seems still pervasive in the
standard literature. In practice, failure rates are
rarely independent of the history of the system, so
the ability to build some level of non-stationarity into
the model would be desirable. Moreover, it is not en-
tirely clear how the typical simulation techniques that
deal with these issues can be made to work to achieve
a robust analysis over a range of parameters.

For more complex power networks, the model would
need to be extended to handle multiple components.
Although this is mathematically quite easy, difficulties
are to be expected with estimating parameters that
relate to common cause events, because there can be
many more ways in which multiple failures occur when
three or more components are involved. Some level of
symmetry between common cause events would likely
need to be accepted.

Another interesting question would be to investigate
how the analysis impacts decisions, say on asset re-
placement.
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