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Abstract
The modular treewidth of a graph is its treewidth after the contraction of modules. Modular
treewidth properly generalizes treewidth and is itself properly generalized by clique-width. We
show that the number of satisfying assignments of a CNF formula whose incidence graph has
bounded modular treewidth can be computed in polynomial time. This provides new tractable
classes of formulas for which #SAT is polynomial. In particular, our result generalizes known
results for the treewidth of incidence graphs and is incomparable with known results for clique-
width (or rank-width) of signed incidence graphs. The contraction of modules is an effective
data reduction procedure. Our algorithm is the first one to harness this technique for #SAT.
The order of the polynomial time bound of our algorithm depends on the modular treewidth.
We show that this dependency cannot be avoided subject to an assumption from Parameterized
Complexity.
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1 Introduction

Given a set {x1, . . . , xn} of variables, consider a propositional formula Fm,n defined as follows.
Fm,n consists of m distinct clauses each containing n literals over {x1, . . . , xn}, so that every
variable occurs in every clause. It is easy to see that Fm,n has exactly 2n −m satisfying
assignments. The vertices of the incidence graph of Fm,n (i.e., the bipartite graph whose
vertex classes consist of variables and clauses, and a variable is adjacent to the clauses it
occurs in) can be partitioned into two large modules (a module in a graph is a set S of
vertices such that for any vertex v /∈ S, every vertex in S is a neighbor of v or every vertex
in S is a non-neighbor of v). By contracting these modules, the incidence graph reduces to a
single edge.

Contraction of modules is an important preprocessing step for a wide range of combinator-
ial optimization problems [14]. The aim of this paper is to harness its power for propositional
model counting (#SAT), a well-studied problem with various applications in artifical intelli-
gence, such as probabilistic inference [1]. We consider CNF formulas whose incidence graph
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Figure 1 Hierarchy of structural parameters. An arc from parameter p to parameter q reads as
“q is bounded whenever p is bounded.” Bold type indicates parameters that are known to render
#SAT polynomial-time tractable when bounded.

has bounded treewidth after contraction of modules (we call this the modular incidence
treewidth). We will prove that #SAT is polynomial-time tractable for such formulas.

I Theorem 1. The number of satisfying assignments of a CNF formula F with modular
incidence treewidth at most k can be computed in time `O(k), where ` is the length of F .

This result characterizes new tractable classes for a notoriously hard problem. #SAT is
#P-complete in general [24] and remains #P-hard even for monotone 2CNF formulas and
Horn 2CNF formulas. It is NP-hard to approximate the number of models of a formula with
n variables is within 2n1−ε for ε > 0. Again, this hardness result still holds for monotone
2CNF formulas and Horn 2CNF formulas [22]. These syntactic restrictions do no lead to
tractability of #SAT.

By contrast, modular incidence treewidth is a so-called structural parameter. Structural
restrictions are applied in terms of parameters (invariants) of graphs or hypergraphs associated
with formulas. Figure 1 illustrates the relation of modular incidence treewidth to other
structural parameters. For a detailed discussion, see Section 1.1 below. Our algorithmic
result presented in Section 3 is achieved by dynamic programming on a tree decomposition
of the modular incidence graph (the graph obtained from the incidence graph of a formula
by contracting modules). Vertices in the modular incidence graph represent entire modules
(i.e., sets of variables or sets of clauses), whose size cannot be bounded in terms of the
modular incidence treewidth alone. Algorithms for #SAT on formulas of bounded treewidth
typically rely on data structures indexed by the subsets of variables and clauses associated
with a bag of the tree decomposition [23]. The number of subsets of variables and clauses
occurring in even a single module can be exponential in the length of the input formula, so
these algorithms do not yield tractability in our case. It is a significant challenge to encode
the information required to perform dynamic programming in space polynomially bounded
by the input size. Our main technical contribution is the use of projections in solving this
task. We define an equivalence relation on assignments based on their projections onto a
particular formula. This formula is determined by the boundary of a subgraph induced
by the decomposition. The resulting equivalence relation is sufficiently precise while its
rank can still be polynomially bounded. This allows our algorithm to run in polynomial
time. Note that the order of the polynomial time bound in Theorem 1 is a function in the
modular incidence treewidth. The hardness result presented in Section 4 shows that one
cannot replace this function by a constant (subject to an assumption from Parameterized
Complexity).
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1.1 Related structural parameters
For sake of comparing two structural parameters p and q of CNF formulas, we say p

dominates q if there is a function f such that p(F ) ≤ f(q(F )) for all formulas F . Parameters p
and q are equivalent if p dominates q and q dominates p. We say p is more general than q
if p dominates q but not the other way around. Two parameters p and q are incomparable if
neither p dominates q nor q dominates p. The primal treewidth of a formula is the treewidth
of its primal graph. The primal graph has as vertices the variables of the given formula, and
two variables are joined by an edge if they occur together in a clause. It is well known that
#SAT on formulas of bounded primal treewidth is linear-time tractable [23]. A similar result
has been shown in terms of the branchwidth of formulas [1], a parameter that is equivalent to
primal treewidth. The incidence treewidth of a formula is the treewidth of its incidence graph.
This parameter is known to be more general than primal treewidth [13]. Again, #SAT on
formulas of bounded incidence treewidth is linear-time tractable [10, 23]. Clique-width is a
graph invariant based on graph grammars [4]. Signed clique-width is a variant of clique-width
for directed graphs [7]. The signed incidence clique-width of a formula corresponds to the
signed clique-width of its signed incidence graph, which is obtained from the incidence
graph by orientating edges so as to indicate positive or negative occurrences of variables. A
polynomial-time algorithm for #SAT on formulas of bounded signed incidence clique-width is
due to Fischer, Makowsky, and Ravve [10]. Clique-width is typically approximated by means
of another parameter known as rank-width [20]. A class of graphs has bounded rank-width if
and only if it has bounded clique-width. But while it is open whether, for fixed k ≥ 4, graphs
of clique-width at most k can be recognized in polynomial time [9], this is known to be the
case for graphs of rank-width at most k [15]. Ganian, Hlinený, and Obdrzálek proposed a
polynomial-time algorithm for #SAT for formulas of bounded signed incidence rank-width, a
parameter that is equivalent to signed incidence clique-width [12]. Signed incidence clique-
width and signed incidence rank-width are currently the most general structural parameters
based on width measures for which #SAT is known to be polynomial time-tractable. The
following two examples show that modular incidence treewidth is incomparable with these
parameters and more general than incidence treewidth. Due to space constraints, we will
only sketch the proofs and refer to known results wherever possible.

I Example 2 (Fischer, Makowsky, and Ravve [10]). Let x1, . . . , xm be distinct variables.
The formula ϕm is defined as the set of clauses Ci,j for 1 ≤ i, j ≤ m and i 6= j, where
Ci,j = ({x1, . . . , xm} \ {xi, xj})∪ {¬xi,¬xj}. The signed incidence clique-width of ϕm tends
to infinity with m. The (unsigned) incidence graph corresponds to the complete bipartite
graph Kn,m for n =

(
m
2
)
. As in our initial example, module contraction reduces Kn,m to a

single edge, so the modular incidence treewidth of ϕm is 1 for arbitrary m.

I Example 3. Let x1, . . . , xm, y1, . . . , ym be distinct variables. We let ψm consist of the
clauses Ci for 1 ≤ i ≤ m where Ci = {yi, x1, . . . , xm}, along with m singleton clauses
{x1}, . . . , {xm}. The incidence graph I(ψm) of ψm has no nontrivial modules (it is prime),
so the modular incidence treewidth and incidence treewidth of ψm coincide. Since I(ψm)
contains Km,m as a subgraph, its treewidth is at least m. By contrast, it can be shown that
the signed incidence clique width of ψm is at most 5 for arbitrary m.

I Proposition 4. Modular incidence treewidth and signed incidence clique-width are incom-
parable.

It is readily verified that modular incidence treewidth dominates incidence treewidth: by
contracting modules, we obtain an induced subgraph of the incidence graph, and the treewidth
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of a graph is bounded from below by the treewidth of any of its subgraphs. Also note that the
sequence of formulas from Example 2 has unbounded treewidth. By combining these facts,
we can conclude that modular incidence treewidth is more general than incidence treewidth.
Incidence clique-width is known to be more general than signed incidence clique-width [10].
It is also more general than modular incidence treewidth.

I Proposition 5. Incidence clique-width is more general than modular incidence treewidth.

Proof. It is well known that there is a function that provides an upper bound on the
clique-width of any graph in terms of its treewidth, and that clique-width is invariant
under contraction of modules [7]. It follows that incidence clique-width dominates modular
incidence treewidth. Because incidence clique-width dominates signed incidence clique-width,
the sequence of formulas described in Example 3 has bounded incidence clique-width. We
conclude that incidence clique-width is more general than modular incidence treewidth. J

The incidence β-hypertree width is parameter that is yet more general than incidence clique-
width [13]. At this time, it remains open whether #SAT is polynomial-time tractable on
formulas for which one of these parameters is bounded.

We note that tractability of #SAT for formulas of bounded primal treewidth, bounded
incidence treewidth, or bounded signed incidence clique-width can also be established using
algorithmic meta-theorems by Courcelle, Makowsky, and Rotics [5, 6]. The hardness result
presented in Section 4 implies that our Theorem 1 cannot be proved in this way.

2 Preliminaries

Let X and Y be sets and let f : X → Y be a function. We write f−1(y) = {x ∈ X | f(x) = y}.
For a subset X ′ ⊆ X, we let f |X′ denote the restriction of f to X ′. If Y = 2Z for some set Z
and f(x) = {z} for some z ∈ Z, then we may write f(x) = z instead. If g : X∗ → Y ∗ is a
function with g(x) = f(x) for all x ∈ X ∩X∗, then the function f ∪ g : X ∪X∗ → Y ∪ Y ∗ is
defined as (f ∪ g)(x) = f(x) if x ∈ X and (f ∪ g)(x) = g(x) if x ∈ X∗ \X.

We assume an infinite supply of propositional variables. A literal is a variable x or a
negated variable x; we put var(x) = var(x) = x; if y = x is a literal, then we write y = x.
For a set S of literals we put S = {x | x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a
finite non-tautological set of literals. A finite set of clauses is a CNF formula (or formula, for
short). The length of a formula F is given by

∑
C∈F |C|. The union of two clauses C and D

denoted CD is the union of the literals of C and D. A variable x occurs in a clause C if
x ∈ C ∪C. We let var(C) denote the set of variables that occur in C. A variable x occurs in
a formula F if it occurs in one of its clauses, and we let var(F ) =

⋃
C∈F var(C).

Let F be a formula. The incidence graph of F is the bipartite graph I(F ) with vertex
set var(F ) ∪ F and edge set {Cx | C ∈ F and x ∈ var(C) }. Two vertices are twins if they
have the same neighbors in I(F ). The equivalence classes of the twin relation are called
modules. By the definition of I(F ), twins either consist of two variables or of two clauses.
If the vertices of a module correspond to clauses, then we call the module a clause module;
otherwise we call it a variable module. By definition, all clauses of any clause module C
of F contain all variables of any variable module X of F if and only if one clause of C
contains at least one variable from X. This implies that the set of variable modules of C is a
subset of the set of variable modules of F . For a set of clause or variable modules S, we let
〈S〉 =

⋃
S∈S S denote the union of the elements of S. The modular incidence graph I∗(F ) is

the bipartite graph obtained from I(F ) after removing all but one vertices of each module. A
truth assignment is a mapping τ : X → { 0, 1 } defined on some set X ⊆ var(F ) of variables.
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For x ∈ X, we define τ(x) = 1− τ(x). A truth assignment τ satisfies a clause C if C contains
some literal x with τ(x) = 1. If τ satisfies all clauses of F , then τ satisfies F ; in that case we
call F satisfiable. The satisfiability (SAT) problem is that of testing whether a given formula
is satisfiable. Propositional model counting (#SAT) is a generalization of SAT that asks for
the number of satisfying truth assignments.

Let X be a set of variables. For a clause C, we let CX = { ` ∈ C | var(`) ∈ X }.
For a formula F , we let FX = {CX | C ∈ F } \ {∅}. For a truth assignment τ , we let
clause(τ) = τ−1(0) ∪ τ−1(1). This leads to the following lemma.

I Lemma 6. Let τ : X → {0, 1} be a truth assignment, and let C be a clause. Then C is
not satisfied by τ if and only if CX = clause(τ |X∩var(C)).

We now define the notion of a projection, which plays an important role in our paper. As
an aside, Kaski, Koivisto, and Nederlof [16] recently showed that SAT can be solved in
polynomial time for formulas with a bounded number of projections. Let F be a formula
and X be a set of variables. We refer to the set of clauses of F not satisfied by a truth
assignment σ : X → {0, 1} as the (negative) projection of σ on F denoted F (σ). We denote
the set of all these projections by P(F,X) = {F (σ) | σ : X → {0, 1} }. If X ⊇ var(F ),
then we may write PF instead, as P(F,X) = P(F,var(F )) holds in that case. Note that F
is satisfiable if and only if the empty projection ∅ belongs to PF , and that the number
of satisfying truth assignments of F is equal to |{σ : var(F ) → { 0, 1} | F (σ) = ∅ }|. The
following lemma states a useful property of projections.

I Lemma 7. Let F be a formula and let X,Y be two sets of variables. Let σ : X → {0, 1} and
τ : Y → {0, 1} be two truth assignments that agree on X ∩ Y . Then F (σ ∪ τ) = F (σ)∩F (τ).

For a clause C and a formula F we let select(F,C) = {C ′ ∈ F | C ⊆ C ′ }. We will now
prove two useful lemmas. The first lemma is for clause modules C. It implies that every
truth assignment on var(〈C〉) either satisfies C or does not satisfy a unique clause of C. The
second lemma is similar but with respect to variable modules X.

I Lemma 8. Let C be a clause module of a formula F , and let τ be a truth assignment
defined on a set X of variables. Then C(τ) = select(C, clause(τ |X∩var(C))).

Proof. Let C ∈ C. Because C is a clause module, var(C) = var(C). Then, by using Lemma 6
and the definitions of clause and select, we find that C ∈ C(τ) if and only if C is not
satisfied by τ if and only if CX = clause(τ |X∩var(C)) = clause(τ |X∩var(C)) if and only if
C ∈ select(C, clause(τ |X∩var(C))). J

I Lemma 9. Let X be a variable module of a formula F , and let τ be a truth assignment
defined on a superset of X. If FX(τ) 6= ∅, then FX(τ) = clause(τ |X).

Proof. Let C ∈ FX . Because X is a variable module, var(C) = X. Lemma 6 tells us that C
is not satisfied by τ if and only if C = clause(τ |X∩var(C)) = clause(τ |X). J

We also need the following lemma.

I Lemma 10. Let X be a variable module of a formula F . Let E = {σ : X → {0, 1} | FX(σ)
= Π} for some Π ∈PFX . Then |E| = 1 if Π 6= ∅, and |E| = 2|X| − |FX | if Π = ∅.

Proof. First suppose that Π 6= ∅. By Lemma 9, the only truth assignment τ : X → {0, 1}
with FX(τ) = Π is the truth assignment τX with FX(τX) = clause(τX). Hence, |E| = 1 in
this case. Now suppose that Π = ∅. The number of truth assignments defined on X is equal
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to 2|X|. By Lemma 9, each such truth assignment τX does not satisfy one unique clause with
set of variables X, namely the clause clause(τX). Then there are exactly 2|X| − |FX | truth
assignments τX that do satisfy FX , i.e., that have FX(τX) = ∅ = Π. Hence, in this case,
|E| = 2|X| − |FX | . J

We finish this section with some terminology on tree decompositions. Let G = (VG, EG)
be a finite, undirected graph with neither self-loops nor multiple edges. A tree decomposition
of G is a triple (T, χ, r), where T = (VT , ET ) is a tree rooted at r and χ : VT → 2VG is
a labeling of the vertices of T (called nodes) by subsets of VG (called bags) such that the
following conditions hold:

1.
⋃
t∈VT

χ(t) = VG,
2. for each edge uv ∈ EG, there is a node t ∈ VT with {u, v} ⊆ χ(t),
3. for each vertex x ∈ VG, the set of nodes t with x ∈ χ(t) forms a connected subtree of T .

The width of a tree decomposition (T, χ) is the size of a largest bag χ(t) minus 1. The
treewidth of G is the minimum width over all possible tree decompositions of G. A tree
decomposition (T, χ, r) is nice if T is a binary tree such that the nodes of T belong to one of
the following four types:

A. a leaf node t is a leaf of T ,
B. an introduce node t has one child t′ and χ(t) \ {v} = χ(t′) for some vertex v ∈ VG,
C. a forget node t has one child t′ and χ(t′) \ {v} = χ(t) for some vertex v ∈ VG,
D. a join node t has two children t1, t′2 and χ(t) = χ(t1) = χ(t2).

Kloks [17] showed that every tree decomposition of a graph G can be converted in linear
time to a nice tree decomposition, such that the size of the largest bag does not increase,
and the corresponding tree has at most 4|VG| nodes.

Let F be a formula. We call the treewidth of I∗(F ) the modular incidence treewidth of F .
Let (T, χ, r) be a nice tree decomposition of I∗(F ). For t ∈ VT , we write χc(t) and χv(t)
to denote the sets of clause modules and variable modules in χ(t), respectively. Note that
χ(t) = χc(t) ∪ χv(t). Moreover, we let Xt and Ft denote the set of variable modules and the
set of clause modules occurring in the subtree rooted at t, respectively. We write Xt = 〈Xt〉
and Ft = 〈Ft〉. Note that Xr = var(F ) and Fr = F .

3 Solving #SAT for Formulas of Bounded Modular Treewidth

In this section, we present an algorithm for computing the number of satisfying truth
assignments of a formula F . This algorithm runs in polynomial time provided that the
modular incidence treewidth of F is bounded. We begin by explaining the main ideas.

Let F be a formula and X be a set of variables. We can partition truth assignments
defined on X into equivalence classes with respect to a relation ∼(F,X), which is defined
as follows. Let σ, τ : X → {0, 1} be two distinct truth assignments. Then σ ∼(F,X) τ if
and only if σ and τ satisfy exactly the same set of clauses of F , or equivalently, if and only
if F (σ) = F (τ). Due to the latter equivalence, we can speak about the projection of an
equivalence class of ∼(F,X) on F . Recall that the number of satisfying truth assignments
of F is equal to |{σ : var(F )→ { 0, 1} | F (σ) = ∅ }|, which is the size of the equivalence class
of ∼(F,var(F )) corresponding to the empty projection.

Now let (T, χ, r) be a nice tree decomposition of I∗(F ). We will apply dynamic program-
ming over (T, χ, r). As is usual, we start in the leaves of the tree and, using the parent-child
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relation, move to nodes closer to the root, and we stop after having processed the root. For
each node t ∈ VT , we define the formula

F ∗t =
{
FX | X ∈ χv(t)

}
∪ Ft =

{
FX | X ∈ χv(t)

}
∪ 〈χc(t)〉 ∪ Ft \ 〈χc(t)〉,

and we compute the sizes of those equivalence classes [τ ] of ∼(F∗t ,Xt) that consist of truth
assignments τ with (Ft \ 〈χc(t)〉)(τ) = ∅; we call such equivalence classes transferable. Below
we explain the reasons why we do this.

First, the union of the transferable equivalence classes of ∼(F∗r ,Xr) that consist of truth
assignments τ with 〈χc(r)〉(τ) = ∅ in addition to (Fr \ 〈χc(t)〉)(τ) = (F \ 〈χc(t)〉)(τ) = ∅
contains all satisfying truth assignments of F . Note that such truth assignments may
not satisfy some formula FX for some X ∈ χv(r), but in that case only formulas in
FX \ Fr = FX \ F are not satisfied, and these are irrelevant for our output.

Second, we do not have to compute the sizes of any non-transferable equivalence classes of
∼(F∗t ,Xt). The reason for this is that these equivalence classes only contain truth assignments τ
that cannot be extended to satisfying truth assignments of F . This can be seen as follows.
Let τ be a truth assignment from a non-transferable equivalence class of ∼(F∗t ,Xt). By
definition, Ft \ 〈χc(t)〉 contains a clause C not satisfied by τ . Then C must contain at least
one variable x ∈ Xr \Xt in order to be satisfied by an extension of τ . Let C be the clause
module that contains C. Let X be the variable module that contains x. Then XC ∈ I∗(F ).
Hence, by condition 2 of the definition of a tree decomposition, there exists a node t′ ∈ VT
with {X, C} ⊆ χ(t′). Because x ∈ Xr \Xt, we find that X ∈ Xr \Xt. Because X ∈ χ(t′), this
means that t′ is not a node of the subtree of T rooted at t. Because C ∈ χ(t′), we then find
that C ∈ Fr \ Ft. However, as C ∈ Ft \ 〈χc(t)〉, we also have C ∈ Ft \ χc(t). This violates
condition 3 of the definition of a tree decomposition. Hence, non-transferable equivalence
classes may be discarded during our dynamic programming.

Third, we must keep track of how truth assignments that not yet satisfy all clauses in F
can be extended to truth assignments that do satisfy F in a later stage of the dynamic
programming. In particular, such truth assignments may not yet satisfy clauses C that
belong to clause modules in χc(t) or that contain variables from variable modules in χv(t);
in the latter case their restriction CX belongs to FX for some X ∈ χv(t). In order to do this
bookkeeping we must partition truth assignments that satisfy Ft \ 〈χc(t)〉 into equivalence
classes of truth assignments that satisfy exactly the same clauses of any FX with X ∈ χv(t)
and exactly the same clauses of any C ∈ χc(t). The reason why the partitioning does not
cause an exponential blow-up if the modular incidence treewidth of F is bounded is due to
two of our lemmas from Section 2. For a clause module C ∈ χc(t), the number of equivalence
classes of ∼(C,Xt) on is bounded by |C|+ 1 due to Lemma 8. For a variable module X ∈ χv(t),
the number of equivalence classes of ∼(FX ,Xt) is bounded by |F |+ 1 due to Lemma 9. Hence,
the total number of different transferable equivalence classes of ∼(F∗t ,Xt) is at most∏
C∈χc(t)

(|C|+ 1) ·
∏

X∈χv(t)

(|F |+ 1) ≤ (|F |+ 1)|χc(t)|+|χv(t)| = (|F |+ 1)|χ(t)| ≤ (|F |+ 1)k, (1)

where k denotes the treewidth of I∗(F ), i.e., the modular incidence treewidth of F . We
observe that this bound is polynomial if k is fixed.

In order to describe the transferable equivalence classes, we use some terminology intro-
duced by Ganian, Hlinený and Obdrzálek [12], which we adjusted for our purposes. Let t ∈ T .
A shape for t is a pair of mappings (α, θ) where α has domain χv(t) with α(X) ∈PFX for
all X ∈ χv(t) and θ has domain χc(t) with θ(C) ∈P(C,Xt) for all C ∈ χc(t). An assignment
τ : Xt → {0, 1} is said to be of shape (α, θ) if it satisfies the following three conditions:
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62 Model Counting for CNF Formulas of Bounded Modular Treewidth

(a) FX(τ) = α(X) for all X ∈ χv(t)
(b) C(τ) = θ(C) for all C ∈ χc(t)
(c) (Ft \ 〈χc(t)〉)(τ) = ∅.

In other words, the set of assignments τ that are of shape (α, θ) describes exactly one
transferable equivalence class of ∼(F∗t ,Xt). From now we denote this class by Nt(α, θ), and
we write nt(α, θ) = |Nt(α, θ)|. We denote the set of all shapes for t that correspond to a
transferable equivalence class by St. By (1), we have |St| ≤ (|F |+ 1)k for all nodes t ∈ VT .
Also note that any truth assignment τ : Xt → {0, 1} has a (unique) shape if and only if
(Ft \ 〈χc(t)〉)(τ) = ∅. We sometimes denote the shape of such a truth assignment τ by
(αtτ , θtτ ), where αtτ (X) = FX(τ) for all X ∈ χv(t) and θtτ (C) = C(τ) for all C ∈ χc(t). Because
equivalence classes are nonempty by definition, not all pairs (α, θ) with α(X) ∈PFX for all
X ∈ χv(t) and θ(C) ∈ P(C,Xt) for all C ∈ χc(t) form a shape for a node t ∈ VT . We make
this more explicit in our next lemma (see condition (ii) in particular).

I Lemma 11. Let (α, θ) ∈ St with t ∈ VT , and let χ∗v(t) ⊆ χv(t). Moreover, let τ : Xt →
{0, 1} satisfy FX(τ) = α(X) for all X ∈ χ∗v(t). For all C ∈ χc(t), the following three
conditions hold:

(i) If C has no variable modules in χ∗v(t), then C(τ |〈χ∗v(t)〉) = C.
(ii) If C has some variable module X ∈ χ∗v(t) with α(X) = ∅, then C(τ |〈χ∗v(t)〉) = C(τ) = ∅,

and moreover, θ(C) = ∅ should τ ∈ Nt(α, θ).
(iii) If C has exactly p ≥ 1 variable modules X1, . . . , Xp in χ∗v(t) and α(Xi) 6= ∅ for

i = 1, . . . , p, then C(τ |〈χ∗v(t)〉) = select(C, α(X1) · · ·α(Xp)).

We will now give the exact details of our dynamic programming, i.e., how we compute all
sizes nt(α, θ) over all t ∈ VT in order to be able to compute the desired output

n =
∑

(α,θ)∈S ∗r

nr(α, θ),

where S ∗r consists of those (α, θ) ∈ Sr with θ(C) = ∅ for all C ∈ χc(r). Note that S ∗r = ∅ is
possible; in that case F is not satisfiable and n = 0.

Recall that the nodes of a tree of a nice tree decomposition can be partitioned into four
types of nodes. Our next four lemmas show how to compute the sizes nt(α, θ) for these four
types, i.e., for leaf nodes, introduce nodes, forget nodes and join nodes t, respectively.

I Lemma 12. Let t be a leaf node and (α, θ) ∈ St. Then nt(α, θ) =
∏
X∈α−1(∅)(2|X|−|FX |).

Let (α, θ) ∈ St for some t ∈ VT . We define a mapping g with domain χc(t) × χv(t) as
follows. When X ∈ χv(t) is not a variable module of a clause C ∈ χc(t), we let g(C, X) = C.
Otherwise, we let g(C, X) = ∅ if α(X) = ∅, and g(C, X) = select(C, α(X)) if α(X) 6= ∅.

I Lemma 13. Let t ∈ T be an introduce node with child t′, such that χ(t) \ {S} = χ(t′) for
a module S ∈ χ(t). Let (α, θ) ∈ St. Moreover, let α′ = α|χv(t′) and θ′ = θ|χc(t′).

(i) If S ∈ χv(t), then nt(α, θ) =


∑

θ∗∈T

nt′(α′, θ∗) if α(S) 6= ∅

(2|S| − |FS |)
∑

θ∗∈T

nt′(α′, θ∗) if α(S) = ∅,

where T = { θ∗ | (α′, θ∗) ∈ St′ and θ∗(C) ∩ g(C, S) = θ(C) for all C ∈ χc(t) }.

(ii) If S ∈ χc(t), then nt(α, θ) = nt′(α, θ′).
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I Lemma 14. Let t ∈ T be a forget node with child t′, such that χ(t) = χ(t′) \ {S} for a
module S ∈ χ(t′). Let (α, θ) ∈ St.

(i) If S ∈ χv(t′), then nt(α, θ) =
∑

Π∈PF S

nt′(α ∪ {(S,Π)}, θ).

(ii) If S ∈ χc(t′), then nt(α, θ) = nt′(α, θ ∪ {(S, ∅)}).

I Lemma 15. Let t ∈ T be a join node with children t1 and t2. Let (α, θ) ∈ St. Moreover,
let T1,2 = { (θ1, θ2) | (α, θ1) ∈ St1 , (α, θ2) ∈ St2 , and θ1(C)∩θ2(C) = θ(C) for all C ∈ χc(t) }.
Then the following equality holds:

nt(α, θ) = 1∏
X∈α−1(∅)

(2|X| − |FX |)
∑

(θ1,θ2)∈T1,2

nt1(α, θ1) · nt2(α, θ2).

We are now ready to present the proof of our main result, which we restate below.

Theorem 1. The number of satisfying assignments of a CNF formula F with modular
incidence treewidth at most k can be computed in time `O(k), where ` is the length of F .

Proof. Let F be a formula with modular incidence treewidth at most k. We first construct
I(F ) and perform module contraction to obtain I∗(F ). Clearly, this can be done in time
O(`c) for some constant c independent of F . By using Bodlaender’s algorithm [2] we obtain in
linear time a tree decomposition of I∗(F ) of width at most k. Recall that Kloks [17] showed
that such a tree decomposition can be converted in linear time to a nice tree decomposition
(T, χ, r) of width at most k, and at most 4|VI∗(F )| ≤ 4` nodes. Also recall that the desired
output is

n =
∑

(α,θ)∈S ∗r

nr(α, θ),

where S ∗r consists of those (α, θ) ∈ Sr with θ(C) = ∅ for all C ∈ χc(r). In order to compute n,
we compute the sizes nt(α, θ) for all t ∈ VT . Here we follow a bottom-up approach starting
at the leaves. For each node t ∈ VT , we use one of the Lemmas 12–15 depending on the type
of t, i.e., whether t is a leaf, introduce, forget or join node, respectively. The correctness of
our algorithm follows from these lemmas and some extra arguments: when any new clause
module C is introduced in a node t (that is either a leaf or an introduce node) we find that
θ(C) = C(τ) = C(τ |〈χv(t)〉) should τ be a truth assignment in Nt(α, θ) for some pair (α, θ),
and then Lemma 11 tells us that θ(C) must be fixed to some set of clauses. Hence, if θ(C) is
not equal to this set of clauses, then we must discard the pair (α, θ).

If t is a leaf node, then we first determine which pairs (α, θ) may belong to St. We do
this by using Lemma 11, where we choose χ∗v(t) = χv(t) = Xt; the latter equality follows
from the fact that t is a leaf. We then find that there can only exist a truth assignment
τ ∈ Nt(α, θ) if the following three conditions hold for all C ∈ χc(t).

(i) θ(C) = C(τ) = C(τ |〈χv(t)〉) = C if C has no variable modules in χv(t).
(ii) θ(C) = ∅ if C has a variable module in χc(t) with α(X) = ∅.
(iii) θ(C) = C(τ) = C(τ |〈χv(t)〉) = select(C, α(X1) · · ·α(Xp)) If C has exactly p ≥ 1 variable

modules X1, . . . , Xp in χv(t) and α(Xi) 6= ∅ for i = 1, . . . , p.

Note that checking these three conditions for all C ∈ χc(t) takes linear time for a given pair
(α, θ). If these conditions are violated for some C ∈ χc(t), then we discard the pair (α, θ).
Otherwise, i.e., if these conditions are satisfied for all C ∈ χc(t), then we apply Lemma 12. If
we find that nt(α, θ) = 0, then (α, θ) /∈ St (as equivalence classes are nonempty by definition)

STACS’13
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and we discard this pair. If t is a introduce node that introduces a variable module, then
we apply Lemma 13 (i). Here, we find that a pair (α, θ) ∈ St only if nt(α, θ) > 0. If t is a
introduce node that introduces a clause module C, then we we first determine which pairs (α, θ)
may belong to St. We do this by using Lemma 11, where we choose χ∗v(t) = χv(t). Because C
is introduced by t, we find that C /∈ Ft \ χc(t). Hence, by definition of a tree decomposition,
C contains no variable modules from Xt \χv(t). This means that C(τ) = C(τ |〈χv(t)〉) should τ
be a truth assignment in Nt(α, θ). Lemma 11 tells us that this can only happen if the above
conditions (i)–(iii) hold. Note that checking these three conditions for C takes linear time
for a given pair (α, θ). If these conditions are satisfied for C, then we apply Lemma 13 (ii).
If we find that nt(α, θ) = 0, then (α, θ) /∈ St and we discard this pair. If t is a forget node
that forgets a variable module or a clause module, then we apply Lemmas 14 (i) and (ii),
respectively. If t is a join node, then we apply Lemma 15. In all these three cases, we find
that a pair (α, θ) ∈ St only if nt(α, θ) > 0.

As soon as we are of distance two from a node t, we can forget the sizes nt(α, θ). Recall
that |St| ≤ (|F | + 1)k for all nodes t ∈ VT due to (1). This bound on the number of
transferable equivalence classes for a node t has the following two consequences. First,
as can be seen from the equations in Lemmas 12–15, it means that it takes at most
p(`)(|F |+1)k(|F |+1)k = (|F |+1)2k time to compute the size nt(α, θ) of an equivalence class
Nt(α, θ), where p(`) is a polynomial that only depends on `, which also includes the additional
time necessary to verify whether a pair (α, θ) may belong to St in case of Lemma 12 and
Lemma 13 (ii). Second, it means that for each node we must compute and verify at most
(|F |+ 1)k sizes nt(α, θ). As the total number of nodes is at most 4`, we find that the total
running time is at most 4` · (|F |+ 1)k · p(`) · (|F |+ 1)2k = `O(k). J

4 A (Parameterized) Hardness Result

The polynomial-time algorithm developed in the proof of Theorem 1 runs in time `O(k) for
formulas of length ` and modular incidence treewidth at most k. That is, the order of the
polynomial depends on k. The question arises whether this dependency is necessary: Is there
a better algorithm with a running time of, say, O(`c) where c is a constant independent of
k? We give a negative answer subject to the complexity theoretic assumption W[1] 6= FPT
from the area of Parameterized Complexity.

We briefly review basic concepts of Parameterized Complexity; for more information
we refer to other sources [8, 11, 18]. An instance of a parameterized problem is a pair
(x, k), where x is the main part and k (usually a non-negative integer) is the parameter. A
parameterized problem is fixed-parameter tractable if it can be solved in time O(f(k)|x|c)
where f is a computable function and c is a constant independent of k. FPT denotes the
class of all fixed-parameter tractable decision problems. Parameterized Complexity offers a
completeness theory similar to the theory of NP-completeness for non-parameterized problems.
A parameterized problem P fpt-reduces to a parameterized problem Q if we can transform
an instance (x, k) of P into an instance (x′, k′) of Q with k′ ≤ g(k) in time O(f(k)|x|c) (f, g
are arbitrary computable functions, c is a constant) such that (x, k) is a yes-instance of P if
and only if (x′, k′) is a yes-instance of Q. A parameterized complexity class is the class of
parameterized decision problems fpt-reducible to a certain parameterized decision problem.
Of particular interest is the class W[1] which is considered as the parameterized analog to NP.
For example, the Clique problem (given a graph G and an integer k, decide whether G
contains a k-clique a complete subgraph on k vertices), parameterized by k, is well-known to
be W[1]-complete. It is believed that FPT 6= W[1], and there is strong theoretical evidence
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that supports this belief; for example, FPT = W[1] implies that the Exponential Time
Hypothesis fails [11].

Ordyniak, Paulusma, and Szeider [19] showed that satisfiability is W[1]-hard when
parameterized by the incidence β-hypertree width (see Section 1.1), using an fpt-reduction
from the following problem, which is W[1]-complete [21] (a k-partite graph is balanced
if its k partition classes are of the same size): The input is a balanced k-partite graph
G = (V1, . . . , Vk, E), the parameter is k. The question is whether G contains a k-clique.

Let G = (V1, . . . , Vk) be a balanced k-partite graph for k ≥ 2. The reduction [19]
maps the instance (G, k) to an instance (F, k) such that k is an upper bound on the β-
hypertree width of I(F ). By taking a closer look at the incidence graph I(F ), we will show
that the modular incidence treewidth of F can also be bounded by a function of k. Let
Vi = {vi1, . . . , vin}. The incidence graph I(F ) of F is structured as follows. One vertex
class (corresponding to variables of F ) contains the vertices of G plus new vertices zij for
1 ≤ i ≤ k and 1 ≤ j ≤ n− 1. The other vertex class (corresponding to clauses of F ) consists
of vertices Cu,v for u ∈ Vi, v ∈ Vj (i 6= j) and uv /∈ E(G) such that NI(F )(Cu,v) = Vi ∪ Vj .
Moreover, for 1 ≤ i ≤ k, it contains the vertices Di

1, . . . , D
i
n with NI(F )(Di

1) = {zi1, vi1, vi2} ,
NI(F )(Di

j) = {zij , zij−1, v
i
j+1} for 2 ≤ j ≤ n− 1 and NI(F )(Di

n) = {zin−1}.
The set of vertices Cu,v can be partitioned into modules C1, . . . , Cm, where m ≤

(
k
2
)
. By

deleting these modules, we obtain a graph I ′(F ) that consists of k connected components
corresponding to the subgraphs of I(F ) induced by {vi1, . . . , vin, zi1, . . . , zin−1, D

i
1, . . . , D

i
n}

for 1 ≤ i ≤ k. Note that these component are trees, so the treewidth of I ′(F ) is 1. Thus
the graph obtained from I ′(F ) by contracting modules has treewidth 1. We can turn the
corresponding tree decomposition into a tree decomposition of I∗(F ) by simply adding the
set of clause modules {C1, . . . , Cm} to each bag. So the modular incidence treewidth of F is
at most m+ 1 ≤

(
k
2
)

+ 1. This proves the following result.

I Theorem 16. The Satisfiability problem is W[1]-hard, when parameterized by an upper
bound on the modular incidence treewidth of the input formula.

That is, already deciding whether #(F ) > 0 for a formula F of length ` and bounded modular
incidence treewidth cannot be done in time O(`c) for constant c unless FPT = W[1] (where
#(F ) denotes the number of satisfying truth assignments of F ). In particular, this implies a
negative answer to the question raised at the beginning of this section.

5 Conclusion

In this paper, we proved that #SAT becomes polynomial-time tractable on formulas of
bounded modular incidence treewidth. Modular incidence treewidth combines treewidth
and module contraction, a powerful preprocessing technique widely used in combinatorial
optimization. The resulting parameter is incomparable with the most general structural
parameters for which #SAT is known to be tractable.

With this result, we approach the frontier of tractability from a new direction. On the
other side, one can find incidence β-hypertree width and incidence clique-width. It remains
open whether #SAT becomes tractable when these parameters are bounded. We think that
this work is a significant step towards proving tractability of #SAT on formulas of bounded
clique-width. Graphs of bounded clique-width that do not contain large bipartite subgraphs
are known to have bounded treewidth [3]. This gives us reason to believe that our techniques
carry over to the case of bounded incidence clique-width.
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