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ABSTRACT

There is considerable interest in development of solid mechanics modelling which can cope with both
material and geometric nonlinearity, particularly in areas such as computational geotechnics, for applica-
tions such as slope failure and foundation installation. One such technique is the Material Point Method
(MPM), which appears to provide an efficient way to model these problems. The MPM models a prob-
lem domain using particles at which state variables are kept and tracked. The particles have no restriction
on movement, unlike in the Finite Element Method (FEM) where element distortion limits the level of
mesh deformation. In the MPM, calculations are carried out on a regular background grid to which state
variables are mapped from the particles. It is clear, however, that the MPM is actually closely related
to existing techniques, such as ALE and in this paper we review the MPM for solid mechanics and
demonstrate these links.
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1. Introduction

Most computational methods in solid mechanics can be described as either Eulerian or Lagrangian.
Lagrangian methods work by splitting a problem into elements or particles in a mesh, and throughout
any deformation this mesh follows the problem domain. The advantage of this is that it is easy to track
surfaces and history dependant variables throughout a simulation as the position in relation to other
elements is always maintained. A disadvantage of a Lagrangian approach is that problems can begin to
occur when a material undergoes large deformations. These large deformations can result in a heavily
distorted mesh which, in certain situations, can result in calculations being unable to be completed.
Eulerian methods work by having a mesh that is fixed in space and allowing particles to move within it.
This is more commonly used in fluid mechanics applications but overcomes any issue of mesh distortion
as the mesh remains the same throughout calculations. A disadvantage is that it becomes more difficult
to track boundaries and history dependent variables as particles move. Attempts have been made to
combine together Eulerian and Lagrangian methods with the aim of keeping the positives without the
drawbacks. One method to combine these features is the Material Point Method (MPM) [1]. There are
currently many uses of the MPM, often in situations where the FEM struggles due to highly distorted
elements. Some uses currently of interest include problems involving impact and collision, penetration,
crack propagation, slope stability, soil mechanics and simulation of snow for use in animation. In this
paper we will review the MPM and highlight links to other techniques such as the Finite Element (FE)
and Arbitrary Lagrangian Eulerian (ALE) methods.

2. Method Overview

The Material Point Method (MPM) was first developed by Sulsky et al. [1] as an extension for solid
mechanics of the FLuid Implicit Particle (FLIP) [2] method, which itself was an extension to the Particle
in Cell (PIC) [3] method used in fluid dynamics. The MPM can be referred to as a meshfree method.



Although a background grid of connected nodes is required to perform calculations, material properties
are carried by a series of particles which are free to move independently of each other. In the MPM,
material points, known as particles, store state variables and move through a background grid or mesh
which can be changed or reset following each time step or load increment. This can be seen in Figure 1
where a material has been deformed and the mesh has been reset with particles in updated positions.
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Figure 1: Particle positions as mesh deforms and is reset: (i) original configuration, (ii) deformed mesh and (iii)
reset mesh

Initially a material domain is split into a number of elements similar to the FEM. Each of these elements
is then populated with a number of material points. Each material point is assigned a weight based
on the volume of material that the particle represents. It can be desirable to initially locate particles at
Gauss quadrature points to simplify the volume weight calculation. In addition to the mesh covering the
material’s initial position, the mesh must extend to where the material is expected to deform.

In each element containing particles, the state variables must be mapped from the particles to the grid
nodes. This mapping process is carried out within each element using shape functions similar to those
used in the FEM. For instance the external force at a grid node is given by

f ext
g =

nmp∑
i=1

Ni f ext
pi

(1)

where f ext
p is the particle external force, Ni are the nodal shape functions for the element containing the

particle and nmp refers to the number of material points in the grid element.

To be able to map to the correct grid nodes it is necessary to know in which element each material point
located at a point in time. Although trivial initially, after particles have moved this problem can become
more complex, especially if the mesh is not uniform. To simplify this process it is common to reset the
background mesh to a uniform grid after each loadstep.

The stiffness of each element is determined from the contributions from each of the particles currently
inside. Once the global stiffness matrix is assembled and the grid node displacements determined, the
grid node displacements {ug} are then mapped back to particles to get particle displacements {up} through

{up} =

nn∑
i=1

Ni{ugi}, (2)

where nn is the number of element nodes. The particle positions are then updated. The grid node dis-
placements are not used to update the position of nodes in the mesh; the original undeformed mesh is
used.

3. Comparison with FEM

The MPM has many similarities with the standard FEM, in fact it is possible to think of the MPM as the
same as the FEM but with moving integration points instead of fixed Gauss points in each element. The
shape functions used to map between the grid and the particles in the MPM are the same as the shape
functions used in the FEM. If material points are located at the positions of Gauss points in the FEM
and if the mesh is not reset after each step then the MPM becomes identical to the FEM. In the MPM,
external forces can be applied directly to the grid nodes or can be applied at particles and mapped to the
grid, however to do this particles must be placed where forces are applied.



Boundary conditions are applied directly to the background mesh as in the FEM. This works for fixed
boundaries with zero displacement conditions however to track boundaries it is necessary for some par-
ticle positions to coincide with material boundaries. Currently it is difficult to do this.

As the particles move it is possible that the background element they are in changes. One of the main
problems with the MPM is an error which occurs when material points cross element boundaries causing
an imbalance of internal forces [4]. In the MPM, if an element becomes void of particles it is turned off

so that it no longer contributes to the global stiffness matrix.

Due to the background nodal relationships the MPM is not as computationally expensive as some mesh-
less methods. However, as there is an additional mapping step, it is more expensive than the standard
FEM. In regular finite elements the Jacobian has to be calculated only once however in MPM as the par-
ticles move and are not in consistent positions it is necessary to calculate the Jacobian for each material
point.

4. Comparison with Arbitrary Lagrangian-Eulerian Methods

Arbitrary Lagrangian Eulerian (ALE) Methods [5], like the MPM, take advantage of useful aspects of
both types of method while trying to avoid disadvantages. In ALE methods a mesh is allowed to move
independently of the material moving in an arbitrary manner that can be defined by the user. This is
achieved by having a third set of reference coordinates other than the initial and current configurations,
this allows the mesh to be adapted to avoid problems caused by mesh distortions in a purely Lagrangian
method. In the MPM the grid can be adapted in a similar manner if desired however it is usual to reset
the grid to an undeformed uniform state as this removes the additional expense of particle searching.

5. Comparison with Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) [6] is a Lagrangian meshfree method, where the domain is
represented by a set of distributed particles needing no connectivity, rather than split up into a set of
nodes in a grid. Like the MPM, each particle possesses a set of material properties and moves according
to governing equations. However SPH doesn’t have a background grid where calculations take place.
Instead, field functions at these points are approximated using a kernel function. These approximations
are then smoothed using a weighted average over neighbouring particles. Having no background grid,
shape functions cannot be used in the same way as in FEM and MPM. To calculate the support and
influence domains of a particle a weighting function is used. This is common to most meshfree methods.

A particular advantage of SPH is its ability to handle large deformations. This is due to the fact that parti-
cles aren’t restrained to a mesh. However it is not as straightforward to apply boundary conditions when
using SPH for solid mechanics. The need to search for a nearest neighbour to define nodal connectivity
can also make SPH more computationally expensive than the standard MPM.

6. Numerical Example

Due to the similarities between the FEM and the MPM, a compact finite element code has been used as
the basis for a MPM code [7]. Material points, which originally were located at Gauss points are freed
to move after each load step and then the mesh is reset to its original configuration. Because of these
similarities between methods, the constitutive model used in the FEM can also be used in the MPM.
A Total Lagrangian FEM code has been modified to facilitate movement of material points, however
problems have been noted when material points cross grid element boundaries. As mentioned above, this
is a common issue highlighted in the literature.

The code was used for the simple problem of one-dimensional compression of a 1×1×1m cube, as shown
in Figure 2(i). A Young’s modulus E = 1×109Pa and Poissons ratio of ν = 0.2 were used with downward
forces totalling 5×109N applied to the four uppermost particles over 10 loadsteps. The particle positions
within two elements in the Z direction throughout the simulation are shown in Figure 2(ii). It can be seen
that a problem arises when the uppermost particles displace into the lower element. When this happens
the internal force calculations result in a displacement back into the previous element for some of the
particles. This is repeated over the following loadsteps resulting in a oscillation of particles between two
elements.

One method that addresses the problem that occurs when particles cross element boundaries is the GIMP
method where characteristic functions are assigned to particles which give particles a support area so that
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Figure 2: One dimensional compression of a unit cube: (i) Original and deformed mesh. (ii) Position of particles
within 2 elements over the period of 10 loadsteps.

a particle can affect nodes in cells other than the one where the particle is located. The computational
expense of GIMP is larger than that of standard MPM however it provides improved accuracy stability
and robustness to simulations [8]. This is the next step in this work.

7. Conclusions and future work

From the work undertaken so far, the MPM appears to a promising technique for dealing with large
deformations, that can be simply achieved by altering an existing FE code. A MPM code is being devel-
oped using an Updated Lagrangian approach so that calculations are not affected by a stiffness that was
calculated when material points were in different positions. It is hoped that in the future a GIMP type
method can be implemented to address the boundary crossing problem encountered, and to then use the
MPM code for more complex problems involving large deformations.
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