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ABSTRACT
Research over the past fifty years into predictors of programming 

performance has yielded little improvement in the identification of 

at-risk students. This is possibly because research to date is based 

upon using static tests, which fail to reflect changes in a student’s
learning progress over time. In this paper, the effectiveness of 38 

traditional predictors of programming performance are compared 

to 12 new data-driven predictors, that are based upon analyzing 

directly logged data, describing the programming behavior of 

students. Whilst few strong correlations were found between the 

traditional predictors and performance, an abundance of strong 

significant correlations based upon programming behavior were 

found. A model based upon two of these metrics (Watwin score 

and percentage of lab time spent resolving errors) could explain 

56.3% of the variance in coursework results. The implication of 

this study is that a student’s programming behavior is one of the

strongest indicators of their performance, and future work should 

continue to explore such predictors in different teaching contexts. 

Categories and Subject Descriptors
K3.2 [Computer and Information Sciences Education]: 

Computer science education. 

General Terms
Measurement, Experimentation, Human Factors, Verification. 

Keywords
CS1; predictors of success; programming behavior; learning 

strategies; learning styles; prediction; watwin; error quotient; 

1. INTRODUCTION
Programming courses have a reputation for high difficulty and 

failure rates [1], and as a result, predicting a student's performance 

in a first programming course is a well studied problem. Although 

early work focused upon using standardized aptitude testing [5] 

over the past fifty years, various predictors have been proposed. 

These include a range of demographic, psychological, academic, 

and cognitive factors, such as: previous programming experience 

[2,18,25], math background [17,24], science background [2,6], 

behavioral traits [2], self-esteem [4], learning styles [7,9,10], 

learning strategies [3], and attributions of success [8,11,18].  

However studies to date are limited by a lack of verification, and a 

tendency to yield inconsistent results [23]. Additionally the 

previously researched predictors require the use of lengthy tests to 

gather predictive data. The learning strategies assessed by [15] for 

instance requires students to complete over 80 questions. Given 

potentially high enrollment numbers, the use of such tests to 

collect predictive data can take a considerable amount of time for 

an instructor to process. Even if a test was indicative of 

performance, by the time it was processed, it may be too late for 

students to withdraw, or for instructors to intervene to prevent 

students from failing [3]. The criteria used for prediction is a 

further limitation of these studies. Whilst psychological or 

background traits may be indicative of performance, they are not 

directly related to the regular programming behavior of a student, 

or the programming tasks which they are required to perform. The 

previously researched predictors therefore cannot reflect changes 

in the learning behavior and progress of a student over time.  

Possibly due to these shortcomings, recent research [12,16,23] 

has moved towards exploring more data-driven approaches where 

aspects of the programming behavior of students (such as number 

of errors made) is directly logged by augmenting an IDE, and the 

resulting datasets analyzed to identify relations with performance. 

Compared to traditional tests, the main advantage of this approach 

is convenience. As predictions are made using directly logged 

data, neither an instructor, nor student has to process a batch of 

lengthy tests. Predictions are formed based upon aspects of a 

student’s programming behavior, therefore can reflect changes in

their learning progress over time. Also, as well as being able to 

dynamically identify struggling students, such predictors can be 

applied to drive an expert system, so that students can be provided 

with appropriate interventions when required. However to date, 

no paper has compared the performance of these data-driven 

predictors against test-based predictors. Contributions include: 

1. The verification of 38 traditional test-based predictors of

performance where previous research yielded inconsistent

results, or a small number of studies had been conducted.

2. An exploration of 10 new data-driven dynamic predictors.

3. The first paper to perform a comparative evaluation of the

performance of both data-driven and test-based predictors.



2. RESEARCH DESIGN
There were two main purposes for this study. The first, was to 

address the need to verify findings of previous research on 

predictors of programming performance where either a limited 

number of studies had been performed, or research findings were 

inconsistent. The second was to compare the performance of these 

traditional test-based predictors, against predictors that did not 

require tests and were based upon aspects of a student’s ordinary 
programming behavior.  

2.1 Participants 
The introductory programming module at our university was 

designed to teach Java to students of varying abilities. Students 

were supported by two weekly lectures and a lab session where 

they would practice solving programming problems using the 

BlueJ IDE. The sample of students used in this study consisted of 

volunteers from both the 2011/12 and 2012/13 cohorts. The 

structure of the course was similar for both years, with the only 

difference being the removal of the final exam in 2012/13. The 

teaching approach and learning materials were identical each year. 

2.2 Instruments 
Seven instruments were used to collect data from subjects: a 

questionnaire on the academic background of students and prior 

programming experience; attributions of success; Rosenberg’s 
self-esteem scale; Kolb’s learning style instrument; Gregorc style 
delineator; the motivated strategies for learning questionnaire 

(MSLQ); and a logging extension was added to the BlueJ IDE to 

collect data describing the programming behavior of students. 

The background questionnaire was designed in-house, and 

gathered data on a student’s: (1) gender, (2) GPA: high school, 
college, (3) lectures attended per week, (4) math and science 

background: courses taken and grades, (5) prior programming: for 

each language: years of experience, longest program written.  

Measuring attributions of success in this study was based upon 

repeating the method used by [8], where students were asked to 

rank order four possible reasons for their success in the course. 

They were attribution to ability, task difficulty, luck, and effort. 

Rosenberg’s self-esteem scale (RSE) is perhaps the most widely

used self-esteem measure in social science research. It consists of 

10 questions and has been shown to in general to have a high 

reliability [15]. The RSE uses 4 point scales, ranging from 

strongly agree to strongly disagree. The only study to date [4] was 

replicated by using the reworded questions provided that modified 

the scale to relate self-esteem with a programming context. 

Kolb’s Learning Style Inventory (LSI) measures an individual’s 
intrinsic learning style, or predisposition in any given learning 

situation. Kolb describes learning as a cycle of involvement, 

starting with concrete experiences and followed by a period of 

reflection, observation, and application of those experiences to 

solve problems. The LSI consists of a set of 12 sentences where 

individuals rank order four completions on a scale of 1 to 4. The 

LSI provides scores (range 12 to 48) for an individual’s 
predisposition toward concrete experience, reflective observation, 

abstract conceptualization, and active experimentation. 

The Gregorc style delineator describes an individual’s learning 
style based on four dimensions: concrete random, concrete 

sequential, abstract random, and abstract sequential. The 

instrument consists of a set of 10 sentences where individuals 

rank order four completions on a scale of 1 to 4. The highest score 

among the four channels determines the dominant learning style. 

The motivated strategies for learning questionnaire was co-

designed by Pintrich [15] and is used to measure the motivations 

and learning strategies (cognitive, meta-cognitive, and resource 

management strategies) or students. It measures 17 different 

scales: 6 motivational and 9 learning strategies. The scales can be 

used together, but given their modular design, they can also be 

administered individually. The MSLQ uses a 7 point scale, 

ranging from 1 (not at all true of me), to 7 (very true of me).  

A logging extension was used to gather data describing aspects of 

a student’s ordinary programming behavior as they completed 
programming exercises using the BlueJ IDE. Each time a student 

compiled code on a university PC, the extension would log a 

snapshot of the code being compiled, along with the student’s 
username, a timestamp, event type (compilation success or 

failure), and the error message reported with line number 

(if applicable). To explore aspects of a student’s programming 
behavior and how it may relate to performance, we applied the 

data cleaning and processing procedure presented in [23] to each 

of our datasets. The procedure takes as an input directly logged 

compilation and invocation data, and produces a set of successive 

compilation pairings, for each file that a student attempted to 

compile during a session. These pairings describes how a 

student’s programming behavior in terms of how their source

code evolved between two consecutive compilations. 

For example, if a student compiled a file and encountered an 

error, in the next compilation of that file, were they able to resolve 

it? The procedure we selected has been shown to be more robust 

[23] than related approaches [12] which simply construct 

compilation pairings on a per-session basis, and instead constructs 

parings on per-session, per-file basis. The procedure also uses 

invocation information to refine estimates of the time a student 

spent between compilations – allowing their error resolve time for

different types of error to be more accurately profiled.  

In total 37 students (32 male) from the 2011/12 cohort and 

45 students (42 male) from the 2012/13 cohort consented to us 

logging data describing their programming behavior over a period 

of 19 weeks. From the 2012/13 cohort 39 students (36 male) 

completed the six questionnaires. A one-way ANOVA showed no 

significant differences in the performance of the three samples of 

students on the reference criterion, F(2, 118) = .18, p = .83. 

2.3 Predictor Variables 
The relationships between 50 predictors and student performance 

in the introductory programming course at our university were 

examined. These predictors fall into 8 categories, including: 

1. previous programming experience: has prior experience,

number of languages previously studied, longest

program written, years of experience.

2. previous academic experience: college grades: physics,

chemistry, maths; university grades: discrete, calculus,

GPA: college, high school.

3. attributions of success: scores for 4 scales outlined.

4. behavioral traits: lectures attended, hours part time job.

5. self esteem: overall score on Rosenberg.

6. learning styles: 8 scales taken from ILS and Gregorc.

7. learning strategies and motivations: 12 MSLQ scales.

8. programming behavior: 5 measures based on error

frequency, 5 measures based on time, 2 measures based

on an overall scoring of programming behavior.
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2.4 Criterion Variable 
To maintain an identical criterion variable for all students, we 

used overall coursework mark as the measure of programming 

ability in this study. This mark consisted of a weighting of a 

student’s marks on a mid-term exam (25%), project (25%), a 

practical exam (40%), and weekly programming exercises (10%). 

3. RESULTS  
A priori analysis was carried out to verify that no significant 

differences existed between the mean overall scores of the class 

on the reference criterion, and those who agreed to participate in 

the studies conducted. Test assumptions of normality (Shapiro-

Wilks test) and equality of variance (Levene test) were satisfied, 

and a set of t-tests showed no significant differences between the 

performance of those who participated in the: 2011/12 logged 

data sample (t(78) = .28, p = .77), 2012/13 logged data sample 

(t(97) = 1.08, p = .29), or the 2012/13 questionnaire sample (t(91) 

= .56, p =.57) and the remainder of their respective cohorts. In the 

remainder of this section, the findings on the relationships among 

each of the predictors examined and performance are presented. 

3.1 Previous Programming Experience 
All 39 students completed the background questionnaire section 

on prior programming experience. A t-test revealed significant 

differences in the performance those students who had prior 

programming experience prior to enrolling on the course (n = 15, 

M = 71.76, SD = 10.47) and those students who did not (n = 24, 

M = 64.34, SD = 10.70), (t(37) = 2.12, p < .05). These findings 

are consistent with previous research such as [25], but contradict 

research such as [2, 18]. Further analysis showed more interesting 

relations between prior experience and performance; however 

none of the following measures were significant, (p > .05). The 

number of languages that a student had previously studied weakly 

correlated with performance, r = .24, the longest program that a 

student had written prior to enrolment on the course also weakly 

correlated, r = .15, and surprisingly years of programming 

experience negatively correlated with performance, r = -.20.  

5 students had prior Java experience, but no relation was found 

between the longest Java program they had previously written and 

performance, r = .01. In general, these results suggest that whilst 

prior programming experience may be useful to students, specific 

aspects such as years of experience, or the number of languages a 

student has studied, has little impact on performance. 

3.2 Previous Academic Experience 
To establish the relationship between previous academic 

experience in mathematics and science, the achievable grades for 

each subject were ranked, with the highest rank given to the 

highest possible grade, and the lowest rank given to the lowest 

possible grade. No significant correlations were found (p < .05) 

between either: grades in college physics (n = 26, r = .31), 

chemistry (n = 15, r = .27), math (n = 28, r = .20), university 

discrete math grade (n = 15, r = .06), or college GPA (n = 35,  

r = .21). But, marginally significant correlations were identified 

between performance and university calculus grade (n = 26,  

r = .37, p = .06), and high school GPA (n = 38, r = .27, p = .10). 

These findings are consistent with previous research that suggest 

generally academic background factors are weakly correlated with 

programming performance [2, 6], and that grades obtained in 

calculus courses are more strongly related to programming 

performance, than grades obtained in discrete courses [17]. But a 

total lack of correlation between discrete math and programming 

performance was contradictory to previous research [24]. 

3.3 Attributions of Success 
All 39 students completed the background questionnaire section 

on their attributions of success. To date only 3 studies [8, 11, 18] 

have explored relationships between attributions and performance. 

Significant (p < .05), but weak, correlations were found between 

performance and attributions of success to task difficulty  

(r = -.10), and attributions to effort (r = .07). A moderate and 

marginally significant correlation was found for attribution of 

success to luck (r = -.31, p = .05) and a moderate, significant 

correlation was found for attribution of success to ability  

(r = .40, p < .05). The correlations reported by this study are 

consistent with, and within the range of correlations reported by 

the previous three studies on attributions to: task difficulty  

(r = -.20 to .20), and effort (r = .07 to .16). However much 

stronger relations for both attributions to ability (r = .07 to .16) 

and attributions to luck (r = -.22 to .05) were found. These 

conflicting results suggest that further research on how 

attributions of success relate to performance is required.   

3.4 Behavioral Traits 
All 39 students reported their lecture attendance. No relationship 

was found between lectures attended and performance, (r = .02,  

p > .10). 7 students reported the weekly hours that they worked in 

a part time job whilst studying. A strong negative correlation 

between the hours a student worked in a part time job and 

programming performance was found (r = -.64, p < .01). But this 

result should be interpreted with caution due to the small sample. 

3.5 Self-Esteem 
All 39 students completed Rosenberg’s self-esteem scale. A weak, 

not significant, relation between score obtained on the instrument 

and programming performance was found (n = 39, r = .13,  

p = .42). Only one other study to date [4] used Rosenberg’s 

instrument to examine the relationship between self-esteem and 

programming performance. However a moderate correlation 

between these two variables (n = 54, r = .36) was reported. The 

differing results between this study and prior research suggests 

that further research on the relations between programming self-

esteem and programming performance would be beneficial. 

3.6 Learning Styles 
38 students completed both learning style instruments. Only  

3 studies to date [7, 9, 10] have reported correlations between 

scores on the 4 dimensions of Kolb’s ILS and performance. In this 

study no significant relations between learning style and 

performance were found for any of the 4 dimensions: concrete 

experience (CE) (r = -.18, p = .29), reflective observation (RO)  

(r = -.07, p = .69), abstract experimentation (AE) (r = .14, p = 

.39), abstract conceptualization (AC) (r = .10, p = .53). These 

correlations are consistent with, and within the range of the 

correlations reported by the previous three studies,  

(CE: r = -.16 to -.23; RO: r = -.36 to .06; AE: r = .02 to .16;  

AC: r = .15 to .26). These results suggest that in general that there 

is little to no relation between Kolb’s ILS and the performance of 

students. Results for the Gregorc learning style were more 

encouraging. No significant correlation for the concrete/random 

dimension and performance was found (r = -.14, p = .39);  

But moderate and marginally significant correlations were found 

for each of remaining dimensions: abstract/random  

(r = -.33, p = .05), concrete/sequential (r = .27, p = .10) and 

abstract/sequential (r = .29, p = .08). Only 2 studies to date  

[13, 14] have explored the use of Gregorc’s instrument as a 

predictor. Our findings are consistent with these studies.  
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Table 1. Pearson correlations (r) of this study compared to 

previous research MSLQ. (* p < .10, ** p < .05, *** p < .01) 

MSLQ Dimension This Study [3] [4] 

Critical thinking .28 * .57  

Total metacognitive .14 .54  

Resource strategy; Effort .28 * .62  

Resource strategy: Peer -.06 .37  

Total resource strategy .04 .56  

Task value .06 .54 .44 

MSLQ total .22 *  .49 

Intrinsic goal orientation .33 *  .51 

Total self-efficacy .54 ***  .54 

 

Compared to previous research, a similar moderate correlation for 

the concrete/sequential dimension (n = 218, r = .35) was reported 

by [13]. [14] found an identical moderate correlation (n = 131,  

r = .30) for abstract/sequential dimension, compared to this study. 

This suggests that the Gregorc learning style delineator may 

perform as a reasonable indicator of programming performance. 

3.7 Learning Strategies and Motivations 
All 39 students completed the MSLQ. Results are presented in 

Table 1. Only 2 studies to date [3, 4] have explored the relations 

between programming performance and scores on the various 

motivational and learning strategies scales on the MSLQ. 

Compared to prior research, an identical strong correlation for the 

self-efficacy for learning and performance dimension (r = .54,  

p < .01) was found. Marginally significant (p < .10) correlations 

were found for: intrinsic goal orientation (r = .33, p = .04), critical 

thinking (r = .28, p = .08), resource strategies: effort (r = .29,  

p = .08), and MSLQ total score (r = .22, p = .09). These findings 

confirm the research by [3, 4] who suggested that students who 

perform well in programming courses have high levels of intrinsic 

motivation and self-efficacy. However the findings of this study 

differed with previous researchers on a number of dimensions. No 

significant correlations were found between the total scores on the 

resource strategies scale (r = .05, p = .76), task value (r = .06,  

p = .70) scale, and the metacognitive strategies scale (r = .15,  

p = .37) was found to have a significantly lower correlation than 

previous researchers reported. These findings suggest that whilst 

certain dimensions of the learning strategies employed by students 

are related to their programming performance, further research is 

required to identify the dimensions that are the most significant. 

3.8 Programming Behavior 
10 metrics based upon the programming behavior of students 

were examined. Each metric was based upon the specific types of 

event pairings that students produced, measured as a percentage 

of their total number of pairings. Percentages were chosen as a 

means of standardizing the number of event pairings against all 

pairings each student produced, and as prior research has shown 

that metrics based upon event counts alone are poor indicators of 

performance [23]. 5 metrics were based upon the frequency of 

specific types of pairings a student produced. 5 metrics were 

based upon the percentage of lab time a student spent working on 

specific types of pairing. Results are shown in Table 2. 

Unlike the traditional test-based predictors that we have examined 

throughout this section, an abundance of strong and significant 

relations were found between metrics of programming behavior 

and the performance of students. In terms of the percentage of 

specific types of pairings logged for each student, a strong 

significant correlation was found for the percentage of pairings 

where an error persisted for two successive compilations  

(n = 82, r = -.51, p < .01). Moderate correlations were also 

identified for the percentage of pairings where any errors existed 

in two successive compilations (n = 82, r = -.46, p < .01), and for 

the percentage of pairings where two successive compilations 

were successful (n = 82, r = .38, p < .01). Consistent with  

[12, 23], these results suggest weaker students are characterized 

by a high percentage of successive errors during lab sessions, 

whilst stronger students are characterized by having a high 

percentage of successive successful compilations.  

Examining the relations between the time students spent on 

different types of event pairings, further significant correlations 

were found. A strong significant correlation was found for the 

percentage of lab time that students spent working on pairings 

where any errors existed in two successive compilations (n = 82,  

r = -.50, p < .01). An inverse relation was found for the 

percentage of lab time that students spent working on pairings 

where two successive compilations were successful (n = 82,  

r = .39, p < .01). A further moderate correlation was found for the 

percentage of lab time that students spent working on pairings 

where an error persisted for two successive compilations (n = 82, 

r = -.42, p < .01). These results suggest that not only are weaker 

students characterized by producing a high percentage of 

successive errors during lab sessions, but also, weaker students 

will generally spend a greater percentage of their lab time 

interacting with uncompilable code, than stronger students.  

Table 2. Pearson correlations (r) between programming 

behaviors and performance (* p < .10, ** p < .05, *** p < .01) 

Programming 

Behavior 

2011/12 2012/13 Total 

n = 37 n = 45 n = 82 

Based on Frequency of Events. Percentage of pairings: 

Error to Same Error -.50 *** -.54 *** -.51 *** 

Error to Different Error -.32 * -.43 *** -.37 *** 

Error to Any Error -.48 *** -.48 *** -.46 *** 

Error to Success .18 .54 *** .38 *** 

Success to Success .44 ** .37 ** .38 *** 

Based on Time. Percentage of Lab Time Spent On:  

Error to Same Error -.35 ** -.51 ** -.42 *** 

Error to Different Error -.44 *** -.43 *** -.41 *** 

Error to Any Error -.54 *** -.51 *** -.50 *** 

Error to Success .07 -.09 -.01 

Success to Success .41 ** .38 ** .39 *** 

Overall Quantification Measures: 

Error Quotient [12] -.42 ** -.47 *** -.44 *** 

Watwin Score [23] -.60 *** -.65 *** -.60 *** 
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The use of programming behavior as a predictor of performance 

was further explored by applying two overall quantification 

algorithms to our datasets: Error Quotient (EQ) [12] and Watwin 

Score [23]. Both algorithms work by applying a scoring algorithm 

to the different types of compilation pairings that a student 

produces during a lab session. The major difference between the 

two algorithms is that Watwin [23] relatively penalizes a student 

based upon how their resolve time for different types of error, 

compares to the resolve times of their peers on the same error. The 

EQ moderately correlated with performance (n = 82, r = -.44,  

p < .01). However Watwin score showed a significantly stronger 

correlation (n = 82, r = -.60, p < .01). These findings suggest that 

aspects of a student’s programming behavior are strongly related 
to their performance in programming courses and that hybrid 

algorithms may be one of the best data-driven predictors. 

3.9 Regression Analysis 
To investigate whether the various factors examined were 

predictive of performance in the module, three regression analyses 

were performed. As 5 of the students who completed the 

questionnaires did not provide consent for us to log their 

programming behavior, our sample size is reduced to 34 students. 

The first model was designed to determine the predictive potential 

of the six written questionnaires. Consideration was given for all 

the traits examined in this study, with the exception of: previous 

programming experience, academic background (apart from 

GPA), hours worked in a part time job, due to a small number of 

students in each of these categories. Using a stepwise regression, a 

significant model was found with F(3, 24) = 8.56, p < .01, and an 

adjusted R-square of 45.6%. Significant values were found for 

MSLQ test anxiety (β = -.33, p = .04), MSLQ total metacognitive 

self regulation (β = .34, p = .03), and score on the Gregorc 

abstract/random dimension (β = -.40, p = .01). 

The second model was designed to determine the predictive 

potential of the 12 programming behavior traits. Using a stepwise 

regression, a significant model was found with F(2, 33) = 22.21,  

p < .01, and an adjusted R-square of 56.3%. Significant values 

were found for Watwin score (β = -.56, p < .00) percentage of lab 

time spent working on error to success pairings (β = .41, p < .01). 

A third model was designed to determine whether a hybrid of both 

traditional predictors and those based on programming behavior 

could explain more variance than the previous two models. All 

characteristics used to construct the previous two models were 

entered into the regression. A significant model was found with 

F(3, 27) = 17.92, p < .01, and an adjusted R-square of 60.6%. 

Significant values were Watwin score (β = -.77, p < .01), MSLQ 

total resource management strategies (β = .29, p < .01), and 

MSLQ total control of learning beliefs (β = .29, p < .01). 

4. DISCUSSION  
For almost 50 years, researchers have examined how prior 

academic experience, attributions of success, behavioral traits, 

self-esteem, learning styles, and learning strategies relate to the 

programming performance of students. But, with the exception of 

self-efficacy measured by the MSLQ (r = .54, p < .01) this study 

found no predictor within any of these traditional categories that 

strongly correlated with the performance of our students. Figure 1 

shows the top 20 predictors found by this study. As can be seen, 

whilst 9 of the traditional test-based predictors are in the top 20, 

the strength of their correlations with programming performance 

are concentrated around the weak-moderate range. The remaining 

29 traditional predictors outside the top 20 performed similarly. 

 

Figure 1. Bar chart showing the top 25 predictors of 

programming performance identified by this study. 

Correlations shown are absolute values and references to 

corresponding sections are shown in brackets. Programming 

behavior predictors are yellow, test-based predictors are blue. 

In contrast, 11 of the 12 predictors based upon programming 

behavior were within the top 20, and were found to significantly 

relate to the programming performance of students. As can be 

seen from Figure 1, a total of 7 predictors based on programming 

behavior were found to strongly correlate with performance, and 

the remaining 4 moderately correlated. The implication of this 

research is that traditional test-based predictors are substantially 

less effective at reflecting the programming ability of students, 

and that data-driven approaches offer a more accurate method of 

prediction. In this study the results for test-based predictors were 

mostly inconsistent. The results for the programming behavior 

metrics (Table 2) were mostly consistent. It is worth stressing the 

further advantages of using predictors based on programming 

behavior. Traditional test-based approaches mainly examine traits 

that are static in nature and fail to reflect changes in the students 

learning progress over time. Although such approaches may have 

a chance of identifying weaker students, their one-shot, static 

nature, means that they cannot be dynamically used to support 

such students, e.g., by providing automatic interventions to assist 

weaker students when they are struggling. The programming 

behavior metrics however could be used in such circumstances, 

without the requiring any additional workload for either 

instructors or students.  

Finally we acknowledge the limitations of this study. There are 

numerous difficulties associated with identifying predictors of 

programming performance. Our data was consistent with previous 

researchers in terms of the frequency and distribution of different 

types of error [12,16,23]. However conditions, such as the 

language taught or tools used to program vary considerably across 

different teaching contexts. Whilst this study has shown that 

several aspects of programming behavior can significantly 

correlate with a student’s performance, further verification is 
required to determine the general applicability of these metrics 

across a variety of different teaching contexts and situations. 
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5. CONCLUSION AND FUTURE WORK
In this paper, 38 traditional test-based predictors of programming 

performance were reexamined, and compared to 12 dynamic 

predictors that were based upon analyzing aspects of a student’s
regular programming behavior. Whilst only one strong relation 

was identified between traditional predictors and performance, an 

abundance of strong and significant relations were found between 

aspects of programming behavior and performance. A model 

based upon two aspects of programming behavior could account 

for 56.3% of the variance in coursework marks, an improvement 

of approximately 25% when compared to a model based on 

traditional predictors alone. The results are encouraging, and the 

implication of this study is that predictors based upon aspects of 

programming behavior may be one of the strongest predictors of 

performance. Researchers should continue to explore their 

potential further, and work is essential to verify the performance 

and applicability of such predictors across a variety of teaching 

contexts. Future work will aim to develop techniques of applying 

the metrics within practical contexts, such as visualizations of 

learning progress [19], game-based tools [21,22], or tools to 

improve the compiler feedback provided to novice students [20]. 
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