
Representing Aggregate Works in
the Digital Library

George Buchanan
Future Interaction Laboratory

Swansea University
Swansea, UK

g.buchanan@cs.ucl.ac.uk

Jeremy Gow
Ann Blandford

UCL Interaction Centre
31/32 Alfred Place

London, UK

j.gow@cs.ucl.ac.uk
a.blandford@cs.ucl.ac.uk

Jon Rimmer
Claire Warwick

UCL SLAIS
31/32 Alfred Place

London, UK

j.rimmer@ucl.ac.uk
c.warwick@ucl.ac.uk

ABSTRACT
This paper studies the challenge of representing aggregate
works such as collected poems and journals in heterogenous
digital library collections. We demonstrate the complex
range of aggregate types and the problems of faithfully rep-
resenting this in the digital library interface. Aggregates are
complex and pervasive, challenge many common assump-
tions and confuse the boundaries between organisational lev-
els within the library. Critically, we show that existing DL
systems can only provide imperfect representation of aggre-
gates, and that alterations to document encoding are not
sufficient to create a faithful reproduction of the physical
library. The challenge is illustrated by referring to concrete
examples, and solutions are demonstrated in a well-known
DL system and related to standard DL architectures.

Keywords: Digital Libraries, Collection Building

1. INTRODUCTION
Digital libraries started as collections of documents that
were usually of the same genre and form: e.g., a library
collection of sheet music, oral history recordings or devel-
opment literature. Items were distinct works by specific
authors, and this simplified the creation of large libraries.
In contrast, aggregate documents bring together several dis-
crete items into one “whole”: e.g. a collected volume of Irish
short stories, or multi-volume books [15].

For many information seekers aggregates play a critical role:
a literature scholar searching for a poem by Seamus Heaney;
a historian hunting for a memoir knowing that the original
is destroyed; a scientist hoping to find a special issue on
their topic; a researcher in Victorian literature wishing to
obtain Dicken’s novels in their original serialised form. In
each case, the goal may hide inside an aggregate with no
clue to the true content: would you expect to find the only

reproduction of the latest poem by Seamus Heaney, an Irish
Poet, in a book on Welsh literature?

Without corresponding metadata there is, clearly, no trace
of Heaney’s tribute to a Welsh academic. However conflat-
ing all the metadata for (say) a volume of poetry will reduce
search precision through “metadata spamming”. Each dis-
tinct work should be identified separately to ensure precise
matching for searches and consistent browsing and reading.

This paper will demonstrate that existing DL systems can-
not be made to fully represent aggregate documents in a
heterogenous collection without changes to the underlying
components of the DL. Changing the coding of ingested doc-
uments alone cannot address fundamental behaviors of DL
systems – i.e. changes to input documents cannot extend
the inherent functionality of the hosting DL software. The
complexities of aggregates are sufficiently great to mean that
‘solutions’ based on encoding–only approaches provide at
best a partial solution to the handling of aggregates.

1.1 Background
Our study of humanities academics [6] has focussed on the
digital provision of ‘born paper’ literature. While creating
collections of material dating from the 5th to 19th centuries
CE, we have found significant challenges in representing his-
toric material in a manner consistent with the original.

We have discovered that aggregate works are of key impor-
tance to humanists and frequently occur in humanities col-
lections. Discovering the correct item that academic refer-
ences identify is critical to a correct understanding of journal
articles, etc. In repositories of historic material – libraries
and archives – works originally written or published sep-
arately are bound together for the purposes of (physical)
long-term storage. When they appear electronically, the DL
needs to reflect the physical binding that has been refer-
enced in the past. Reference can be made to items which
though the original is now destroyed (e.g. due to war) still
exist in part or whole in earlier publications. The item is
still referred to directly, but now needs to be identified in
regard to published copies, rather than as a reference to the
destroyed original. As we shall show, the complications of
aggregate forms and representation provide some illogical
consequences in the digital domain.



1.2 Aggregates in the DL
It may appear that aggregates are readily stored in a digital
library without changing the DL software itself. Intelligent
selection of coding of ingested documents can, surely, resolve
all possible problems? One common and simple aggregate
is the journal. If a collection is built of individual journal
articles, then one document can consistently represent one
article, an issue of the journal is a set of articles, and a
volume a set of issues, etc. It would appear logical that
a similar approach should be effective for other aggregates.
Unfortunately, that is not the case.

As we will demonstrate during the course of this paper, this
simple situation misleadingly avoids the more complex re-
quirements that appear when a heterogenous collection is
built. A printed volume may contain several short stories,
or simply be a part of a single work, longer articles may
be serialised across different issues of a periodical yet form
a single whole, and users sometimes search for works that
have an independent life and identity, yet appear only as
part of larger documents. When only one challenge must be
met, e.g. a run of one journal, simple solutions suffice.

Readers will, naturally, use whichever reference data they
have, and weakly defined searches will behave very differ-
ently if the library distinguishes between individual works,
or subsumes them within a larger entity. For a library to
support effective searching and browsing, retrieval must be
reliable under both criteria.

When a comprehensive and elegant implementation is re-
quired for a library that contains a wide variety of aggregate
types, ad–hoc document encoding methods (e.g. adding new
metadata fields) fail and cannot provide functions that are
not already encoded into the DL system.

1.3 Summary
The inherent complexity of aggregate support has already
been identified by other researchers (e.g. [8]). However,
solutions to the aggregate problems are absent from DL lit-
erature, and a systematic analysis of aggregate documents
in the DL has yet to be undertaken. We and others have
recently addressed models of individual library items during
ingest and indexation [10, 5], and document versioning [4].
It is now timely to address aggregates in their turn.

This paper proceeds in five parts: first we enumerate differ-
ent types of aggregate documents, to clarify the later dis-
cussion. Secondly, we discuss how these aggregates could be
represented using current DL systems. Subsequently, we re-
view user interaction issues through a user study, and then
proceed to identify some solutions and outstanding issues.
The paper closes with a discussion of related literature and
the course for future research.

2. AGGREGATE STRUCTURES & TYPES
This section introduces sample types of aggregate works in
historic literature. First, it is worth clarifying our model of
what an aggregate is. We presuppose the existence of some
kind of ‘document unit’. An ordered series of these may be
collected together to form an aggregate, which can in turn
form part of another aggregate. So, aggregate works are
ordered trees with documents units at the leaves.

In this paper we restrict ourselves to textual examples. Units
may themselves be documents, or parts of documents –
where aggregation stops and internal document structure
commences is not necessarily clear, and often depends on
the library users’ needs and library administration resources.
Such issues are beyond the scope of this paper.

In the following discussion, we enumerate some features of
aggregate works. For clarity each aggregate type is given an
identifier ‘AGn’ . Note that the features are not all mutually
exclusive, so a single aggregate work may exhibit several.

Homogenous Aggregation (AG1) The example above of
journal articles aggregated in issues can be termed homoge-
nous aggregation. Each aggregated unit is of the same type.
However, many journals also contain editorial content and
indexes. Articles themselves may be, say, original academic
contributions or reviews of other literature (e.g. published
books). Therefore, the pure homogenous collection is actu-
ally rather rare, as our examples below illustrate.

Heterogenous Digital Forms (AG2) Though an aggre-
gate work may be logically homogenous, its digital form
may vary internally. This can arise where an aggregate
has been digitised over a period in which digitisation prac-
tice shifted. For example, we encountered this situation
while handling content from the Oxford Text Archive1: some
works were initially encoded in COCOA/Tact transcripts,
but later parts were both scanned and supplied with a TEI
transcript. Such heterogeneity clearly complicates ingest.

Serial Aggregation (AG3) Forms of aggregation emerge
from the requirements of publishing. Journals – a common
aggregation – appear at (semi–)regular intervals. This also
happens with larger works published over many years: e.g.
Sir John Fortescue’s “History of the British Army” was pub-
lished in twenty parts over a twenty-five year period (in the
case of the first edition) and thus each part has its own year
of publication. This work is even more complex as some
parts are multi-volume themselves, and some parts refer to
the same historical period yet were printed at different dates.

Binding Aggregation (AG4) Emerges from the techno-
logical limitations in printing: a work was published as one
item, bound in separate volumes: though clearly one work,
digitally we may need to treat the work as being of sepa-
rate parts in order to support accurate retrieval (e.g. from
references that distinguish a volume of the work).

Composite Aggregation (AG5) A key historic form of
aggregation within the same work was its serialisation within
a larger aggregate work. Unlike AG3 where the parts are
printed independently, Composite aggregation occurs when
the parts of a work appear mixed with other items. 19th
century fiction, including famous works by Charles Dick-
ens & Sir Arthur Conan Doyle were published in this way:
e.g. Sherlock Holmes appearing in The Strand magazine.
Though now available as consolidated works, their original
printed form is the aggregation of the separate columns and
pages in the containing periodical. Thus, what is from one
point of view a part of a newspaper is at the same time a

1http://www.ota.ox.ac.uk/



part of a novel. This is an important historical aggregation
which is of strong interest to humanities researchers.

Containing Aggregation (AG6) A work may be small
and only appear within larger works. However, those larger
works are not simply aggregates themselves. This is a point
where aggregation and internal structure collide. A practical
example can be found in the poems found in A.A. Milne’s
stories of Pooh: the poems have a “life” of their own, inde-
pendent of the holding work. Such contained works may not
be by the same author: e.g. T.S. St.Clair’s “A residence in
the West Indies and America” contains a chapter this is an
independent work by his brother on Martinique. The book
as a whole is not a composite AG5, but it does contain in
its entirety an article not by the author, and often referred
to directly without reference to the enclosing work.

Heterogenous Aggregation (AG7) As noted at the be-
ginning of this section, heterogenous aggregation is more
commonplace than we may think — even within modern
journals. In what may be termed ‘simple’ heterogenous ag-
gregation a work is created from units of diverse types. For
instance, newspapers and journals contain articles of dif-
ferent types that may need to be distinguished in the DL
interface (obituaries, articles, reviews). Similarly, libraries
bind tracts – small texts printed without hardback bindings
– into sets by size. It may be necessary to reconstitute such
arbitrary aggregations in digital form for reference purposes.

Supplementary Aggregation (AG8) A common form
of aggregation in historical literature is where an original
work is supplemented by further material, possibly by an-
other author. For example, a volume of memoirs may be
published with a foreword and/or additional notes. These
are also known as augmented works, but aggregation may
be a more appropriate model where the additional material
is substantial, or referenced independently.

Incomplete Aggregation (AG9) Some aggregates are in-
complete, either because they were not fully published or
because a collection may be incomplete. Some works were
published with the intention of being part of a series, but the
series was never completed, leading to “missing” volumes.

Variable Aggregation (AG10) Different versions or edi-
tions of an aggregate work may bring together different ma-
terial, or different versions of the same material: e.g. the
New Testament is an aggregation, where earlier forms often
omits books found in modern versions and vice versa.

As noted above, the boundary between dealing with exter-
nal and internal document structure is not fixed, and many
of these “aggregation” issues may also occur within a given
document. For example, a journal or diary of historic in-
terest may be considered to be a homogenous aggregate of
diary entries, perhaps with supplementary hetergenous con-
tent from letters received by the author. What is important,
from the view of a DL system, is that the treatment of inter-
nal and external aggregation are treated consistently in the
DL architecture and also in the user interface, to ease the
task of readers and librarians alike. Having surveyed some
of the important features of aggregate works, we now look
in more detail at their use in digital libraries.

3. REPRESENTING AGGREGATES
This paper is motivated by our need to represent historic
literature in a digital library. The section will first iden-
tify existing tools within DL systems that could be used
to support aggregation. Second, simple forms of aggrega-
tion are studied that will establish foundations from which
design choices can be formed for more complex situations.
The section finally examines the representation of complex
aggregate types from Section 2. The problems that emerge
from simple renderings of these aggregates are identified,
and where solutions have been achieved these are reported.

3.1 DL Tools for Aggregation
Before discussing aggregate support in detail, we will briefly
review the existing tools within DL systems that could be
exploited. We have used, and focus upon, the well–known
Greenstone DL system [19], but we will also refer to other
systems, namely DSpace [16] and Fedora [9].

Aggregation is essentially a hierarchical structure, where a
leaf node may be a whole work or, more rarely, a specific
part of one. In using existing DL tools, we must thus nec-
essarily focus on DL facilities that support hierarchical or-
ganisation and composition. As noted in [1], there are a
few key elements that underpin most DL systems and most
DL protocols. Two structural elements are key to handling
aggregates: documents and classifiers.

Classifiers provide the most commonplace support for hier-
archical structures over a set of documents, and they are
supported by each of the key DL systems in question. Each
of the three systems provide classifiers within a collection of
documents: e.g. Greenstone, provides lists, alphabeticised
lists (as used in encyclopaedia), and full hierarchies. All
these options can be viewed as some form or other of hier-
archy. Each item in the hierarchy typically has a human–
readable description, and (optionally) an abstract code. A
classification node will also contain a list of its children – be
they individual documents or sub–classifications.

Documents, on the other hand, have a wider range of repre-
sentation. Whilst each system allows metadata to be applied
to each document, the DL systems provide varying metadata
schemes – e.g. MARC or Dublin Core. However, this varia-
tion is of only limited significance in handling aggregates.

A key feature of documents is the concept of internal struc-
ture. Fedora and DSpace primarily approach documents
as bytestreams [9]. Though this facilitates the handling of
content in binary format, it reduces the concept of the docu-
ment to a single package of metadata, together with a set of
discrete binary sources. In contrast, Greenstone [19], views
documents themselves as a hierarchical structure, and a doc-
ument’s source may be either whole or part of one or more
files. These distinctions carry into the treatment of docu-
ments during indexation.

In Greenstone, a search may be performed over the parts of
all documents, or across the whole documents alone. In con-
trast, only whole documents are indexed in DSpace. Green-
stone also stores metadata for each part of a document, as
well as the document as a whole. This distinction is a critical
difference within the context of this paper: where document



parts can be indexed separately, we acquire a second tool
besides classification for representing aggregation.

Note that DSpace can use the Lucene search engine for doc-
ument content indexation. Though Lucene does provide for
document parts to be separately indexed, the authors have
found no evidence that there is the necessary counter–part
within DSpace itself to model internal document hierarchy.

3.2 Traditional Solutions
We commence our examination of providing aggregate sup-
port by examining the indexation of multi–volume works in
the physical library using card indexes. The traditional ap-
proach taken for aggregates which are indexed separately by
parts is to add metadata to each part of the aggregate, in-
dentifying either its parent aggregation, or its sibling parts.
In a DL, this classical approach can be realised in two ways:
either by a simple reinstantiation of the metadata tactic,
adding metadata items to each part, or by a hyperlinked
reference in the same manner. In the latter case, the meta-
data may retain the previous textual content, but this is
enriched by using hypertext links within the metadata.

However, this enriched approach, though placing less effort
upon the reader, suffers a number of problems which should
drive us to find a superior solution.

One immediate issue is ensuring that the link is a permanent
and reliable reference to the aggregate parent or other parts.
The use of DOI or similar permanent references is a partial
remedy, but itself suffers shortcomings. Variations in access
rights to different instances of the same part document cause
complications: e.g. the DOI may resolve to a copy of the
part which is not available to this particular reader. Per-
manence is less easily resolved than we can readily realise
within present technologies and practices.

A second issue is more durable: encoding aggregate data
within the catalogue as metadata upon the parts is, sim-
ply, an ineffective approach. There is no single canonical
instance of the aggregate data: rather, it is embedded in a
complex network of links that may have simple inconsisten-
cies or errors in the representation of a specific aggregate.
In consequence, extracting the data on an aggregate suffers
all the problems of crawling a network to extract data: it
is often slow, prone to error and possibly incomplete. No
sound solution can countenance such hazards.

Both these issues have been addressed in classic hypertext by
the concept of linkbases [7] – databases of links that may be
applied to any document upon retrieval. Linkbases provide
a proven solution to the maintenance issue, and will also
provide a support for more complex situations. However,
none of the three key DL systems that we have chosen to
examine provide a proper equivalent of a linkbase, and so
we cannot use this approach with extending or modifying
the DL system software.

To summarize, though we may wish to reproduce the helpful
cross–references in the library catalogue, we must seek to do
so in a discrete, well–structured and dependable form which
is better suited to a scientific approach to the problem of
representing and storing aggregate works systematically.

3.3 Simple Cases
Some common forms of aggregation are already well under-
stood in the digital domain. The online access of academic
journals is now commonplace. Each issue is treated as a
homogenous aggregation of articles, and each volume as a
homogenous set of issues. Such regular structure is easily
represented in any DL: each article is stored as a separate
document; each issue is recorded as a node in a hierarchy;
and each issue node is in turn a child of a volume node.
Frustratingly, this treatment proves sub-optimal in certain
circumstances: when a search is run, the result list is of
documents, and only inspection of discrete document meta-
data can identify where, for example, a particular issue (e.g.
topical special issue) of the journal frequently matches the
search. Sec. 4 will show that this is a real problem for users.

Users in the humanities often need to search for particular
forms of article, e.g. they may seek reviews of books on a
topic. This then results in a need to search by genre. Some
systems such as JSTOR2 permit this as an advanced option.
This effect is readily achieved by adding the genre as a meta-
data property of the collection: the collection remains, in in-
dexation terms, homogenous, but selectivity can be achieved
by adding metadata criteria to particular searches. Thus,
simple heterogeneity can be represented whilst retaining a
simple underlying digital representation of the material.

Thus, we can readily represent chronologically serial (AG3)
aggregates with simple heterogenous (AG7) or homogenous
(AG1) material using standard DL software. Using a com-
bination of hierachical classification and metadata, the regu-
lar hierarchy of the journal format is easily mirrored through
browsing hierarchies and genre distinctions between articles
can be made using document metadata. This underlying so-
lution can be reproduced in the DL interface – e.g. including
a genre option in the search tools available to the user.

This solution is, however, not complete: search results may
display the parent aggregate of each hit, but the aggregates
themselves are not indexed as documents, and functional
changes to the DL software would have to be made to consol-
idate related parts within the result list if this were desired.
No DL system would distinguish ‘aggregate’ from ‘classifier’
hierarchies, leading to confusion by the reader. As with the
traditional solution, a the reader must work to tie together
parts of the same aggregate.

Furthermore, DL systems frequently distinguish between ‘clas-
sifiers’ and ‘documents’ when it comes to indexation. Docu-
ments are indexed, whereas classifiers are themselves a form
of index, and properties such as their titles, etc. are not
indexed. This readily leads to shortcomings during interac-
tive search: if a user has the title of an aggregate that they
wish to find, the search will often fail, as the title is, from
the viewpoint of the DL, of a classification, not of a docu-
ment. An apparent solution to this dilemma is to include
the title of the aggregate within the title of the document
it contains. However, this in turn causes difficulties where a
document occurs within more than one aggregate. Again, in
some cases a simple approach proves effective, yet it clearly
appears suboptimal as complexity increases.

2http://www.jstor.org/



Classification is, itself, a source of further complications. In
Fedora, DSpace and other common DL systems, it is quite
normal for a document to be included in more than one clas-
sification. However, classifications are hierarchical trees –
each node belonging to only one parent. When an aggregate
is itself treated as a document, it can appear in one or more
classifier nodes. When an aggregate is itself represented as
a classifier, then a dichotomy emerges: a classifier node (all
or part of the aggregate) must have multiple parents. The
solution to this is to replicate the aggregate hierarchy in the
leaves of the topic hierarchy. This duplication leads to many
easily anticipated problems: adding or removing the aggre-
gate from a classifier becomes a more complex process, and
ensuring consistency if the aggregate is modified in any way.

A second issue also emerges: that the multiple instances of
the aggregate are not explicitly related. Therefore, it may
not be clear that the elements of two separate classifications
that represent the same aggregate are, in fact, the same.

Finally, whatever functionality is available in the DL in-
terface to relate items in a search result list to their parent
classifications, there cannot be a proper semantic distinction
made in the live DL system between those parts of a classi-
fication hierarchy that are actually members of a classifica-
tion, and which parts represent aggregational hierarchies. If
aggregates are never represented in a topical classification,
then a distinction can be made between “topical” hierarchies
and (e.g.) “journal” hierarchies, but this in turn means that
aggregates again disappeear from the topical ones!

In many simple libraries of homogenous aggregates such as
journals, there is little or no use of classifiers for topic hier-
archies for the journals or, say, an issue as a whole. Where
there classifiers are used, it is on individual articles. This
avoids the complications we have just described, however it
is quite clear that, for example, a collected volume of poetry,
a composite such as the Gang of Four, or a multi-volume
history is indeed an entity in its own right.

We cannot therefore simply use topic hierarchies as a substi-
tute for separate representation of aggregates in any of the
DL systems under consideration.

The ‘aggregates as classifiers’ solution is considerably supe-
rior to the classical approach and readily realised in any ma-
jar DL system. However, it is clearly not a perfect solution,
and unless the role of aggregates is merely as navigational
classifiers (often the case in collections of journals), problems
emerge both in targetting the aggregate as a whole during
search (e.g. the name of a poetry collection) as classifiers are
not search targets, and also in consistency and maintenance
when adding the aggregate to a topical hierarchy.

3.4 Conflicting Structures
Though the regular form of journal collections results in few
problems, it is easy to identify problematic situations that
differ in only small, yet critical, details. If the aggregation
hierarchy is not the same for all library content, or is even
potentially ambivalent, problems rapidly multiply.

We have already noted in the previous part the problems
that emerge when a document occurs within more than one

aggregate. Another difficulty frequently emerges when a col-
lection is built of pieces of literature. The scale of each item
varies from a short novella to a multi-volume “epic”. In
such situations, if we faithfully replicate the physical text in
digital form (critical for supporting referencing to particu-
lar pages) some texts will be formed from separate volumes,
whilst the majority are contained in only one. Conversely,
a single volume may contain several discrete works and be
known to the community both separately and as a combined
volume. The concept of ‘volume’ thus becomes problematic:
it may be both a container of or a part of a work.

Indexing a collection by volume only conflates works in the
same volume, whilst indexing by works only conflates vol-
umes of the same work – leaving reader to separate the
parts during retrieval. Clearly, neither solution is optimal:
the natural conclusion is to index by whichever unit (work,
volume) is the smaller and aggregate upwards to unify el-
ements of the same item. The underlying storage can be
represented in different ways in the library interface: e.g.,
matches against a single search for separate volumes of the
same work can be unified in the search result list, and re-
trieval made by volumes. This option is available within
documents in Greenstone (see [19] for details), and can be
achieved in DSpace with careful configuration.

During browsing, however, the contradictory use of volume
(as a part or as an aggregate) will still emerge. One can
distinguish the part-of and aggregate-of styles of volume
through a three-level hierarchy and using discriminating la-
bels for top and bottom levels. Many items are represented
by only one item at each level, and as reported in [17] such
simple single-child relationships should be pruned so that
unnecessary interaction is minimised. Thus, to improve the
interactional efficiency, the experienced hierarchy becomes
irregular. Bringing together different elements from the
same hierarchy node in search result lists remains a problem
(though this can be achieved in Greenstone).

The difficulty of consistent “levels” is not simply esoteric:
where full–text indexation is provided (e.g. in Greenstone
or DSpace with Lucene enabled), the search engine provides
search results from the items at one particular level. Every
item at a particular “level” will be treated as of the same
“type” as the others. Clearly, well–considered ingest will
produce a family of indexes. Nonetheless, the administrator
must consider which items are peers of others, and an appro-
priate default setting. No single setting under the current
model will provide matching services for multiple levels (e.g.
for a collection of poetry and for its consistuent poems) at
one moment without the duplication of items.

3.5 Difficult Cases
So far, we have examined simple cases of aggregation that
can be partially resolved in the DL interface. Now we turn
to more complex cases that create increasing degrees of dif-
ficulty. For reasons of space, we focus here on containing
aggregation (AG6) and composite aggregation (AG5).

Composite aggregates (AG5) represent particularly prob-
lematic structures. Serialised fiction such as Conan Doyle’s
Gang of Four disrupts DL assumptions in its original form.
One serial – the Strand magazine – contains another.



Composite Aggregate (AG5) across Four AggregatesContained Aggregate
(AG6)

Supplemented Aggregate
(AG8)

Homogenous Aggregate
(AG1)

Key

Aggregate
Parent

Aggregate
Child

Part of
Featured
Aggregate

Figure 1: Different aggregate types

If we naively record each magazine as a single document,
then the reader would need to map their information need
(to read the Gang of Four in its original context) to partic-
ular editions of the correct publication – detailed knowledge
that the reader may well not have. The reader must would
also have to search for, and inspect, the particular editions
that contained part of the story.

A better approach would be to extract and record the ele-
ments of the story as one DL document, tidily avoiding the
problem for a searcher specifically looking for the Gang of
Four, but conversely divorcing it from its original context:
to connect each article with its context in the original maga-
zine, the user must in fact engage in the ‘hunting’ of articles
we apparently just avoided. Such contextual interpretation
is the nub of many practices in humanities research. Clearly,
an optimal approach allows both the recovery of the original
composited piece, and the magazines of which it was part.

How can this be done in current DL systems? We noted
above the use of classifiers to create simple aggregate struc-
tures in (say) Greenstone. However, each part of the “Gang
of Four” is a child of two aggregates: the issue of the Strand
in which it appears, and also of the serialised story itself.

Problems rapidly emerge if we look more closely at the DL
interface. Let us take Greenstone as an example, as it is ex-
tensively documented and functionally rich. When the user
views the document page for part of the story, we can hap-
pily configure Greenstone to present the parent classifiers
(both the Strand and Gang of Four).

Documents are, however, viewed within a context: e.g. the
user has navigated through the Strand magazine issue/article
hierarchy. Thus, one of these parent hierarchies will repre-
sent the user’s context for the document. For a poem, there
may be many more contexts (containing aggregates) than
the two we see in this example. Though Greenstone has the
ability to present the hierarchical information of containing
aggregates, it does not have the ability through reconfigura-
tion alone to identify the “current” aggregate at run time.
This shortcoming is shared with the other DL systems.

The document view alone is not the only one in which con-
figuration and ingest coding fail to achieve the full function
that one might wish. For example, returning to the “Gang
of Four”, if a user were to search for this story, would the
presentation of its separate parts as distinct items in the
result list be optimal? Given that a search by title should
match all elements of the aggregate, it seems clear that a
better solution would be to return the aggregate itself as a

single item. Returning to our observations on the function-
ality of DL systems above 3.1, hierarchy classifiers are not
themselves indexed, and therefore we cannot reconstitute
the single item without either ingesting a separate, distinct
document to represent it or changing the functionality of the
DL system. Given the duplication that would occur by rep-
resenting both the parts and the whole in the same index,
adjustments to the DL system are to be preferred.

4. USER STUDY
In this section we move from the technical issues underpin-
ning the indexation of aggregates in the digital library to the
interactional concerns that surround their use in practice.
The paper so far has identified shortcomings in aggregate
representation in the DL system. However, it is clearly also
important to identify how people use aggregates in practice,
and to what degree existing DL interfaces support common
information seeking strategies.

To explore the interactional issues surrounding the use of
aggregate documents, we undertook a brief user study. We
recruited 6 postgraduate students in Computer Science at
Swansea University, 2 library staff studying postgraduate
humanities research and 8 postgraduates & staff in human-
ities subjects. Participants were given a simple information
retrieval task, in a field related to their own, that involved
searching a familiar online DL: JSTOR for the humanities
and the ACM Digital Library3 for Computer Science. Users
used a large display to minimise screen size effects.

We wished to see the degree to which the researchers would
extract the identity of relevant aggregates, rather than see-
ing the consitituent parts as unrelated fragments. The two
library systems use rather different representations for ag-
gregations in their interfaces, and many researchers have ar-
gued that humanists emphasise scholarship when compared
to their scientific peers [18]. The protocol thus included a
pre-study questionnaire to establish the degree of use of ag-
gregate and non-aggregate printed works (e.g. monographs,
journals). During our evaluation of the results, we scruti-
nised the outcomes for differences between the groups.

Participants described their strategies in a talk-aloud pro-
tocol as they interacted with the retrieval engine. After
their task was completed, we elicited further information
in a semi–structured interview. The searches performed by
the participants were recorded, together with details of the
documents returned, opened and selected as relevant.

3www.jstor.org and www.acm.org/dl respectively



Space does not permit a full discussion of our hypotheses or
findings, so only a selection of the key details follow.

4.1 Findings
Much of what we observed reflects existing knowledge of
information seeking. Our investigation revealed a mix of
skill and interaction problems within the participants’ use
of the DL. These issues contributed to a low recognition of
larger-scale aggregates that were relevant to the chosen task.

Our study included the elicitation of practice with physical
literature as well as electronic material. Of the 16 partici-
pants, 13 reported normally checking the table–of–contents
of any journal issue that they retrieved physically. In con-
trast, only one reported doing so in electronic documents,
and even they commented that “often I forget, or I can’t
figure out how to get it”. This amply demonstrates that
there are differences between the physical and digital.

This was reflected in their online behavior: During retrieval,
users focussed on the descriptive metadata in each matching
document that they expected to contain relevant informa-
tion. In particular, these included the author, document
title and extracted prose content (e.g. abstract). A low
level of attention was paid to indexation material such as
the journal title, with diminishing attention being paid to
publication material such as page numbers and volumes –
notably only at most two journals were ever cited for any
search, whilst often there were several related titles. Journal
titles were primarily used to evalute relevance.

Eleven researchers specifically reported the significance of
special issues of journals, yet only three observed special
issues in their search results, though at least one occurred
during fourteen sessions, and one participant received arti-
cles from three such issues. Relevance clearly played a role,
with one session including the rejection of an identified spe-
cial issue because it was “off topic”.

Users often missed the frequent appearance of a journal issue
in a search result list. One humanities researcher, failed to
spot the regular appearance of a special issue of “Poetics To-
day” despite two articles appearing next to each other, one
of which they judged highly relevant. Two users searched
for individual journals by name, having seen them cited in
relevant works, yet neither received search results focussed
on that title. This was because the searches were interpreted
as “full text” searches, and subsequently matched references
within other documents.

Overall, documents were evaluated individually, though two
participants with library experience browsed through a spe-
cific journal. This was yet another strategy reported in the
physical world (reported by 12 users) that did not reappear
electronically. When users endeavored to use aggregates to
locate material, the libraries failed to give effective results.

4.2 Summary
These findings reflect the outcomes of prior research on the
(metadata) content of document summaries in search result
lists: readers seek for titles and narrative content first to
inform their acceptance or rejection of a hit as relevant. At

the point of inspecting a search hit, the reader’s attention is
not focussed on detecting patterns within the result set.

As readers in electronic environments recall and read indi-
vidual articles without retrieving their aggregating parent –
e.g. the journal issue – there is a much reduced opportunity
for encountering nearby related material. It may be noted,
however that this opportunity for “serendipity” is not with-
out cost, as in the physical library, the reader must travel
to the shelf holding the journal and then locate the article
within in. An approach that mirrors the physical world may
prove less acceptable to the user due to apparently unnec-
essary impedance and effort.

If we wish to support the identification of rich sources on
a topic (e.g. a special themed issue of a journal), then this
needs to be brought to the user in a way that does not in-
trude into the relevance judgement task and it also demands
little attention or effort.

5. SUPPORTING AGGREGATES IN DLS
We have demonstrated the technical and utility limitations
of current DL systems, and found that new functionality is
required to fully support heterogenous aggregates in DL sys-
tems. This section turns to implementing improved features.
We have extended a standard DL system – Greenstone – to
incorporate aggregate support. The methods used through-
out this section can be readily adapted to other systems.

Two key architectures of DL systems can be noted: what
we may term ‘bytestream’ architectures [9] that treat docu-
ments as a collection of metadata and corresponding binary
content that is delivered to the reader; and ‘full text’ archi-
tectures that treat documents as metadata and organised
text (where the content is textual) [19]. ‘Bytestream’ archi-
tectures generally do not index the full text of the document,
whereas full text architectures both index the text and are
aware of its internal structure. Clearly, particular systems
and particular installations may vary. For example, DSpace
is often installed as a simple bytestream architecture, but
can optionally be used with the Lucene XML indexer to
index some or all of the content of a collection [16].

5.1 Indexing Aggregates
We studied the complications of composite aggregates (AG5)
above. In this case there are two key options for full-text
indexation: first, each separate aggregate is indexed inde-
pendently and as a whole – resulting in duplication of text;
second, each unique unit of text is recorded only once, but is
referred to by each aggregate that uses it. The duplication
approach can readily be achieved with any digital library,
though it is clearly wasteful of space. The second approach
is unfortunately not as straightforward to exploit as it may
at first appear: additional indexation structures need to be
present in the DL. We will discuss this in the context of
the MG indexer used in Greenstone – though much of this
discussion would also apply to Lucene.

Like many full-text search engines, MG [20] can create mul-
tiple indexes for different parts of each document: the text is
indexed once, and each internal document structure mapped
to a single span across the text index (see. Fig. 2). How-
ever, this model of a continuous and contiguous stream of



Documents

Sections

Aggregate

Figure 2: Indexation of an aggregate

blocks does not support composite aggregation which com-
bines separate, discrete blocks of text. A supplementary
map structure links an aggregate document to its text blocks;
the document weight for each aggregate must also be cal-
culated. MG is also typical in indexing every document in
sequence with its full text. This adds a second complication:
when an aggregate is to be processed, it has no content of
its own – that is found in its constituents. Either the data
to link it to its constituents can be transmitted to the search
engine at this point, or it can be omitted and processed in
a separate phase of indexation.

We chose this second approach, and added a third index-
ation phase to MG’s two–phase design. The new phase
records the map structure and calculates document weights
for aggregates. In the first two phases (dictionary creation,
compression and indexation) document text is indexed and
compressed. The only change made is that aggregation data
is used to identify when a document or document part is
a duplicate of another. Where duplication occurs, second
and subsequent occurrences are marked, and not passed for
processing. Instead, in the second (compression and index-
ation) phase the document’s pointer to its content in the
index is made to point to the first occurrence. All multi-
ple occurrences are temporarily stored in a lookup table.
When the third, aggregation, phase is run, this receives a
hierarchical set of identifiers for each aggregate. Each set
identifies which documents or document parts consititute
the aggregate. The aggregate record is then completed by
translating the input document identifiers with their offsets
into the compressed index, and the document weight for the
aggregate is then calculated by first creating a word list for
the whole document and calculating its weight accordingly.
For faster processing, MG’s approximate weighting system
[20] can be used to create an aggregate document weight.

When searches are run, they can use either the original MG
index (retrieving simple documents only), or the third-level
index to return aggregates. In the latter case, results can be
of aggregates only or both aggregates and documents.

There is IR research on detecting similar and contained doc-
uments [3]. However, in our context references are explicit
and the task therefore different. IR duplicate research may
well prove useful in identifying aggregation.

5.2 Classification and Aggregates
In Sec.3.3 we reported that simple aggregates can be rep-
resented in existing DL systems through using classification
structures. We also noted that simple consolidation of dif-
ferent parts of a document can be achieved in search result

lists when using Greenstone. We have just reported a more
sophisticated approach that is superior when composite ag-
gregation occurs – i.e. when an item occurs in more than
one aggregate. It is worthwhile pointing out the different
advantages of these two approaches.

Where aggregates are represented by classifiers, they are
usually not known to the underlying search engine — par-
ticularly for a DL with a componentised services architecture
[14, 5]. Thus classifier nodes do not have a document weight
and cannot reliably be used for ranking. Conversely, where
knowledge of aggregates is supported in the text indexer,
different problems emerge: for example, if a specific docu-
ment that appears in several aggregates matches a search,
how should it be displayed? In its own right, or within
an aggregate? If within an aggregate, which one? If the
aggregated document is a good match, and its aggregating
parents a poorer match, then the apparent solution differs
from where the opposite applies.

In both cases, there are interactional concerns: e.g. the de-
fault interface of Greenstone allows the user to choose which
level of document structure to search at (within documents,
sections or paragraphs, etc.). Given the variable numbers of
levels that occur in aggregates, and the fact that the struc-
ture of aggregates differs, this simple approach breaks down,
e.g. the ‘volumes’ labelling clash referred to in Sec.3.4. The
manual selection of search granularity also places a burden
on the user. It will take further exploration and research to
find optimum solutions for such problems.

5.3 Architecture
We observed above 3.3 that classifiers, though an adequate
representation of aggregates in some circumstances, suffered
from significant shortcomings when topic hierarchies included
aggregate works, and also in terms of their display during
browsing and searching. Our solution to this problem was
to add a new “Aggregate” item type to Greenstone, incor-
porating many of the features of the existing “Classifier”
objects. Aggregates are hierarchical trees, as is the case
with classifiers, but can be referenced directly by (multi-
ple) classifiers as if they were documents. This means that
the aggregate structure is only stored once in the DL sys-
tem, avoiding the maintenance and efficiency problems that
emerged when classifiers were used to represent aggregates.

Aggregates are recalled as if they were documents during
searching and browsing, exploiting the improvement to the
search engine described immediately above. However, sim-
ple reverse look–up mechanisms can be used to simulate a
similar behavior using an unmodified search engine.



CL1 (Geographical)

CL1.3 (Americas)

CL1.3.4 (Caribbean)

Browse (All Classifiers)

CL3 (Historical)

CL3.2 (Ages)

CL3.2.7 (19th Century)

CL3.2.7.1 (Napoleonic Empire)

CL1.3.4.17 (Memoirs of a Residence... by T.S. St Clair)

CL1.3.4.17.6 (Martinique by W.F. St Clair)

CL3.2.7.1.29 (Memoirs of a Residence... by T.S. St Clair)

CL4.2.7.1.29.6 (Martinique by W.F. St Clair)

AGG14 (Memoirs of a Residence... by T.S. St Clair)

AGG14.2 (Martinique by W.F. St Clair)

Figure 3: Representing an aggregate using classifiers in italic and using a specific aggregate object bold – the
latter approach is clearly superior.

Given the broad similarity in DL systems observed in [1],
the model is readily transferrable. As with FRBR support
[4], this “extension” to Greenstone is stand–alone, modular
and immediately adaptable by other DL systems. It also
supports reference of an aggregate part to an item stored in
any common DL system.

6. INTERACTION DESIGN
Readers in a library naturally get the “whole volume” con-
taining an aggregate; readers in a DL only get the part which
they retrieve. Delivering the whole aggregate in a DL leads
to confusion and poor retrieval performance (due to naive
up–and–down scrolling), which eliminates the direct parallel
with the volume–centred retrieval of physical libraries. We
therefore need to discover a different solution that recovers
the benefits of the physical environment in the digital do-
main. Elaine Svenonius [15] is typical of many librarians in
claiming that serendipity is, in fact, not an incidental feature
of the traditional library, but rather a direct product of its
structure and organisation. Aggregation is one such means
of placing related material together so that “serendipity”
is in fact a product of co–location. The simple method of
adding metadata to documents for aggregation seen in our
user study clearly failed to reproduce this effect.

Aggregation also complicates delivering text for reading: e.g.
when a PDF file contains three works, each work could be in-
dexed individually by the DL system. If the user now wishes
to read the material, in current DL systems the entire PDF
will be delivered. As observed in [2], users often inspect only
the top of any digital document. If the visible head of the
document does not match the user’s expectations (e.g. the
title of a constituent work rather than the aggregate name
used as a search term) it is likely that they will incorrectly
conclude that an error has occurred or the document they
wish is not available. Therefore, a comprehensive handling
of aggregates must deliver material for reading in a way that
is consistent with the collection index. For file formats such
as XML this is straightforward, whereas PDF for example is
complex. Where delivery of the whole aggregate is necessary
or desirable, information should appear in the DL interface
to ensure that the user’s expectations are aligned with what
they will receive if they download the work. Where DLs
provide material in different digital formats (e.g. HTML,
PDF or Word of the same document) then this interface id-
iom may be adopted for delivering content of different scope

(work, volume, etc.). The cautions over confusions in down-
load formats noted in [2] will almost certainly apply.

7. RELATED WORK
The difficulties of the representation of aggregate works in
digital libraries has already received attention. Hickey and
O’Neill [8] note a number of problems in applying the Func-
tional Requirements for Bibliographic Records (FRBR) [12].
They propose treating aggregates as published volumes of
more than one work, and to avoid recording aggregates as
works in their own right. This introduces an inconsistency
with the accepted FRBR model where every published vol-
ume (manifestation) is an instance of a single work.

Two standard electronic document formats allow for the rep-
resentation of aggregate works: TEI [11] and METS [10]. In
each case, aggregates are achieved by pointers, be they be-
tween content of the same file or to separate files, to create a
whole. TEI primarily uses pointers between parts of the ag-
gregate, whereas in METS a document contains references
to part or whole other METS documents – these parts then
form sections of the current document.

Aggregates have been poorly represented in DL systems to
date. Though it is conceivable that Fedora’s object-based
architecture [9] may be able to represent aggregation, we
have not been able to discover any published coverage of
this issue. Popular systems such as DSpace [16] and Green-
stone [19] have focussed on treating collections as sets of
objects, with a hierarchical classification structure. Aggre-
gates can be represented using the classification structure,
as we demonstrated in Sec. 3.3, but at the loss of consistent
treatment of aggregates across both searching and browsing.

One may hope that practice and experience from library sci-
ence would be helpful. However, the historic need to find
and recover texts via bound volumes has emphasised the ap-
proaches we have seen in DL systems. Aggregates are gener-
ally indexed by part where the parts are discrete works: e.g.
the British Library4 binds brief tracts together in volumes,
but each tract in a volume is indexed separately. Conversely,
multi-volume works are usually, but by no means univer-
sally, indexed with only one entry. In the case of the British
Library, practice here varies from work to work.

4www.bl.uk



Svenonius [15], p. 103, notes that there are two potential
routes to relating aggregates with their constituent parts:
first, formal linkage structures; second, providing descriptive
aggregation (meta-)data for each item. The latter approach,
though informal and easy to apply, leaves much of the re-
trieval work with the user, and greater room for mismatches
between the descriptive data and the corresponding descrip-
tion of the part or aggregate in the catalogue index. This
paper has demonstrated that the link–based approach also
has its limitations, and that specific functions are needed in
the DL system to implement it effectively.

8. CONCLUSION
This paper introduced a number of different forms of ag-
gregate works in the digital library. It demonstrated that
simple types of aggregation are easily supported in DLs,
though with key shortcomings in their representation in the
DL interface. More complex forms of aggregation htat occur
frequently in historic literature map less readily to existing
DL architectures and interfaces. We reported on changes
to Greenstone and MG that widen the forms of aggrega-
tion that can be successfully represented in DLs. We briefly
reported on the complications of integrating these changes
into the DL user interface, and some corresponding solu-
tions. Though aggregates have only recently started to re-
ceive attention in the digital domain, a considerable amount
of work will be required to move from the initial steps repre-
sented here and in other projects such as the IFLA Working
Group on Aggregates [13] to a complete solution. In our
case, we wish to investigate further the appropriate interac-
tions to support the occurrence of aggregates in search result
lists, and the location of desired aggregates in the course of
information seeking.

9. ACKNOWLEDGEMENTS
This research is supported by EPSRC Grant GR/S84798.

10. REFERENCES
[1] D. Bainbridge, G. Buchanan, J. McPherson, S. Jones,

A. Mahoui, and I. H. Witten. Greenstone: A platform
for distributed digital library applications. In ECDL
’01: Proc. 5th European Conference on Digital
Libraries, pages 137–148, London, UK, 2001. Springer.

[2] A. Blandford, H. Stelmaszewska, and N. Bryan-Kinns.
Use of multiple digital libraries: a case study. In Proc.
ACM/IEEE-CS Joint Conf. on Digital libraries, pages
179–188. ACM Press, 2001.

[3] A. Broder. On the resemblance and containment of
documents. In Procs. Compression and Complexity of
Sequences, pages 21–29, 1997.

[4] G. Buchanan. Frbr: enriching and integrating digital
libraries. In JCDL ’06: Procs. 6th ACM/IEEE-CS
joint conference on Digital libraries, pages 260–269,
New York, NY, USA, 2006. ACM Press.

[5] G. Buchanan, D. Bainbridge, K. J. Don, and I. H.
Witten. A new framework for building digital library
collections. In JCDL ’05: Proc. ACM/IEEE Joint
Conf. on Digital Libraries, pages 23–31, 2005.

[6] G. Buchanan, S. J. Cunningham, A. Blandford,
J. Rimmer, and C. Warwick. Information seeking by
humanities scholars. In Proc. 9th European Conference
on Digital Libraries, pages 218–229. Springer, 2005.

[7] H. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins.
Towards an integrated information environment with
open hypermedia systems. In ECHT ’92: Proceedings
of the ACM conference on Hypertext, pages 181–190,
New York, NY, USA, 1992. ACM Press.

[8] T. B. Hickey and E. T. O’Neill. FRBRizing OCLC’s
WorldCat. Cataloging and Classification Quarterly,
39:239–251, 2005.

[9] C. Lagoze, S. Payette, E. Shin, and C. Wilper. Fedora:
An architecture for complex objects and their
relationships. 2005.

[10] Library of Congress. Metadata Encoding and
Transmission Standard (METS).

[11] C. Sperberg-McQueen and L. Burnard, editors.
Guidelines for Electronic Text Encoding and
Interchange. TEI P3 Text Encoding Initiative,
Oxford, 1999.

[12] Study Group on the Functional Requirements for
Bibliographic Records. Functional requirements for
bibliographic records. K.G. Saur, 1998.

[13] Study Group on the Functional Requirements for
Bibliographic Records. Minutes of the FRBR review
group’s meeting, Aug 2005.

[14] H. Suleman and E. A. Fox. Designing protocols in
support of digital library componentization. Proc.
European Conference on Digital Libraries,
2458:568–582, 2002.

[15] E. Svenonius. The Intellectual Foundation of
Information Organization. Digital Libraries and
Electronic Publishing. MIT Press, 2000.

[16] R. Tansley, M. Smith, and J. H. Walker. The DSpace
open source digital asset management system:
Challenges and opportunities. In Proc. European
Conf. on Dig. Libs., pages 242–253. Springer, 2005.

[17] Y. L. Theng, E. Duncker, N. Mohd-Nasir,
G. Buchanan, and H. Thimbleby. Design guidelines
and user-centred digital libraries. In Proc. 3rd
European Conf. for Digital Libraries, ECDL, pages
125–134. Springer-Verlag, 1999.

[18] S. S. Wiberley. Habits of humanists: Scholarly
behavior and new information technologies. Library Hi
Tech, 9:17–21, 1991.

[19] I. H. Witten, S. J. Boddie, D. Bainbridge, and R. J.
McNab. Greenstone: a comprehensive open-source
digital library software system. In Proc. ACM conf. on
Digital libraries, pages 113–121, 2000.

[20] I. H. Witten, A. Moffat, and T. C. Bell. Managing
gigabytes (2nd ed.): compressing and indexing
documents and images. Morgan Kaufmann, San
Francisco, 1999.


