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Abstract

Preprocessing a 2D image often produces a noisy cloud
of interest points. We study the problem of counting holes
in noisy clouds in the plane. The holes in a given cloud are
quantified by the topological persistence of their boundary
contours when the cloud is analyzed at all possible scales.

We design the algorithm to count holes that are most
persistent in the filtration of offsets (neighborhoods) around
given points. The input is a cloud of n points in the plane
without any user-defined parameters. The algorithm has
O(n log n) time and O(n) space. The output is the array
(number of holes, relative persistence in the filtration).

We prove theoretical guarantees when the algorithm
finds the correct number of holes (components in the com-
plement) of an unknown shape approximated by a cloud.

1. Introduction: counting holes in noisy clouds

We apply methods from the new area of topological data
analysis to counting persistent holes in a noisy cloud of
points. Such a cloud can be obtained by selecting inter-
est points in a gray scale or RGB image. Our region-based
method uses global topological properties of contours.

By a shape we mean any subset X ⊂ R2 that can be
split into finitely many (topological) triangles. Hence X
is bounded, but may not be connected. Then a hole in a
shape X ⊂ R2 is a bounded connected component of the
complement R2 − X . Such a hole can be a disk, a ring or
may have a more complicated topological form, see Fig. 1.

The α-offset Xα is the union ∪p∈XB(p;α) of disks with
the radius α ≥ 0 and centers at all p ∈ X . For instance,
X0 is the original shape X ⊂ R2. When α is increasing,
the holes of R2 −Xα are shrinking, may split into smaller
newborn holes and will eventually die, each at its own death
time α, see Fig. 3. The persistence of a hole is its life span
death−birth in the filtration {Xα} of all α-offsets. So we
quantify holes by their persistence at different scales α.

Figure 1. The orange shape X ⊂ R2 with 3 white holes of differ-
ent forms: a small disk, a ring-like hole, a ‘figure-eight’ hole.
.

Hole counting problem. Let a shape X be represented by
a finite sample C of points in R2. Find conditions onX and
its sample when one can quickly count persistent holes.

We solve the problem by the algorithm HOCTOP : Hole
Counting based on Topological Persistence. The only input
is a finite cloud C of n points approximating an unknown
shape X ⊂ R2. The algorithm outputs the relative persis-
tence of k holes in the filtration {Cα} for all k ≥ 0. If the
scale α is random and uniform, this output gives probabili-
ties P (k holes). The boundary edges of persistent holes can
be quickly post-processed to extract all boundary contours.

Figure 2. Input: cloud C of 1251 points uniformly sampled from
the shape with 3 holes in Fig. 1. Output probabilities of HOCTOP :
P (3 holes) ≈ 24%, P (2 holes) ≈ 13%, P (8 holes) ≈ 11%.

Theorems 1, 4 say that the algorithm HOCTOP quickly
and correctly finds all persistent holes using only a good
enough sample C of an unknown shape X , see section 2.
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2. Main results: the algorithm and guarantees
We start from a high-level description of our algorithm.
The topological persistence of contours in the filtra-

tion {Cα} is computed by using a Delaunay triangulation
Del(C) of a given cloud C ⊂ R2 of n points. By Nerve
Lemma 8 the α-offsets Cα can be continuously deformed
to the α-complexes C(α), which filter Del(C) as follows:
C = C(0) ⊂ · · · ⊂ C(α) ⊂ · · · ⊂ C(+∞) = Del(C).
Each C(α) has some edges and triangles from Del(C).

Figure 3. The big hole in the green offset Cα is born at α = 1.5,
splits into 2 smaller holes at α = 2 and dies at α ≈ 2.577, so the
topological persistence of this hole is death− birth ≈ 1.077.

The graph dual to Del(C) is filtered by the subgraphs
C∗(α) whose connected components correspond to holes
in C(α). When α is decreasing, C(α) is shrinking, so its
holes are growing and corresponding components of C∗(α)
merge at critical values of α, see Fig. 6. The persistence of
cycles in the filtration {Cα} corresponds to the persistence
of components in {C∗(α)}, see Duality Lemma 14.

The pairs (birth,death) of connected components in
{C∗(α)} are found via a union-find structure by adding
edges and merging components. So computing the 1-
dimensional persistence of cycles in {Cα} reduces to the
0-dimensional persistence of components in {C∗(α)}.

Starting from a given cloudC ⊂ R2 of n points with real
coordinates (xi, yi), i = 1, . . . , n, we find a Delaunay trian-
gulation Del(C) in O(n log n) time with O(n) space. Then
we remove each edge of Del(C) one by one in the decreas-
ing order of their length. Removing an edge may break a
contour when adjacent regions in C(α) and the correspond-
ing components of C∗(α) merge. In the case of a merger,
a younger component of C∗(α) and the corresponding hole
in C(α) die. We note the birth and death of each dead
hole. We get the probability of k holes as the relative length
of all intervals of the scale α when Cα ⊂ R2 has k holes.

Theorem 1. The algorithm HOCTOP counts all holes in
a given cloud C ⊂ R2 of n points in O(n log n) time with
O(n) space. All holes are ordered by their topological per-
sistence in the ascending filtration {Cα} of the α-offsets.

Definition 2 (ε-sample). A cloud C is an ε-sample of a
shape X ⊂ R2 if X ⊂ Cα and C ⊂ Xα. So any point
of C is within the distance ε from a point of X and any
point ofX is at most ε away from a point of C. Hence ε can
be considered as the upper bound of some arbitrary noise.

Definition 3 (min and max homological feature sizes). For
any shape X ⊂ R2, let α = minhfs(X) be the minimum
homological feature size when a first hole is born or dies
in Xα. Let α = maxhfs(X) be the maximum homological
feature size after which no holes are born or die in Xα.

Theorem 4 gives sufficient (not necessary) conditions
when the algorithm finds the correct number of holes in an
unknown shape X ⊂ R2 that is represented by its finite
sample C. We extend the Homology Inference Theorem [1]
to the case when the upper bound ε of noise is unknown.

Theorem 4. Let a cloud C be an ε-sample of a shape X ⊂
R2 with an unknown parameter ε such that minhfs(X) >
1
2maxhfs(X)+ 2ε. Then the algorithm HOCTOP finds the
correct number of holes in X by using only the cloud C.

The condition minhfs(X) > 1
2maxhfs(X) + 2ε means

that all holes ofX , which are bounded components of R2−
X , have comparable sizes (neither tiny nor huge).

Even if the conditions of Theorem 4 are not satisfied, we
can always find the number k of holes with the highest prob-
ability. The algorithm HOCTOP can also accept a signal-
to-noise ratio τ and output all holes whose persistence is
larger than τ . Alternatively, the user may prefer to get most
likely outputs ordered by the probability P (k holes).

3. Previous work on computing persistence
The offsets Cα of a finite cloud C are usually studied

through the C̆ech or Rips complexes, which may contain up
to O(nk) simplices in all dimensions k ≤ n − 1 even if
C ⊂ R2. A Delaunay triangulation has the advantage of a
smaller size up to m = O(n2) in dimensions n = 2, 3, 4.

The fastest algorithm [7] for computing persistence of
a filtration in all dimensions has the same running time
O(m2.376) in the number m of simplices as the best known
time for the multiplication of two m×m matrices.

The only faster (almost linear) algorithm was known in
dimension 0 for any filtration [4, p. 6–8] and in dimension
1 for a filtration of sublevels of a function on a fixed trian-
gulation of a closed surface [4, p. 159–160]. In the latter
case functions are monotonic and Morse, so vertices join a
filtration one by one, not all at once as in the α-offsets Cα.

There is an O(n log n) algorithm [5] reconstructing the
Reeb graph (hence the 1-dimensional homology) from a k-
neighbor complex that ε-approximates an unknown metric
graph G. This algorithms needs k as an input parameter.



Two extra parameters were used in a Delaunay-based im-
age segmentation [6]: α for the radius of disks centered at
points of a cloud C and p for a desired level of persistence.

4. Delaunay triangulation and α-complexes
For simplicity, we introduce only 2-dimensional simpli-

cial complexes that are relevant to clouds in the plane.

Definition 5 (simplicial complex). A simplicial 2-complex
is a finite set of simplices (vertices, edges, triangles):
• the sides of any triangle are included in the complex;
• the endpoints of any edge are included in the complex;
• two triangles can intersect only along a common edge;
• edges can meet only at a common endpoint (a vertex);
• an edge can not pierce through the interior of a triangle.

If a complex S is drawn in Rn without self-intersections,
we may call this image |S| a geometric realization of S. We
have defined a shape X ⊂ R2 as a geometric realization of
a 2-complex. For instance, a round disk whose boundary is
split into 3 edges by 3 vertices is a topological triangle.

A cycle in a complex is a sequence of edges e1, . . . , em
such that any consecutive edges ei, ei+1 (in the cyclic order)
have a common vertex. Any loop in a geometric realization
|S| continuously deforms to a cycle of edges in S.

Definition 6 (Delaunay triangulation Del). For a point pi in
a cloud C = {p1, . . . , pn} ⊂ R2, the Voronoi cell V (pi) =
{q ∈ R2 : d(pi, q) ≤ d(pj , q) ∀j 6= i} is the set of all points
q that are (non-strictly) closer to pi than to other points of
C. The Delaunay triangulation Del(C) is the nerve of the
Voronoi diagram ∪p∈CV (p). Namely, p, q, r ∈ C span a
triangle if and only if V (p) ∩ V (q) ∩ V (r) 6= ∅.

By another definition [2, section 9.1] the circumcircle of
any Delaunay triangle in Del(C) encloses no points of C.

For a cloud C ⊂ R2 of n points, let Del(C) have k trian-
gles and b boundary edges in the external region. Counting
all E edges over triangles, we get 3k + b = 2E. Euler’s
formula n−E + (k+ 1) = 2 implies that k = 2n− b− 2,
E = 3n− b− 3. So Del(C) has O(n) edges and triangles.

Definition 7 (α-complex C(α)). For a scale parameter
α > 0, the α-complex C(α) is the nerve of ∪p∈C(V (p) ∩
B(p;α)), see [4, section III.4]. Points p, q ∈ C are con-
nected by an edge if V (p)∩B(p;α) meets V (q)∩B(q;α).
Three points p, q, r ∈ C span a triangle if the intersection
V (p) ∩B(p;α) ∩ V (q) ∩B(q;α) ∩ V (r) ∩B(r;α) 6= ∅.

If α > 0 is very small, all points of C are disjoint in
C(α), while C(α) = Del(C) for any large enough α, see
examples in Fig. 3. So all α-complexes form the filtration
C = C(0) ⊂ · · · ⊂ C(α) ⊂ · · · ⊂ C(+∞) = Del(C).
Edges or triangles are added only at critical values of α.

Lemma 8 (Nerve of a ball covering [3]). The union of balls
Cα = ∪p∈CB(p;α) continuously deforms to (has the ho-
motopy type of) a geometric realization of C(α).

5. Persistent homology: definitions, examples
Definition 9 (1-dimensional homology H1). We consider
the 1-dimensional homology group H1(S) only with coeffi-
cients in Z/2Z = {0, 1}. Cycles of a 2-dimensional com-
plex S can be algebraically written as linear combinations
of edges (with coefficients 0 or 1) and generate the vector
space C1 of cycles. The boundaries of all triangles in S (as
cycles of 3 edges) generate the subspace B1 ⊂ C1. The
quotient group C1/B1 is the homology group H1(S).

Let {S(α)} be an ascending filtration of complexes,
where edges or triangles are added at finitely many critical
values α1, . . . , αm. The inclusions S(α1) ⊂ · · · ⊂ S(αm)
induce the linear maps H1(S(α1))→ · · · → H1(S(αm)).

Definition 10 (persistence diagram PD). In a filtration
{S(α)} a cycle γ is born at birth time αi and dies at αj if
the homology class of γ belongs to the homologyH1(S(α))
only for αi ≤ α < αj . So γ has (birth,death) = (αi, αj)
and the persistence pers(γ) = death − birth. The persis-
tence diagram PD{S(α)} consists of the diagonal {x = y}
and the points (birth(γ),death(γ)) over all cycles γ.

Pairs with a low persistence death − birth (close to the
diagonal {x = y} in PD) are treated as noise. Pairs with a
high persistence represent persistent cycles in {S(α)}.

We shall consider the filtrations of α-offsets {Xα} and
{Cα} for a shape X ⊂ R2 and a finite cloud C ⊂ R2. Fig-
ures 4 and 5 show the persistence diagram PD for the filtra-
tion of the α-offsets Cα equivalent to C(α) by Lemma 8.

Figure 4. Extra outputs for the cloudC of 10 points in Fig. 3. Left:
persistence diagram, middle: barcode, right: persistence staircase.

We can convert the persistence diagram into the persis-
tence barcode PB{Cα}. All pairs (birth,death) give hori-
zontal bars ordered by their length death − birth. Usually
the bars are drawn from the left endpoint 0 to the right end-
point death− birth, see the middle picture in Fig. 4.

We suggest one more way to visualize persistence. Each
pair (birth,death) defines the function f(α) = 1 for
birth ≤ α < death and f(α) = 0 otherwise. The sum of



Figure 5. Extra outputs for the cloud C of 1251 points in Fig. 2. Left: persistence diagram PD, middle: barcode PB, right: staircase PS.

these functions over all pairs gives the persistence staircase
PS{Cα}. The value of this piecewise constant function of
α is the number of holes in the offset Cα. We have con-
nected consecutive horizontal segments of PS{Cα} to get a
‘continuous’ staircase as in the right picture of Fig. 4.

For the cloud C of 10 points in Fig. 3, the full range
of the scale α is from the smallest critical value α = 1.5
(when a first hole is born) to the largest critical value α =
5
8

√
17 ≈ 2.577 (when both final holes die). The output

probability P (1 hole) ≈ 46.5% is the contribution of the
interval (1.5, 2) to the full range 1.5 ≤ α ≤ 5

8

√
17. The

largest probability P (2 holes) ≈ 53.5% is the contribution
of the interval (2, 58

√
17) when Cα has exactly 2 holes.

For the cloud C of 1251 points in Fig. 2, we scaled
PB{Cα} and PS{Cα} along the horizontal α-axis and kept
only the longest bars in the barcode PB{Cα} in Fig. 5.

6. Persistent homology: stability and duality
Definition 11 (bottleneck distance dB). Let the distance be-
tween (x1, y1), (x2, y2) ∈ R2 be max{|x1−x2|, |y1−y2|}.
The bottleneck distance dB(PD1,PD2) between persis-
tence diagrams PD1,PD2 is the smallest ε such that PD1

is in the ε-offset of PD2 and PD2 is in the ε-offset of PD1.

We quote the simple version of the Persistence Stability
Theorem [1] only for persistence diagrams of α-offsets.

Theorem 12. [1] If a finite cloudC of points is an ε-sample
of a shape X ⊂ R2, then dB(PD{Xα},PD{Cα}) ≤ ε.

Stability Theorem 12 implies for barcodes PB that the
endpoints of all bars are perturbed by at most ε. So a long
bar can become only a bit shorter after adding noise.

To every triangle in the Delaunay triangulation Del(C),
let us associate a single abstract vertex vi, i = 1, . . . , k. It
will be convenient to call the external region of Del(C) also
a ‘triangle’ and represent it by an extra vertex v0.

Definition 13 (graphs C∗(α)). For any vertices vi, vj rep-
resenting adjacent triangles in Del(C), let dij be the length
of the (longest) common edge of the triangles. The metric
graphC∗ dual to Del(C) has the vertices v0, v1, . . . , vk and
edges of the length dij connecting vertices vi, vj that rep-
resent adjacent triangles, see Fig. 6. The graph C∗ is fil-
tered by the subgraphs C∗(α) that have only the edges of a
length dij > 2α. We remove any isolated node v (except v0)
from C∗(α) if the corresponding triangle Tv is not acute or
has a small circumradius rad(v) ≤ α. We get the filtration
C∗ = C∗(0) ⊃ · · · ⊃ C∗(α) ⊃ · · · ⊃ C∗(+∞) = {v0}.

Figure 6. The complexesC(α) have solid edges and gray triangles.
The graphs C∗(α) have circled vertices and red dashed edges.

Components of C∗(α) are called white, because they
represent regions in R2 − C(α) (or holes in R2 − Cα). A
cycle γ ⊂ C(α) is called a contour if γ bounds a region in
R2−C(α), so γ ‘encloses’ the corresponding white compo-
nent of C∗(α). Lemma 14 is an analogue of the Symmetry
Theorem [4, p. 164] for a function on a closed manifold.

Lemma 14 (Duality). All contours of the complex C(α)
are in a 1-1 correspondence with all connected components
of the graph C∗(α) not containing the vertex v0. When α is
decreasing, the contours of C(α) and the white components
of C∗(α) have the corresponding critical moments:

• a birth of a contour↔ a birth of a white component,

• a death of a contour↔ a death of a white component.



7. The algorithm HOCTOP for counting holes
We build the union-find structure Forest(α) on the ver-

tices of the graph C∗(α). All nodes and trees of Forest(α)
will be in a 1-1 correspondence with all vertices and white
components of C∗(α). Every node v in Forest(α) has

• a pointer to a unique parent of the node v in Forest(α);

• a pointer to the Delaunay triangle dual to the node v;

• the weight (the number of nodes below v in its tree);

• the critical value (birth) αv = sup{α : v ∈ C∗(α)}.
If a node v is a self-parent, we call v a root. We can find

root(v) of any node v by going up along parent links. If α is
decreasing, αv can be considered as the birth time when the
vertex v joins C∗(α). The algorithm initializes Forest(α)
as the set of isolated nodes v0, . . . , vk. If the triangle cor-
responding to vk is acute, the birth time of vk is the cir-
cumradius of the triangle, otherwise 0. We will go through
all edges of Del(C) in the decreasing order of their length
and will update αv when v enters the ascending filtration
{v0} = C∗(+∞) ⊂ · · · ⊂ C∗(α) ⊂ · · · ⊂ C∗(0) = C∗.

All triangles of C(α) and the corresponding nodes of
Forest(α) are called gray. The remaining triangles and the
external region of Del(C) are called white. The external
region has birth time +∞ and is called a ‘triangle’ for sim-
plicity. Initially all triangles with birth time 0 are gray.

The while loop. For each edge e ⊂ Del(C) arriving in
the decreasing order of length, we find two triangles Tu, Tv
attached to e and check if they are gray or white. To deter-
mine if a triangle Tv represented by a node v is gray, we go
up along parent links from v to root(v). If the birth time of
root(v) is 0, the triangle Tv is still gray, otherwise white.

To distinguish Cases 1 and 4 below, we also check if the
triangles Tu, Tv attached to the current edge e are in the
same region of R2 − C(α). Case 1 means that the nodes
u, v ∈ Forest(α) belong to the same tree, so root(u) =
root(v). In all 4 cases the scale α goes down through the
half-length 1

2 length(e) of the current edge e from Del(C).

Case 1: e has the same white region on both sides of e.
C(α) loses only the open edge e. The white components of
C∗(α) are unchanged. Fig. 6 illustrates Case 1 for α = 1
when C(α) loses the edge connecting (1, 0) to (1, 2).

Case 2: the edge e is in 1 gray triangle and 1 white triangle.
Let u, v ∈ C∗(α) be the vertices dual to the gray triangle
Tu and the white triangle Tv attached to the current edge e
in Del(C). Then the birth times are αu = 0, αroot(v) > 0.

Since α is decreasing, the descending filtration C(α)
loses the (open) edge e and the gray (open) triangle Tu. So
the vertex u becomes connected by an edge with v and joins
the white component of C∗(α) containing v. Then we link
the isolated node u to the tree containing the older node v

in Forest(α). So root(v) becomes the parent of u and the
weight of root(v) jumps by 1. Fig. 7 illustrates Case 2 for
α =

√
17
2 when C(α) loses the 2 edges of length

√
17.

Figure 7. Complexes C(α) and graphs C∗(α) are shown for the
cloud C from Fig. 3. Two trees in Forest(α) merge at α = 2.

Case 3: the edge e is in the boundary of 2 gray triangles.
Let u, v ∈ C∗(α) be the vertices dual to the gray tri-
angles Tu, Tv attached to the current edge e ⊂ Del(C).
Then Tu, Tv are right-angled triangles with the common hy-
potenuse e. The birth time of both u, v is the half-length of
e. Since α is decreasing, C(α) loses the (open) edge e and
both (open) triangles Tu, Tv . The contour ∂(Tu ∪ Tv) ap-
pears in C(α). So we link the nodes u, v in Forest(α).

Case 4: e has 2 different white regions on both sides.
Let u, v ∈ C∗(α) be the vertices dual to the white trian-
gles Tu, Tv attached to the current edge e in Del(C). The
descending filtration {C(α)} loses the (open) edge e. The
vertices u, v become connected by an edge, so their white
components in C∗(α) merge into a new big component. By
Duality Lemma 14, two contours enclosing regions Ru and
Rv lose their common edge e and we get one larger contour
∂(Ru∪Rv) enclosing both regions. Fig. 7 illustrates Case 4
for α = 2 when C(α) loses the middle edge of length
4. Then 2 white components (containing 4 vertices each)
merge in the graph C∗(α) shown after merger at α = 1.5.

To decide which white component dies, we find the
roots root(u), root(v) ∈ Forest(α) of the trees represent-
ing Ru, Rv and compare the birth times αroot(u), αroot(v)

when a first node of each tree was born. By the elder rule
[4, p. 150], the older white component (say, with u) sur-
vives and keeps its larger birth time αroot(u). The younger



white component Rv dies and we get (birth,death) =
( 12 length(e), αroot(v)) for the life of the white component
in the ascending filtration {C∗(α)} and of the correspond-
ing contour in the descending filtration {C(α)}.

We swapped the birth and death times, because the per-
sistence is usually defined when the scale α is increasing.
However, we need the ascending filtration {C∗(α)} to use
a union-find structure, so α is decreasing in the algorithm.

Finally, to merge the trees with root(u), root(v) in
Forest(α), we compare the weights of the roots and set the
root of the (non-strictly) larger tree as the parent for the root
of another tree. So the size of any subtree grows by a factor
of at least 2 each time when we pass to the parent. We get

Lemma 15. By the above construction the longest path in
any tree of size k from Forest(α) has length O(log k).

8. Proofs of main results and our conclusion
Proof of Theorem 1. Constructing the Delaunay triangu-
lation Del(C) on a cloud of n points requires O(n log n)
time [2, Chapter 9]. Sorting O(n) edges of Del(C) needs
O(n log n) time. Then we go through the while loop ana-
lyzing each of the O(n) edges of Del(C). For the nodes
u, v ∈ Forest(α) of triangles attached to each edge e, we
find the roots of u, v by going up along O(log n) parent
links by Lemma 15. All other steps in the while loop require
only O(1) time. Hence the total time is O(n log n). The
sizes of all data structures are proportional to the numbers
of edges or triangles in Del(C), so we use O(n) space.

The careful analysis of a union-find structure [8] says
that Forest(α) can be built in time O(nA−1(n, n)) time,
where A−1(n, n) is the extremely slowly growing inverse
Ackermann function. Our time O(n log n) is dominated by
the construction of Del(C) and sorting all O(n) edges.

Proof of Theorem 4. The important critical values of α for
the 1-dimensional homology of the filtration {Xα} are

• α = 0 when the homology H1(X
0) = H1(X) is correct;

• α = minhfs(X) is the 1st value when H1(X
α) changes;

• α = maxhfs(X) is the last value when H1(X
α) changes.

Then H1(X
α) ∼= H1(X) for 0 ≤ α < minhfs(X). If

a cloud C is an ε-sample of a shape X ⊂ R2, then due to
Stability Theorem 12 [1] we have H1(C

α) ∼= H1(X) over
(possibly) shorter interval ε ≤ α ≤ minhfs(X) − ε. Then
all changes of H1(C

α) will stop at α = maxhfs(X) + ε.

The condition minhfs(X) > 1
2maxhfs(X) + 2ε guar-

antees that the persistence interval [ε,minhfs(X) − ε] is
the longest over the full range [0,maxhfs(X) + ε], because
ε < minhfs(X)−2ε > maxhfs(X)+ε−(minhfs(X)−ε).
Without using ε, we can find this interval of α, where C(α)
has the same number of holes as the unknown shapeX .

Conclusion. Here are the key advantages of our approach:
• a cloud C ⊂ R2 of n points is simultaneously analyzed at
all scales α without any extra user-defined parameters;
• the algorithm HOCTOP counts persistent holes of any
topological form in O(n log n) time, see Theorem 1;
• theoretical guarantees for a correct number of holes are
proved for ε-samples of unknown shapes, see Theorem 4;
• the output is stable under perturbations of a cloud C and
the only parameter of noise is an unknown upper bound ε.

Fig. 8 shows extracted contours (with our uniform noise)
of images at http://www.lems.brown.edu/˜dmc.

Figure 8. Output of HOCTOP for real noisy contours. Left:
P (1 hole) ≈ 90.5%, P (2 holes) ≈ 3%, P (4 holes) ≈ 0.6%.
Right: P (2 holes) ≈ 74.2%, P (1 hole) ≈ 13%, P (3) ≈ 1.3%.

More details and experimental results are in the extended
version on author’s website http://kurlin.org. We
thank the anonymous reviewers for theirs helpful sugges-
tions. We are open to collaboration on any related projects.
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