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ABSTRACT

Head pose estimation provides key information about driver
activity and awareness. Prior comparative studies are lim-
ited to temporally consistent illumination conditions under
the assumption of brightness constancy. By contrast the il-
lumination conditions inside a moving vehicle vary consider-
ably with environmental conditions. In this study we present
a base comparison of three features for head pose estimation,
via support vector machine regression, based on Histogram of
Oriented Gradient (HOG) features, Gabor filter responses and
Active Shape Model (ASM) landmark features. These, reput-
edly illumination invariant, are presented through a common
face localization framework from which we estimate driver
head pose in two degrees-of-freedom and compare against a
baseline approach for recovering head pose via weak perspec-
tive geometry. Evaluation is performed over a number of in-
vehicle sequences, exhibiting uncontrolled illumination vari-
ation, in addition to ground truth data-sets, with controlled
illumination changes, upon which we achieve a minimal ~12°
and ~15° mean error in pitch and yaw respectively via ASM
landmark features.

Index Terms— head pose, driver head tracking, gaze
tracking, pose estimation regression

1. INTRODUCTION

Knowledge of driver gaze direction provides key information
about their current activity, level of alertness and general sit-
uational awareness of the road environment. As such, moni-
toring driver gaze through a combination of visual head pose
estimation and tracking has many applications in future driver
assistance [1, 2, 3, 4] and intelligent vehicle safety systems
[5, 6, 7] - ranging from collision detection through to drowsi-
ness alerting [8]. For general usage within this environment,
approaches are required to be both driver invariant and robust
to the highly variant illumination conditions of an in-transit
vehicle interior.

From the recent survey of [9], several sensing solutions
and pose recovery techniques have targeted the general prob-
lem of head pose estimation. Here we concentrate on the use
of a low-cost monocular camera, offering a viable compact
sensing solution for the vehicle interior, and the recovery of
head orientation in terms of continuous {pitch, yaw} parame-
ters. These are of primary interest for driver gaze monitoring
whilst roll is naturally less common within this context [8].

Recent prior work in this domain has concentrated on
techniques that operate directly on the image itself - com-

Fig. 1. Active Shape Models for frontal (left) and side profile
(right) facial views.

monly using edge and gradient features (e.g. [8, 10, 11, 12]).
These approaches are poised against more traditional head
pose estimation approaches using flexible shape modeling
approaches (e.g. Active Shape Models (ASM) - Figure 1,
[13]). Despite the relative age of techniques such as ASM
[14] compared to contemporary techniques such as gradient
distribution models [15], studies such as [13] illustrate their
relevance today. To date no robust comparative study of such
approaches exists grounded both over a common data-set and
with relevance to the varying illumination changes of driver
head pose estimation [8, 9]. An informative, over-arching
survey of head pose estimation in general is provided in [9]
whilst the recent notable work of [16] tackles this issue using
3D sensing via a consumer depth camera.

Here we target continuous estimation of the {pitch, yaw}
parametrization of current head pose from a monocular cam-
era focusing on the driver head pose estimation context. Over-
all the most relevant prior work, within our automotive con-
text, is that of [9] and the earlier work of [17]. [9] uses a
gradient distribution approach (in essence similar to that of
[18, 15]) whilst [17] compares a principle components ap-
proach to 3D motion estimation. [9] performs an extensive
study of driving conditions and compares against techniques
similar to those of [11] and [17]. Despite impressive results,
[9] fails to address the question of evaluating varying feature
inputs with a common regressive estimation framework and to
address the question of relative computational performance.

In this study we concentrate on a) evaluating the perfor-
mance of a range of features within a common regressive
framework under varying (in-vehicle) illumination condi-
tions, b) contrasting the relative performance of the same
techniques under laboratory environment conditions using
the benchmark data-sets [19, 16] and c) reporting relative
run-time performance within this framework. Following an
initial localization strategy akin to [9] we adopt a support



vector machine regressor approach to produce a continuous
{pitch, yaw} output parametrization. Within this pose esti-
mator framework we compare the use of Histogram of Ori-
ented Gradient (HOG) features (similar to [8]), Gabor Filter
responses (as per [20]) and Active Shape Model (ASM) land-
mark features (following the seminal work of [14]). These
features are reportedly illumination invariant with respect to
this task [8, 20, 14]. Our study differs significantly from prior
work in the field in that it considers the in-vehicle perfor-
mance of several feature types within a common regressor
framework, supports this with comparative evaluation over
openly available data-sets and additionally considers relative
run-time performance for real-time operation.

2. POSE ESTIMATION FEATURES

We compare three head pose estimation features (Sections 2.2
- 2.4), in addition to benchmark estimation from weak per-
spective geometry (following [21]) as an indicator of data-set
difficulty (Section 2.5), based on a common framework for
initial head detection and localization within the scene (Sec-
tion 2.1). Comparative results are presented in Section 3.

2.1. Detection and Localization
Face detection is initially performed using an ensemble of
trained Haar-cascade classifiers [22] (a multi-orientation cas-
cade of cascades [23, 24, 25]). Within the driver context, this
ensemble of cascades is biased towards frontal profile detec-
tion (higher a priori probability) followed by subsequent side
profile (left/right) detection (as illustrated in Fig. 3, left col-
umn). In general this offers robust initial detection within
±90oyaw, ±45o pitch and ±20o roll offering good coverage
for pose recovery (similar to [8]).

Initial detection is further integrated with a pyramidal
tracking approach (Kanade-Lucas-Tomasi, [26, 27]) suitable
for frame-to-frame head tracking in the fixed, although illu-
mination varying, environment. This approach minimizes a
residual pixel matching error over a large set of pixel-wise
matches to recover a robust optical flow based motion esti-
mate [26]. Here we additionally employ a forward-backward
matching strategy filtering only the feature points tracked
from frame t to t + 1 that are subsequently track-able back
from frame t+1 to t. The final motion estimation, m̂, is com-
puted from the optical flow of this filtered feature set via a
truncated mean. Inter-feature distances, dt(i,j), are then com-
puted for each (forward-backward) matched feature pairing,
(i, j), in each frame t from which a feature-wise inter-frame

scaling factor, s(i,j) =
dt+1
(i,j)

dt
(i,j)

, is computed. A mean frame to

frame scaling factor, ŝ, is calculated as the truncated mean
of this set. This combined spatial transformation, (m̂, ŝ) fa-
cilitates onward frame-to-frame tracking of the facial region
initially identified via initial detection with explicit facial
re-detection presiding over a tracker prediction for future
in-frame localization. Despite underlying assumptions of
spatial coherence (i.e. consistent local optical flow motion)

which are readily broken by head rotation or partial occlusion
(e.g. hands over/on face) this provides a quantitative 91-94%
correct facial region localization against publicly available
data-sets [19, 16]. Overall, this extends the detection strategy
of [8] within the context of driver head pose estimation.

2.2. Histogram of Oriented Gradient
From our localized face region (Section 2.1), we first use
the Histogram of Oriented Gradient (HOG) of [15] features
following a gradient approach akin to that of [8]. The HOG
descriptor is based on histograms of oriented gradient re-
sponses in a local region around a given pixel of interest.
Here a rectangular block, pixel dimension b × b, is divided
into n×n (sub-)cells and for each cell a histogram of gradient
orientation is computed (quantised into H histogram bins for
each cell, weighted by gradient magnitude). The histograms
for all cells are then concatenated and normalised to represent
the HOG descriptor for a given block (i.e. associated pixel
location). For image gradient computation centred gradient
filters [−1, 0, 1] and [−1, 0, 1]T are used as per [15].

By re-sampling the localized facial region to a 64 × 64
pixel image, we then compute the global HOG descrip-
tor of this localized region using a block stride, s = 8
(H = 9, n = 4, b = 16), to form the input to a Support
Vector Machine (SVM) regressor. Four SVM regressors are
trained, one for each of frontal and side profile facial view
predicting either {pitch, yaw} respectively (following [8]).
Based on this 1764 dimension input (i.e. H × n × (s − 1)2)
we use a Radial Basis Function (RBF) kernel, with grid-based
kernel parameter optimization, within a cross-validation
based training regime. Training is performed over∼700
example images from [16] sub-divided into frontal profile
(i.e. {pitch, yaw} = {±60,±45}) and side profile (i.e.
{pitch, yaw} = {±60,±(−90 → −45)}). A single side
profile regressor is trained over which both left and right side
profiles are evaluated via a symmetrical pre-transformation
(based on profile detection, Section 2.1).

2.3. Gabor Filters
Secondly we consider the use of multiple Gabor filter re-
sponse features over the same localized face region (Section
2.1). Gabor features are widely used to extract information
from images [28]. In order to extract the Gabor feature infor-
mation r(x, y), (x, y) ∈ Ω, we convolve the image I(x, y)
with the Gabor filter function g(x, y) as follows:-

r(x, y) =

∫∫
Ω

I(ξ, η)× g(x− ξ, y − η) dxd y (1)

The two dimensional Gabor filter is defined as the product
of two functions:- the carrier, s(x, yφ, θ), a complex sinusoid
of spatial frequency φ, with orientation θ, and the envelope,
wr(x, y, σ), a Gaussian kernel of width σ as follows:-

g(x, y) = s(x, yφ, θ)wr(x, y, σ) (2)

The carrier determines the wavelength (the preferred spa-
tial frequency of analysis). Here we use the response of the



Gabor filter to locally characterize the face region as a sum-
mary vector feature. Following the in-depth analysis of [29]
we use a single spatial frequency, φ = {1.82}, with a set of
four orientations θ = {0,−45,−90,−135}o resulting in four
magnitude response values per input pixel over the face region
(re-sized to a 20 × 20 pixel image). This 1600 dimensional
vector (i.e. 20 × 20 × |{θ}|) forms the input to a multiple
SVM regressor approach following the same approach out-
lined in Section 2.2.

2.4. Active Shape Model Landmarks
Within the localized facial region, here an Active Shape
Model (ASM) [14] is used to perform sub-facial feature lo-
calization. Essentially, each face within a given training
set is represented as a set of landmark points corresponding
to explicit facial features (see Fig. 1) over which a Point
Distribution Model (PDM) is constructed via Principle Com-
ponents Analysis (PCA). In operation, ASM exploit a linear
formulation of the PDM by performing an iterative search to
fit the model to a new unseen (facial) image post-training.
Here, by priming the ASM with the output region from the
tracker we localize this search within the image. As the ASM
is reliant on all of the facial landmarks being un-occluded
within the image we train separate ASM models for frontal
and side profile respectively [14] (Fig. 1). These ASM are
constructed using 53 facial landmarks (frontal) and 39 facial
landmarks (profile) over ∼ 700 example images from the
data-set of [19] following the approach of [14].

An input to head pose estimation is formed as the fully-
connected set of inter-landmark distances and landmark posi-
tions normalized by the size of the localized face region (from
Section 2.1). These forms a set of v × (v − 1) distances and
v 2D positions for the vertices of the fully-connected ASM
graph corresponding to the facial landmarks (v ∈ {vfrontal,
vside} = {53, 39}) resulting in an (v2 + v) dimensional rep-
resentation (i.e. (v×(v−1))+2v) for each ASM respectively
(Fig. 1). Subsequently, this forms the input to a multiple SVM
regressor approach following the same methodology outlined
in Section 2.2 for the prediction of {pitch, yaw}.

2.5. Weak Perspective Geometry
Finally we consider the work of [21] as a baseline tech-
nique in this study to provide an accessible measure of data-
set/scenario difficulty. This uses a simple geometric approach
for face pose estimation based on knowledge of a semantic set
of five facial features, fface = {tip of nose, extremities of the
eyes (x 2), extremities of mouth} (see Fig. 2, white). Based
on localization of these features a line is drawn between the
midpoint of the eye and midpoint of the mouth (Fig. 2, red).
A statistical ratio thus facilitates recovery of the base of the
nose [21] from which the vector (nose base →nose tip) can
be estimated as a 2D projection of the facial normal (Fig. 2,
green). Estimation of the projective transformation from the
standard spatial layout of fface to that of the example facili-
tates direct recovery of a {pitch, yaw} estimation [30]. Here

Fig. 2. Facial normal estimation (green) from facial feature
geometry (white/red).

Fig. 3. Head pose estimation under varying illumination con-
ditions (upper and lower)

localization is based on a combination of ASM, {extremities
of the eyes (x 2), extremities of mouth}, and a specific trained
Haar-cascade classifier [22], {tip of nose}, which empiri-
cally offered superior localization to that of the ASM for this
feature.

Inclusion of this approach [21] makes the results of this
study more directly comparable to those of other studies [9]
and provides a baseline for comparison of the other features
within the common regression framework.

3. EVALUATION

Our comparative evaluation is based on qualitative and quan-
titative analysis (Sections 3.1, 3.2) and analysis of relative
computational performance (Section 3.3).

3.1. Qualitative Results
Our qualitative evaluation is based on an in-vehicle data-set
captured from a centrally mounted camera facing the driver
(e.g. Fig. 2). This data-set is captured over multiple circuits
of a given route at varying times of day ensuring varying illu-
mination conditions within any given circuit (as vehicle posi-
tion changes relative to the sun) and between circuits due to
changes in ambient illumination conditions. The route com-
prises of a complex (campus) site involving numerous illumi-
nation occluders, sources of shadow into the vehicle and peri-
odic shadow to bright illumination changes (caused by trees,
street furniture, building occlusion etc.). It is notably difficult
to quantify illumination non-uniformity under such operating
conditions.

In Fig. 3 we initially illustrate the comparative perfor-
mance of the four different approaches (Sections 2.2 - 2.5)
under varying lighting conditions denoting the most plausi-
ble pose in each case (green “x”). From this figure we can
see that the use of ASM facial landmarks generally outper-
form the other approaches recovering both the (driver) left



Fig. 4. Head pose estimation under varying non-uniform illu-
mination conditions

head yaw with minimal variation in pitch from the horizontal
(Fig. 3 upper) and (driver) left head yaw with mild downward
pitch/glance (Fig. 3 lower). ASM landmarks appears to be the
only approach capable of recovering such subtleties correctly.

These qualitative results are further illustrated in Fig. 4
where we see a range of varying illumination head pose ex-
amples from this test data-set. The comparative performance
of each technique is shown with the plausible poses (green
“x”) and semi-plausible poses (orange “x”) identified. From
this illustrative example we can see that the ASM landmarks
approach consistently produces a plausible pose estimation
followed by the weak geometric estimation approach (Fig.
4). The HOG and Gabor approaches often produce implau-
sible pose estimates (e.g. Fig. 4, rows 2 and 4.). Fig. 3 and
4 are representative of the results obtained over the entire test
sequences. The bounding box (left) represents the facial re-
gion localized from detection/tracking forming an input to the
specific feature approach (Fig. 4/3, red = frontal profile detec-
tion, yellow = side profile detection, blue = tracked position).

The Gabor and HOG approaches appear to be less robust
to variation in illumination (Fig. 3 and 4) and head local-
ization error (e.g. Fig. 3, row 1 and Fig. 3, row 3). In
general, ASM landmarks were observed to be more robust
both to head localization error (Section 2.1), changes in illu-
mination and to mild partial occlusion. This is potentially at-
tributable to the fact that the local normalization step in most
gradient distribution approaches (e.g. HOG or [8]) assume lo-
cally consistent illumination, which may vary globally from
instance to instance, rather than the extreme illumination gra-
dient obtained over some of the test examples (e.g. Fig. 3,
row 1 (left)). The magnitude of the Gabor filter response (as
per [20]) suffer from a similar trait, as will all approaches in-

Data-set Localization HOG Gabor ASM Geometry

A [19] 91% y: 29.2 y: 22.7 y: 20.9 y: 25.6

p: 25.7 p: 32.6 p: 19.6 p: 24.8

B [16] 94% y: 15.1 y: 15.8 y: 14.6 y: 18.6

p: 13.2 p: 12.6 p: 11.9 p: 13.7

Table 1. Mean absolute error in {pitch (p), yaw (y)} (degrees)

Localization HOG Gabor ASM Geometry

ms. 33 40 96 21 50

Table 2. Mean Execution Time per Image (ms.)

herently based on having a local gradient magnitude profile
that is consistent over the localized facial region in any given
example (e.g. [8, 10, 11, 12]).

3.2. Quantitative Results
We further support our qualitative observational study with a
quantitative comparison using the public data-sets described
within [19] and [16] for which ground truth {pitch, yaw} is
available (Table 1). From Table 1, whilst we can generally
observe a lower mean absolute error over data-set B ([16])
than A ([19]). Whilst B achieves higher successful face local-
ization and lower weak geometry based pose error (indicating
relative difficultly), the error achieved by ASM is consistently
lower than the other techniques against ground truth and is
comparable to those achieved using gradient distribution ap-
proaches in [8] and others [10, 11, 12, 9]. Data-sets A and B
use controlled illumination variations.

3.3. Computational Performance
Within the driver head pose estimation context, considering
aspects of the real-time performance, we additionally present
execution time per image frame (in ms.) in Table 2 (hard-
ware platform: Intel core i5 CPU (3M Cache, 2.26 GHz),
Windows 7 64-bit). With a standard localization overhead of
33ms for face localization, we can observe a significant com-
putational advantage of the ASM landmarks approach over
the other technique in terms of achievable frame-rate (approx.
18 fps) against the slowest (Gabor, approx. 8 fps).

4. CONCLUSIONS

Overall, we conclude that the use of ASM landmark features
[14] outperform contemporary gradient distribution (e.g. [8])
and Gabor filter response type (e.g. [20]) features as an in-
put to regression based estimation of head pose under varying
illumination conditions. Whilst these techniques do perform
moderately well, we show that ASM landmarks qualitatively
perform better in the recovery of the more subtle aspects of
pose under complex and varying illumination conditions - as
commonly found in driver in-vehicle head pose estimation.
This is quantitatively supported by lower mean absolute error
in {pitch, yaw} estimation over established data-sets [19, 16].
Furthermore, ASM landmarks [14] offer significantly greater
computational efficiency than contemporary gradient distri-
bution approaches (e.g. [8, 18, 15]). Future work will expand
this study following the evaluation methodology of [16].
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