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ABSTRACT
In this work we consider temporal networks, the links of
which are available only at random times (randomly avail-
able temporal networks). Our networks are ephemeral: their
links appear sporadically, only at certain times, within a
given maximum time (lifetime of the net). More specifically,
our temporal networks notion concerns networks, whose
edges (arcs) are assigned one or more random discrete-time
labels drawn from a set of natural numbers. The labels of
an edge indicate the discrete moments in time at which
the edge is available. In such networks, information (e.g.,
messages) have to follow temporal paths, i.e., paths, the
edges of which are assigned a strictly increasing sequence
of labels. We first examine a very hostile network: a
clique, each edge of which is known to be available only
one random time in the time period {1, 2, . . . , n} (n is the
number of vertices). How fast can a vertex send a message
to all other vertices in such a network? To answer this,
we define the notion of the Temporal Diameter for the
random temporal clique and prove that it is Θ(log n) with
high probability and in expectation. In fact, we show that
information dissemination is very fast with high probability
even in this hostile network with regard to availability. This
result is similar to the results for the random phone-call
model. Our model, though, is weaker. Our availability
assumptions are different and randomness is provided only
by the input. We show here that the temporal diameter of
the clique is crucially affected by the clique’s lifetime, a,
e.g., when a is asymptotically larger than the number of
vertices, n, then the temporal diameter must be Ω( a

n
log n).
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We, then, consider the least number, r, of random points
in time at which an edge is available, in order to guarantee
at least a temporal path between any pair of vertices of
the network (notice that the clique is the only network
for which just one instance of availability per edge, even
non-random, suffices for this). We show that r is Ω(log n)
even for some networks of diameter 2. Finally, we compare
this cost to an (optimal) deterministic allocation of labels
of availability that guarantees a temporal path between any
pair of vertices. For this reason, we introduce the notion of
the Price of Randomness and we show an upper bound for
general networks.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph la-
belling, network problems, path and circuit problems; G.3
[Probability and Statistics]: survival analysis

General Terms
Theory

Keywords
Temporal networks, random input, diameter, availability.

1. INTRODUCTION
A temporal network is a network that changes with time.

Many networks of today have links that are not always avail-
able. In this work, embarking from the foundational work
of Kempe et al. [19] and from the sequel [21], we consider
time to be discrete, that is, we consider networks in which
the links are available only at certain moments in time, e.g.,
days or hours. Such networks can be described via an un-
derlying graph G = (V,E) (the links of which can become
available) and an assignment L assigning a set of discrete
labels to each edge (arc) of G.

We consider here both the single-label-per-edge model
of [19] and the multi-labelled one, which allows links to be
available at multiple times (i.e., more than one label per
edge). These labels are drawn from the natural numbers (in



fact from a set of discrete times S = {1, 2, . . . , a}) and indi-
cate the discrete moments in time at which the correspond-
ing connection is available. Usually, we take a = |V (G)| (a
normalized case). Note that such networks are ephemeral:
No link is available at any time after time (day) a. We call
a the lifetime of the network.
In many (worst case) situations, availability of links comes

at a cost. Available links may correspond, e.g., to connec-
tions in physical systems requiring high energy. They may
also correspond to very rare moments in time, in which the
link of a hostile network is “unguarded” and, thus, one can
pass a message at that time without putting the message in
danger.
A temporal path (or journey) in such a network is a path

on the edges (arcs) of which one can find strictly increasing
labels. The time label used on the last edge of a temporal
path would then indicate the time at which a message would
arrive at the last vertex of the path.
Imagine a very hostile clique-network G, the links of which

are all usually guarded. Whenever a link is guarded it is im-
possible to pass a message through it. We may pass a mes-
sage to a neighbour (in G) only when the link to this neigh-
bour is unguarded (i.e., available). Now, let us assume that
each link will become available only at a random time in S.
Let us look at the case where S = {1, 2, . . . , n} (where n =
|V (G)|). After time n, no link of the clique is ever avail-
able! Such a random time indicates a break in the security
of the link. How fast can we pass a message (starting from
a vertex s) to all the other vertices in the clique? Certainly,
one possibility is to wait (for each destination t) for the link
(s, t) to become available. But this may mean a passing time
equal to n

2
in expectation. Can we spread a message faster?

In this paper, we show that for the temporal clique with a
single random moment of availability per link, one can still
pass the message to all vertices in time Θ(log n) with high
probability. That is, a seemingly very hostile clique (each
link of which is unguarded only for one random moment) is,
in fact, not so secure with respect to fast dissemination of
enemy information.
Note that the clique is the only graph G which achieves

temporal reachability of all vertices, even when each edge
(link) of it is only available at one time, chosen from the set
{1, 2, . . . , n}.
One now may wish to pay for greater (more) availability

of links. In fact, given a graph G, one may wish to find
the minimum total number of labels, over all edges, (OPT )
that guarantee a temporal path between any s, t ∈ V (G).
But, there are cases in which this OPT quantity is not even
approximable in P unless P = NP [21]. Instead, you may
bargain locally (per link) to“buy”a number of random times
for which the link is available. We assume here that we are
given a complicated network. Each node has no information
about the network topology, but knows the number of ver-
tices, n, and the diameter, d, of the net. We assume that
global coordination over availability of all edges is impossible.
(Otherwise, an assignment of the same d consequtive labels
per edge would guarantee all-pairs reachability. But this re-
quires global coordination.) However, we allow adjacent ver-
tices to agree on a number, r(n), of random available times
for the edge joining them. This is a local operation that
uses local, random availability to replace the lack of global
knowledge and global coordination. What is the least r to
guarantee a temporal path between any pair of vertices in

G, with high probability? In this paper, we show that r is
lower bounded by Ω(log n) even for some graphs of diame-
ter 2. We then estimate sufficient values of r to guarantee
temporal paths between all node-pairs (with high probabil-
ity) for any graph G. In this paper, we write that an event
holds “with high probability” when there exists a constant
c ≥ 1 such that the probability of the event is at least 1− 1

nc ,
where n is the number of vertices.

In this work we, thus, initiate the study of “random”
ephemeral temporal networks. We define notions like the
temporal diameter (to capture fast dissemination of infor-
mation) and the Price of Randomness, PoR (to capture the
cost to pay per link in order to guarantee temporal reacha-
bility of all node-pairs by local random available times with
high probability). Intuitively, PoR is the ratio mr

OPT
, where

r random times of availability for each and every link are
able to guarantee all-pairs temporal reachability with high
probability. We believe that our work will motivate further
research on both temporal networks and random temporal
networks.

1.1 Relation to the Random Phone-Call
Model

The first logarithmic time results for probabilistic infor-
mation dissemination were obtained in the classical Random
Phone-Call model defined in [9]. In [9], the authors present a
push algorithm that uses Θ(log n) time and Θ(n log n) mes-
sage transmissions. For complete graphs of size n, Frieze
and Grimmett [15] presented an algorithm that broadcasts
in time log2 n+lnn+o(log n) with a probability of 1−o(1).
Later, Pittel [27] showed that (with probability 1−o(1)) it is
possible to broadcast a message in time log2 n+lnn+ f(n),
where f(n) can be any slow growing function.

Karp et al. [17] presented a push and pull algorithm which
reduces the total number of transmissions to O(n log log n),
with probability 1 − n−1, and showed that this result is
asymptotically optimal. For sparser graphs it is not possible
to stay within O(n log log n) message transmissions together
with a broadcast time of O(log n) in this phone-call model,
not even for random graphs [11]. However, if each node is al-
lowed to remember a small number of neighbors to which it
has communicated in some previous steps, then the number
of message transmissions can be reduced to O(n log log n),
with probability 1− n−1 [3, 12].

The network model adopted in this paper resembles the
Random Phone-Call model to some extent, however, it is
essentially different. The dependence of the temporal di-
ameter (of the hostile clique) on its lifetime, for example,
cannot be captured by the random phone-call model. The
model described here is, in fact, considerably weaker. In the
phone-call model, each node, at each step, can communi-
cate with a random neighbour (in fact, a node may do this
at several times). In our model, each link is given a (single)
random moment of existence, by the input. A node can send
via this link only at that moment. That is, randomness is
not a part of our algorithmic techniques and can not be used
at arbitrary time steps.

1.2 Other related work
In this section we provide a short survey of papers with

studies on networks labelled by time units or segments.
Labelled Graphs. Labelled graphs have been widely used
both in Computer Science and in Mathematics, e.g., [25].



Single-labelled and multi-labelled Temporal Net-
works. The model of temporal networks that we consider
in this work is a direct extension of the single-labelled model
studied in [19] as well as the multi-labelled model studied
in [21]. The prior results of [19,21] do not consider random-
ness at all, and therefore are different in nature to this work.
The initial paper [19] considers the case of one (non-random)
label per edge and examines shortest journey algorithms.
The second paper [21] extends this (non-random) model to
many labels per edge and mainly examines the number of
labels needed to guarantee several graph properties with cer-
tainty.
Continuous Availabilities (Intervals). Some authors
have assumed the availability of an edge for a whole time-
interval [t1, t2] or multiple such time-intervals and not just
for discrete moments as we assume here. Although this is
a clearly natural assumption, we design and develop tech-
niques for the discrete case which are quite different from
those needed in the continuous case [6, 14].
Dynamic Distributed Networks. In recent years, there
is a growing interest in distributed computing systems that
are inherently dynamic [1, 2, 4, 7, 8, 10,20,22–24,26,28].
Distance labelling. A distance labelling of a graph G is
an assignment of unique labels to vertices of G so that the
distance between any two vertices can be inferred from their
labels alone [16,18].

2. PRELIMINARIES
In this section we first define temporal networks (cf. Def-

inition 1) by assigning a set Le ⊆ N of time-labels to every

edge e of a (di)graph G̃ = (V,E).

Definition 1. Let G̃ = (V,E) be a (di)graph. A tem-

poral network on G̃ is a triplet G = (G̃, L) (also denoted
as G = (V,E, L)), where L = {Le ⊆ N : e ∈ E} is an

assignment of labels on the edges of G̃.

When for every edge e, Le ⊆ {1, 2, . . . , a}, for some a ∈ N,
the network is called ephemeral and a is called the lifetime
of the network.
The values assigned to each edge of the graph are called

time labels of the edge and indicate the times at which we
can cross it (from one end to the other in arbitrary direction,
if the edge is undirected, or from its start to its end, if the
edge is directed).
In the context of this paper, we mainly study random tem-

poral networks, in which the labels assigned to the edges are
chosen at random from a set of available time labels. More
specifically, the model that we consider is that of random
temporal networks, an instance of the labels of each edge
of which is given in advance to the algorithm, so that the
traveller can see all adjacent edges to all vertices at every
moment in time.

2.1 Further Definitions
We can now talk about temporal edges (or time edges)

that are considered to be triplets (u, v, l), where u, v are the
ends of an edge in the temporal network and l ∈ L{u,v} is
a time label of this edge. That is, if an edge e = {u, v} has
more than one time labels, e.g., has a set of three time labels,
Le = {l1, l2, l3}, then this edge has three corresponding time
edges, (u, v, l1), (u, v, l2) and (u, v, l3).

Definition 2. A temporal path or journey j from a ver-
tex u to a vertex v ((u, v)-journey) is a sequence of time
edges (u, u1, l1), (u1, u2, l2), . . . , (uk−1, v, lk), such that li <
li+1, for each 1 ≤ i ≤ k − 1. We call the last time label of
journey j, lk, arrival time of the journey.

Definition 3. A (u, v)-journey j in a temporal network
is called foremost journey if its arrival time is the minimum
arrival time of all (u, v)-journeys’ arrival times, under the
labels assigned to the graph’s edges. We call this arrival time
temporal distance of target vertex v from source vertex u and
we denote δ(u, v).

Now, consider any ephemeral temporal network G =
(V,E, L). Let every edge receive exactly one time label,
chosen randomly, independently from one another from a
set L0 = {1, 2, . . . , a}, where a ∈ N, with the probability of
an edge label to be i, ∀i ∈ L0, equal to

1
a
(UNI-CASE).

Definition 4. A temporal network that satisfies UNI-
CASE is called Uniform Random Temporal Network (U-
RTN).

In the special case, where the largest label, a, that can be
assigned to the edges of a graph is equal to the number of its
vertices, the formed network is called Normalized Uniform
Random Temporal Network (Normalized U-RTN).

Note.
There could be prospective study of cases in which each

edge of a graph may receive several time labels, selected
randomly and independently of one another from the set
L0 = {1, 2, . . . , a}, where a ∈ N, with the selection following
a distribution F (F -CASE). In such cases, the networks
under consideration would be called F -Random Temporal
Networks (F -RTN) respectively.

In the following section, we focus on the study of uniform
random temporal networks, where the underlying graph is
complete (clique). Under this scope, we define a statistical
property of the uniform random temporal clique, namely its
temporal diameter.

Definition 5. Consider an instance (G,L) of a uniform
random temporal clique, G. The Temporal Diameter of G,
denoted by TD, is the expected value of the maximum tem-
poral distance over all pairs of vertices in G:

TD(G) = E
(
maxs,t∈V (G)δ(s, t)

)

3. THE TEMPORAL DIAMETER OF THE
NORMALIZED UNIFORM RANDOM
TEMPORAL CLIQUE

Let G = Kn be a directed clique1 of n vertices and let us
consider its normalized U-version. That is, every edge e ∈
E(Kn) is given a single availability label, le, and those labels
are chosen randomly and independently from one another
from the set L0 = {1, 2, . . . , n}, with the probability that
the label of a particular edge equals i being equal to 1

n
,

∀i ∈ L0.
We give an algorithmic construction (Algorithm 1) which

can, with high probability, find a journey with small ex-
pected arrival time from any given source vertex s to any
1for every pair of vertices u, v ∈ Kn, there exist both the
directed edges {u, v} and {v, u}



given target vertex t in the directed normalized uniform ran-
dom temporal clique, Kn.

Remark 1. It is easy to see that the same result holds for
the undirected uniform random temporal clique. In this case,
an edge e of the clique with a random label l corresponds to
two directed edges e′ and e′′ of the directed clique and the
analysis is not significantly affected.

Algorithm 1 The directed normalized U-RT clique Expan-
sion Process algorithm

Input: An instance of a directed normalized uniform ran-
dom temporal clique of n vertices, Kn

1: d = Θ(log n); {the exact value of d and of the con-
stants c1, c2 below will be determined by the analysis}

2: Γ1(s) = {v ∈ V : l{s,v} ∈ (0, c1 log n]};
3: for i = 2, . . . , d+ 1 do
4: Γi(s) = {v ∈ V : l{w,v} ∈ (c1 log n+(i−2)c2, c1 log n+

(i− 1)c2] for some w ∈ Γi−1(s)};
5: Γ′

1(t) = {v ∈ V : l{v,t} ∈ (2c1 log n + 2dc2, 3c1 log n +
2dc2]};

6: for i = 2, . . . , d+ 1 do
7: Γ′

i(t) = {v ∈ V : l{v,w} ∈ (2c1 log n+ (2d− i+ 1)c2,
2c1 log n+ (2d− i+ 2)c2] for some w ∈ Γ′

i−1(s)};
8: if ∃u ∈ Γd+1(s), v ∈ Γ′

d+1(t) such that l{u,v} ∈ (c1 log n
+dc2, 2c1 log n+ dc2] then

9: Follow the directed path from s to u, the directed edge
(u, v) and the directed path from v to t;

10: return success;
11: else
12: return failure;

Analysis of the Expansion Process Algorithm.
Next, we analyze the Expansion Process algorithm and

we prove that it succeeds with high probability, thus giving
a short, O(log n), journey from s to t.
Note. In the following analysis, we reveal each arc’s ran-

dom label only once, when examined (delayed revelation
of random values). Thus, we are consistent with the fact
that the input is a specific instance (with all random labels
drawn).
Denote by p1 the probability that an outgoing edge of s

has a label in the desired interval, i.e., (0, c1 log n]. p1 is
also the probability that an outgoing edge of some vertex
in Γd+1(s) to Γ′

d+1(t) has label in the desired interval, i.e.,
(c1 log n + dc2, 2c1 log n + dc2]. Finally, p1 is also the prob-
ability that an incoming edge of t has a label in the desired
interval, i.e., (2c1 log n+ 2dc2, 3c1 log n+ 2dc2]. It is:

p1 =
c1 log n

n

Denote by p2 the probability that a vertex v ∈ Γi(s) (or
a v ∈ Γ′

i(t)), i = 1, 2, . . . , d, has an outgoing edge (or in-
coming edge, respectively) with label that falls in the de-
sired interval, i.e., (c1 log n + (i − 1)c2, c1 log n + ic2] (or
(2c1 log n+(2d−1)c2, 2c1 log n+(2d−i+1)c2], respectively).
It is:

p2 =
c2

n

Also, denote by ∆i, ∆
∗ and ∆′

i, i = 1, 2, . . . , d+1 the desired
intervals in each case, namely:

∆1 = (0, c1 log n]

∆2 = (c1 log n, c1 log n+ c2]

∆3 = (c1 log n+ c2, c1 log n+ 2c2]

. . .

∆d+1 = (c1 log n+ (d− 1)c2, c1 log n+ dc2]

∆∗ = (c1 log n+ dc2, 2c1 log n+ dc2]

∆′
d+1 = (2c1 log n+ dc2, 2c1 log n+ (d+ 1)c2]

. . .

∆′
2 = (2c1 log n+ (2d− 1)c2, 2c1 log n+ 2dc2]

∆′
1 = (2c1 log n+ 2dc2, 3c1 log n+ 2dc2]

Note. If there exists at least one edge with label in the
corresponding ∆i, ∆

∗ or ∆′
i, i = 1, 2, . . . , d+ 1 at each step

of the expansion, then the time needed to reach t starting
from s is at most 3c1 log n+ 2dc2.

t

s

Γ1(s)

Γ2(s)

Γd+1(s)

Γ′

1(t)

Γ′

2(t)

Γ′

d+1(t)

∆1

∆2

∆′

1

∆′

2

∆d+1

∆′

d+1

∆∗

Figure 1: The Expansion Process.

Figure 1 illustrates how the expansion process from s to
t works. That is, starting from s, we find the set Γ1(s) of
vertices to which there is an edge from s with label within
∆1, then the set Γ2(s) of vertices to which there is an edge
from a vertex in Γ1(s) with label within ∆2, etc. We show
that, with high probability, there is a journey from s to t

through vertices in the consecutive Γis.

3.1 The first step of the expansion process
The first step of the expansion process aims in establishing

with high probability a number of Θ(log n) neighbours of
s, so that the edge from s to each one of them is in ∆1.
Note that the probability of a label on an edge (s, u), u ∈ V

being in ∆1 is exactly p1 = c1 logn

n
, because of the uniform

selection of labels.
Let E1 be the event that 1

2
E(|Γ1(s)|) ≤ |Γ1(s)| ≤

3
2
E(|Γ1(s)|). Note that:

E(|Γ1(s)|) = (n− 1)p1 = (n− 1)
c1 log n

n



By the Chernoff bound on the Binomial B(N, p1), where
N = n− 1, ∀β ∈ (0, 1), it holds:

Pr(#successes ∈ (1± β)Np1) ≥ 1− e
− β2

2
Np1

Now, use β = 1
2
. We get:

Pr(#successes ∈ (
1

2
,
3

2
)Np1) ≥ 1− e

− 1
8
Np1

≥ 1− e
− 1

8
(c1 logn− c1 log n

n
)

≥ 1− e
− 1

8
(c1−1) logn

≥ 1− 1

n
c1−1

8

We now choose c1 ≥ 33, and thus c1−1
8

≥ 4. So we have
established the following:

Lemma 1. It holds that:

Pr(E1) = Pr

(
|Γ1(s)| ∈

(1
2
,
3

2

)(
c1 log n(1−

1

n
)
))

≥ 1− 1

n4

3.2 The expansion process until reaching
Θ(

√
n) vertices

We now show that given:

• |Γ1(s)| = Θ(log n), and

• the probability of an edge having a label in a particular

interval ∆i, i = 2, . . . , d+ 1 is exactly p2 = |∆i|
n

= c2
n

the vertices reachable from s via temporal paths grow (al-
most) geometrically.
In particular, let us now condition on the event that

1
8
c1 log n ≤ |Γi(s)| ≤ λ

√
n, for some fixed λ > 0. To find the

set Γi+1(s), we consider the vertices which are not in all the
Γj(s), j = 1, 2, . . . , i (and the fact that we look for directed
edges), i.e.,

ni = n− |
i⋃

j=1

Γj(s)|

The probability that a vertex u (out of the ni vertices)
belongs to Γi+1(s) is exactly the probability that the label
of some (v, u) ∈ E, v ∈ Γi(s), is in the interval ∆i+1, i.e.,
equal to:

q = 1− Pr(u 6∈ Γi+1(s))

= 1− (1− p2)
|Γi(s)|

= 1− (1− c2

n
)|Γi(s)|

We need the following fact:

Fact 1. It holds that (1− c2
n
)|Γi(s)| ≤ 1− c2|Γi(s)|

2n

Proof. Let p = c2
n

and k = |Γi(s)|. We know that:

(1− p)k ≤ 1− kp+

(
k

2

)
p
2 (1)

We will show that:

−kp+

(
k

2

)
p
2 ≤ −kp

2

and, thus, by relation 1 it holds that:

(1− p)k ≤ 1− kp

2

Indeed, we have:

−kp+

(
k

2

)
p
2 ≤ −kp

2
⇔

k(k − 1)

2
p ≤ k

2
⇔

(k − 1)p ≤ 1 ⇔
(|Γi(s)| − 1)c2 ≤ n

The latter holds for n sufficiently large.

Thus, we have:

q ≥ 1− (1− c2|Γi(s)|
2n

)

=
c2|Γi(s)|

2n

≥ c1c2 log n

16n
= q

′

The random variable |Γi+1(s)| follows the Binomial distri-
bution B(ni, q) and dominates B(ni, q

′). Therefore, by the
Chernoff bound (with β = 1

2
), we have:

Pr
(
|Γi+1(s)| ∈ (

1

2
niq,

3

2
niq)

)
≥ 1− e

− 1
8
niq

′

(2)

But, ni ≥ n− (λ
√
n)d ≥ n

2
. So, relation 2 becomes:

Pr
(
|Γi+1(s)| ∈ (

1

2
niq,

3

2
niq)

)
≥ 1− e

− 1
16

n
c1c2 log n

16n

≥ 1− e
− 1

256
c1c2 logn

≥ 1− 1

n
c1c2
256

We will select c2 so that c1c2
256

≥ 4. So, with probability at

least 1− 1
n4 , it is:

3

2
niq ≥ |Γi+1(s)| ≥

1

2
niq ⇒

3

2
ni

c2|Γi(s)|
2n

≥ |Γi+1(s)| ≥
1

2
ni

c2|Γi(s)|
2n

⇒
3

4
c2|Γi(s)| ≥ |Γi+1(s)| ≥

1

8
c2|Γi(s)|

We have proved that the event

Ei =“|Γi+1(s)| is at most
3

4
c2|Γi(s)| and at least

1

8
c2|Γi(s)|”

holds with probability at least 1 − 1
n4 , provided that

1
8
c1 log n ≤ Γi(s) ≤ λ

√
n.

Thus, by conditioning on the event E =
⋂d

i=1 Ei, we have
that:

|Γd+1(s)| ≥
1

8
(
c2

8
)dc1 log n

and also

|Γd+1(s)| ≤
1

8
(
3c2
4

)dc1 log n



Choose d so that:

1

8
(
3c2
4

)dc1 log n ≤ λ
′√

n, for some constant λ′
> 0

⇒ d ≤
log 8λ′

√
n

c1 logn

log 3c2
4

and also:

1

8
(
c2

8
)dc1 log n >

√
n

⇒ d >
log 8

√
n

c1 logn

log c2
8

The probability that one or more of the events
E1, E2, . . . , Ed fail is (by the union bound) at most:

d
1

n4
≤ c

′ log n
1

n4
≤ 1

n3
, for some c

′
> 0

Thus, we have shown the following:

Theorem 1. With probability at least 1− 1
n3 , the expan-

sion process out of s arrives at Θ(
√
n) vertices with tem-

poral paths of length d + 1 = Θ(log n), consistently labelled
in the intervals ∆i, i = 1, 2, . . . , d + 1, in time at most
c1 log n+ dc2 = Θ(log n).

3.3 The reverse expansion process (out oft)
Consider the edges reaching t reversed and consider the

process that labels them in ∆′
1. Let Γ′

1(t) be the vertices
derived in this way, i.e., reaching t with an edge labelled in
∆′

1. Continue the reverse expansion process until we reach
Θ(

√
n) vertices. By symmetry and independence, we get

exactly the same result as in Theorem 1:

Theorem 2. The expansion process out of t arrives at
Θ(

√
n) vertices with temporal paths (reverse direction) of

length d+1 = Θ(log n), consistently labelled in the intervals
∆′

i, i = 1, 2, . . . , d + 1. Thus, it arrives to each of these
vertices in time at most c1 log n+ dc2 = Θ(log n) with prob-
ability at least 1− 1

n3 .

3.4 The matching argument
The probability that both |Γd+1(s)| and |Γ′

d+1(t)| are of
size at least λ′√n, λ′ > 0 is at least 1− 2 1

n3 . Note that we
just need one edge (v1, v2), v1 ∈ Γd+1(s), v2 ∈ Γ′

d+1(t) with
label in the interval ∆∗ in order to demonstrate the existence
of a temporal path of largest label at most Θ(log n) from s to
t. Note also that for a given edge (v1, v2), v1 ∈ Γd+1(s), v2 ∈
Γ′
d+1(t), its label is in ∆∗ with probability exactly:

p1 =
|∆∗|
n

=
c1 log n

n

Thus, the probability of the event A =
“existence of such an edge” is:

p = 1−
(
1− c1 log n

n

)|Γd+1(s)|·|Γ′

d+1(t)|

and due to Theorems 1 and 2, it is:

p ≥ 1−
(
1− c1 log n

n

)(λ′)2n

≥ 1− e
−(λ′)2c1 logn

= 1− 1

n(λ′)2c1

We can choose c1 through the analysis so that we have:

p ≥ 1− 1

n3

The probability of any of the events of Theorems 1 and 2 or
event A failing is at most 3 1

n3 . Thus,

Theorem 3. In the directed normalized uniform random
temporal clique, given any vertices s, t, we can go from s

to t via a temporal path of length at most γ log n, for some
constant γ > 1, with probability at least 1− 3

n3 .

But, then we get our main theorem, as follows:

Theorem 4. The Temporal Diameter of the directed nor-
malized uniform random temporal clique is (with high prob-
ability) at most γ log n, for some constant γ > 1.

Proof. The probability that there exists a pair of ver-
tices s, t ∈ V so that Theorem 3 fails is less than n2 3

n3 = 3
n

(by the union bound). So, with probability at least 1 − 3
n
,

it holds that:

maxs,t∈V {temporal distance of t from s} ≤ γ log n

Thus,

TD ≤ γ log n, with probability at least 1− 3

n

and

TD > γ log n (but still ≤ n), with probability at most
3

n

Therefore,

TD ≤ (1− 3

n
)γ log n+

3

n
n

≤ γ log n− 3 log n

n
+ 3

Remark.
One can easily see that the latter is a threshold and that

the Temporal Diameter of the directed normalized uniform
random temporal clique cannot be any less than Ω(log n).
Assume the event E1, where the temporal diameter of the
directed normalized uniform random temporal clique G is
TD(G) = o(log n), i.e.,

∃α(n) −−−−−→
n→+∞

+∞ : TD(G) ≤ log n

α(n)

Conditional on E1, the label in every edge of G realizing the
diameter is within the interval (0, logn

α(n)
). Then, the prob-

ability of an edge e “existing” at some moment within the
interval (0, n) is:

le

n
≤ log n

nα(n)
= p

The temporal connectivity of G is dominated by the proba-
bility that Gn,p is connected. But when p = o( logn

n
), then

Gn,p will almost surely be disconnected [5].



3.5 Spreading a message in the directed uni-
form random temporal clique

Let us consider again the very hostile clique network G of
n vertices in which each edge is available only one random
time in the time period {1, 2, . . . , n}, and let us consider
the case where a vertex s wishes to propagate a message
to all other vertices. How fast can this message from s be
disseminated to the whole network? Consider the following
protocol:

∀u ∈ V (G), if u has the message from s, then:
when an arc out of u becomes available, send the message
through that arc;

The expansion process described in Algorithm 1 is a con-
struction that demonstrates a temporal path with O(log n)
arrival time from any vertex of the directed uniform random
temporal clique to any other vertex with high probability.
The above protocol merely exploits Algorithm 1. Thus, it
will achieve the dissemination of the message from a specific
vertex s to all other vertices of the directed uniform random
temporal clique network in logarithmic time, O(log n).

3.6 Temporal Diameter and lifetime - A lower
bound

It is easy to see that the following theorem holds:

Theorem 5. Let G be the uniform random temporal
clique network of n vertices and of lifetime a, i.e., each edge
is available exactly one random time within the time period
{1, 2, . . . , a}, for some a ∈ N. If a is asymptotically larger
than n, then the temporal diameter must be Ω( a

n
log n).

Proof. Assume that the temporal diameter was k <
a
n
log n. Now, consider (only) the arcs with labels up to k.

Since the probability distribution of the labels on the edges
of G is uniform, this edge-induced subgraph is the Erdös-
Rényi random graph Gn,p [5,13], where p = k

a
< logn

n
. How-

ever, it is well known that for such p, Gn,p is disconnected
with high probability. Therefore, with high probability, the
maximum label in a temporal path between at least one pair
of vertices is at least k + 1, i.e. Ω( a

n
log n).

The dependence of the Temporal Diameter on the lifetime
is a phenomenon that is not captured by static models (such
as the random phone-call model).

4. GUARANTEEING TEMPORAL
REACHABILITY WITH HIGH PROBA-
BILITY: GRAPHS OF SMALL DIAME-
TER

4.1 Definitions
Note that the clique is the only graph for which temporal

reachability is guaranteed even with 1 random label per edge
(drawn from any distribution). This is the case, because one
can always follow the edge (s, t) from any s to any t at the
time given by the label. For other networks, one may hope
that temporal reachability can be guaranteed (whp) with a
number of random labels per edge.
In the following, we consider selection of labels from the

set {1, 2, . . . , n} for a graph G = (V,E) with |V | = n (nor-

malized case). We focus on independent and uniformly ran-
dom selection of labels (available times) for each edge.

Let G = (V,E) be a (di)graph and L be an as-
signment of time labels on the edges of G. Consider
the property Treach = “∀u, v ∈ V, ∃(u, v)-path in G ⇔
∃(u, v)-journey in (G,L)”.

Definition 6. An assignment L of temporal labels to the
edges of a graph G preserves the reachability of G if (G,L)
has the property Treach.

Definition 7. Let G = (V,E) be a connected (di)graph
with |V | = n. A random experiment E which assigns r(n)
independent random labels to every edge of G strongly guar-
antees temporal reachability with high probability, if the prob-
ability of the property Treach (in the experiment E) is at least
1− 1

na , for some a ≥ 1.

Definition 8. Let G = (V,E) be a connected (di)graph
with |V | = n and E = m. Let r(n) be the smallest number of
random labels per edge which, when assigned to the edges of
G, strongly guarantees temporal reachability with high prob-
ability. Let, also, OPT =

∑
e∈E |Le| be the total number of

labels assigned to the edges of G in the optimal2 (determin-
istic) assignment which preserves the reachability of G. The
Price of Randomness for G is:

PoR(G) = m
r(n)

OPT

Note that, for some cases, it has been shown that OPT

is hard to approximate (there exists no PTAS) unless P =
NP [21].

4.2 The Price of Randomness can be high
We show here that PoR(G) is not bounded by any constant

even for graphs G of diameter 2.

Theorem 6. There is a graph G = (V,E) of n vertices
and diameter 2 for which:

PoR(G) = Θ(log n)

Proof. Let us consider the star graph Gn of n vertices,
that is the complete bipartite graph K1,n−1: a tree with one
internal node and n− 1 leaves. Note that OPT = 2m, since
there exists an assignment of 2 labels per edge (e.g., labels
1, 2 for every edge) which preserves the reachability of Gn,
and obviously any assignment of 1 label per edge does not.
We will show that PoR(Gn) = Θ(log n).

(a) First, we establish that r(n) = Θ(log n) random labels
per edge are enough to strongly guarantee temporal
reachability whp. Let us use r(n) = ρ log n (ρ > 8)
random labels per edge. Denote by c the center vertex
of Gn. Now consider two fixed leafs, u1, u2, of Gn.

Each of the edges e1 = {u1, c} and e2 = {c, u2} is
assigned r(n) random labels. Let us denote by s1, s2
the sets of labels assigned to e1 and e2 respectively. We
call 2-split (u1, u2)-journey any (u1, u2)-journey, where
the first temporal edge has a label within the interval
(0, n

2
) and the second temporal edge has a label within

the interval (n
2
, n)(see Figure 2).

2By optimal assignment, we mean the assignment with the
least total number of labels.



u1 u2

e1 e2

(0, n)

(0, n
2
) (n

2
, n)

c

Figure 2: 2-split journey in a star graph.

The probability that an element of s1 falls within the
interval (0, n

2
) is 1

2
. So, the probability that no element

of s1 falls within this interval is:

Pr(all labels of e1 ≥ n

2
) =

(
1− 1

2

)ρ logn

≤ e
− ρ log n

2

=
1

n
ρ
2

Similarly, the probability that an element of s2 falls
within the interval (n

2
, n) is 1

2
. So, the probability

that no element of s2 falls within this interval is:

Pr(all labels of e2 ≤ n

2
) = (1− 1

2
)ρ logn

≤ 1

n
ρ
2

Hence, the probability that we can find a label l1 ∈ s1
and a label l2 ∈ s2 such that l1 ∈ (0, n

2
) and l2 ∈ (n

2
, n),

i.e., the probability that there exists a 2-split (u1, u2)-
journey, is:

Pr(∃2-split(u1, u2)− journey)

= Pr(∃l1 ∈ s1, l2 ∈ s2 : l1 ∈ (0,
n

2
) & l2 ∈ (

n

2
, n))

= Pr(∃l1 ∈ s1 : l1 ∈ (0,
n

2
))

· Pr(∃l2 ∈ s2 : l2 ∈ (
n

2
, n))

= (1− Pr(all labels of e1 ≥ n

2
))

· (1− Pr(all labels of e2 ≤ n

2
))

≥ (1− 1

n
ρ
2

)2 ≥ 1− 2

n
ρ
2

Therefore, it is almost sure that we can find a 2-split
(u1, u2)-journey in (G,L). Now, the probability that
there exists a pair of vertices s, t ∈ V (G) such that
there is no 2-split (s, t)-journey in (G,L) is:

Pr(∃s, t ∈ V (G) : 6 ∃2-split(s, t)− journey)

≤
∑

s,t∈V (G)

Pr( 6 ∃2-split(s, t)− journey)

≤ n(n− 1)
2

n
ρ
2

<
2

n2
, for ρ > 8

We conclude that almost surely r(n) = ρ log n, ρ >

8, random labels per edge3 suffice for an assignment

3the labels are selected uniformly at random from the set
L0 = {1, 2, . . . , n} and the edges receive their labels inde-
pendently of one another

to strongly guarantee temporal reachability with high
probability in the star graph Gn.

(b) Surprisingly, we now show that, for the assignment
to strongly guarantee temporal reachability whp, r(n)
has to be Ω(log n). Suppose that, through an assign-
ment L, each edge ofGn now receives k = logn

β(n)
random

labels (from the set {1, 2, . . . , n}), where β(n) → +∞
as n → +∞. Consider two fixed leafs u1, u2 ∈ V (G)
and let e1 = {u1, c}, e2 = {c, u2} and Eu1,u2 be the
following event:

There exists no (u1, u2)-journey in (Gn, L)

≡ ∃a ∈ {2, 3, . . . , n− 2} : all of e1’s labels fall

within (a, n) and all of e2’s labels within(0, a)

Given a specific a ∈ {2, 3, . . . , n− 2} , the probability
that all of e1’s labels fall within (a, n) and all of e2’s
labels fall within (0, a) is:

Pr(all of e1’s labels fall within (a, n)

and all of e2’s labels fall within (0, a))

= (1− a

n
)k(

a

n
)k

Now, the probability that event Eu1,u2 occurs is at
least as large as the probability that all of e1’s labels
fall within (a, n) and all of e2’s labels fall within (0, a),
for a specific a ∈ {2, 3, . . . , n− 2}, e.g., for a = n

2
. So:

Pr(Eu1,u2) ≥ Pr(e1’s labels fall within (
n

2
, n) and

e2’s labels fall within (0,
n

2
))

= (
1

2
)k(

1

2
)k = (

1

2
)2k =

1

22k

The probability that no a, such that all of e1’s labels
fall within (a, n) and all of e2’s labels fall within (0, a),
exists is:

Pr(¬Eu1,u2) = 1− Pr(Eu1,u2) ≤ 1− 1

22k

Note that also Pr(Eu2,u1) ≥ 1
22k

(by symmetry).

In the star graph Gn, we can group
the leafs in ⌊n−1

2
⌋ = n′ disjoint pairs

{u1, u2}, {u3, u4}, . . . , {un′−1, un′} defining the
paths (start, center, end) P1 = (u1, c, u2), P2 =
(u3, c, u4), . . . , Pn′ = (un′−1, c, un′). These paths
receive independent labels since no edges of Pi overlap
with any edge of Pj , i, j = 1, 2, . . . , n′, i 6= j. So:

Pr(¬E holds for all these pairs) ≤ (1− 1

22k
)n

′

≤ e
− n′

22k

i.e.,

Pr(there are temporal paths between each (ui, uj),

i = 1, 3, . . . , j = 2, 4, . . .) ≤ e
− n′

22k



Since k = logn

β(n)
, we get:

n′

22k
=

⌊n−1
2

⌋
2

2 log n
βn

= ⌊n− 1

2
⌋
(
4− logn

) 1
β(n)

= ⌊n− 1

2
⌋
( 1

n2

) 1
β(n)

So:

n′

22k
≥ n

3

( 1

n2

) 1
β(n)

> log n (3)

Relation (3) holds, since:

n

3

( 1

n2

) 1
β(n)

> log n ⇔
(3 log n

n

)β(n)

<
1

n2

But:

(3 log n
n

)β(n)

<
( 1√

n

)β(n)

=
( 1
n

) β(n)
2

<
1

n2
,

because β(n)
2

> 2. So, by relation (3), we have:

− n′

22k
< − log n ⇒ e

− n′

22k < e
− logn =

1

n

⇒ Pr(∃temporal paths Pi, ∀i = 1, 2, . . . , n′) ≤ 1

n

Thus, it must be:

r(n) >
log n

β(n)
, for every such β(n) → +∞

i.e.,

PoR(G) >
log n

2β(n)
, for all β(n) → +∞

⇒ PoR(G) ≥ c log n− o(n), for some c > 0

By parts (a) and (b) we obtain that PoR(G) = Θ(log n),
for the star graph Gn.

5. THE PRICE OF RANDOMNESS IN
GENERAL GRAPHS

Let G = (V,E) be an arbitrary connected graph of |V | =
n vertices. Let the set of available times (labels) be S =
{1, 2, . . . , q}. Let d(G) = diam(G) be the diameter of G.
Clearly, for an assignment L to preserve the reachability of
G, there must be a label in (G,L) at least equal to G’s
diameter, since otherwise a path in G realizing the diameter
cannot be made a journey. So, q ≥ d(G).
For each edge e of G, consider a structure s(e) being a

sequence of boxes B1(e), B2(e), . . . , Bd(G)(e) (see Figure 3).

box 1 box 2 box j box d(G)

. . . . . .

edge e

Figure 3: Structure s(e).

Let each Boxi of e be assigned to a corresponding range
(sequence) Li(e) of labels, each of size (#labels) equal to

λ = q

d(G)
, so that:

∀i = 1, 2, . . . , d(G),

Boxi corresponds to Li(e) = {(i− 1)λ+ 1, . . . , iλ}

Claim 1. If ∀e ∈ E(G), ∀Boxi(e) we put in Boxi(e) one
of the labels of Li(e), then temporal reachability is guaranteed
in G.

Proof. For any s, t, any shortest path p from s to t will
be of length |p| ≤ d(G). Any edge e may be at any“place” in
p (first, second, . . ., even last) or not belong to p at all. The

journey from s to t is the path p =
(
ep1 = {s, u1}, ep2 =

{u1, u2}, . . . , eplast
= {u|p|−1, t}

)
with the label per edge epi

in the (Boxpi(epi)).

Note now that when we assign a random label in edge e

(drawn uniformly, independently from L), the probability
that this label falls in Boxi(e) is exactly λ

q
. For r random

labels assigned to e, the probability that none of them falls

is Boxi(e) is
(
1− λ

q

)r
. Thus, the probability of the event:

A(e) =“there exists a box of e without a label”

is at most d(G)
(
1− λ

q

)r
.

Clearly,
(
1− λ

q

)r
≤ e

−λr
q

and since d(G) ≤ n, it is enough to have λr
q

> 2 log n to get

d(G)
(
1− λ

q

)r
< n 1

n2 = 1
n
. But,

λr

q
> 2 log n ⇔ r > 2d(G) log n

So, we have shown the following.

Theorem 7. If we assign any r > 2d(G) log n random
labels at each edge of G, then temporal reachability is guar-
anteed with high probability. So,

r(n) ≤ 2d(G) log n+ ε, for some ε > 0.

Since OPT ≥ n−1
(
at least n−1 edges must be labelled in

order to have a labelled spanning tree), we get the following.

Theorem 8. For every connected graph G, it holds that:

PoR(G) ≤ (2d(G) log n+ ε)
m

n− 1
, for some ε > 0.

Note. The upper bound on the PoR for general graphs
can be improved slightly by the Coupon Collector theorem.

6. CONCLUSIONS AND FURTHER RE-
SEARCH

In this work, we initiated research on networks with sparse
random availability of links. The subject of designing the
availability of a net (by combining random availabilities and
optimal local availabilities) is a subject of our current re-
search.
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