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hment.Abstra
t. This paper develops the formulation of the enri
hed Boundary Element Method (BEM) forthe analysis of fra
ture appli
ations in anisotropi
 materials. The formulation is based in the Partitionof Unity Method (PUM), via the implementation of ad-ho
 enri
hment fun
tions that des
ribe thedispla
ement �eld in the vi
inity of the 
ra
k tip. Numeri
al results are presented in order to validatethe enri
hed BEM formulation and a 
omparison with the results obtained using other te
hniques isfurther performed and dis
ussed. Namely, both results using the eXtended Finite Element Method(X-FEM) as well as the dual BEM (in 
ombination with dis
ontinuous quarter-point elements) are
onsidered for 
omparison purposes.Introdu
tionFra
ture me
hani
s of anisotropi
 materials has re
eived great attention in the latter years due to thein
reasing use of su
h materials in many engineering appli
ations. For instan
e, 
omposite materialsare widely employed in air
raft and spa
e stru
tures, automobiles, wind power generators or sportinggoods. When dealing with fra
ture problems, the BEM has been shown as a powerful and e�e
tivetool in 
omparison to other 
omputational te
hniques [1, 2℄.In this paper we develop the enri
hed BEM formulation for anisotropi
 fra
ture problems. Tothis end, the PUM [3℄ is implemented in a dual BEM 
ontext, by extending the formulation previouslypresented for isotropi
 materials [4℄ to the more general anisotropi
 
ase. The 
orresponding enri
hmentfun
tions are derived and further details on the implementation of the enri
hed BEM are brie�ydis
ussed. In parti
ular, additional 
ollo
ation points have to be used in order to a

ommodate theextra unknowns that the enri
hment introdu
es. The formulation is validated by several numeri
alexamples involving stress intensity fa
tor 
omputations for mixed-mode 
ra
ks.Furthermore, we 
ompare the results of the enri
hed BEM with those obtained by alternative nu-meri
al te
hniques: dual BEM implemented in 
ombination with dis
ontinuous quarter-point elements[2℄ and X-FEM with anisotropi
 enri
hment fun
tions [5℄. Computational 
ost and pre
ision of resultsobtained from ea
h of these methods is dis
ussed to 
lose the paper.Governing equationsConsider an anisotropi
 elasti
 domain Ω, the stati
 equilibrium equations in the presen
e of bodyfor
es b are de�ned as

σij,j + bi = 0 (1)Symmetry holds for the stress and strain tensors, i.e.: σij = σji; εij = εji, where εij =
1

2
(ui,j + uj,i)



The linear 
onstitutive equations are given by the generalized Hooke's law
σij = Cijklεkl (2)where Cijkl de�ne the material 
onstants tensor, satisfying the following symmetry relations

Cijkl = Cjikl = Cijlk = Cklij (3)Enri
hed BEM FormulationThe boundary element method (BEM) has been established as a referen
e when dealing with linearelasti
 fra
ture me
hani
s problems [1℄, being more a

urate and robust than domain dis
retizationmethods su
h as the �nite element method (FEM).In a FEM 
ontext, the partition of unity [3℄ was applied by Belyts
hko and Bla
k [6℄ to 
apturethe displa
ements asymptoti
 behavior around the 
ra
k tip, so that the 
ra
k is no longer part ofthe geometry, being represented by a set of enri
hment fun
tions at the elements 
ontaining the 
ra
k.This approa
h is now known as the extended �nite element method (X-FEM) and has been subje
t ofresear
h in a variety of �elds.The dual BEM is the usual 
hoi
e when dealing with fra
ture me
hani
s problems. It 
an besummarised by a displa
ement boundary integral equation (DBIE)
cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x) (4)and a tra
tion boundary integral equation (TBIE), obtained by the derivation of (4) and furthersubstitution in (2)
cij(ξ)pj(ξ) +Nr

∫

Γ

s∗rij(x, ξ)uj(x)dΓ(x) = Nr

∫

Γ

d∗rij(x, ξ)pj(x)dΓ(x) (5)where Γ represents all the boundaries (in
luding 
ra
k boundaries) of domain Ω; Nr is the outwardunit normal to the boundary at the 
ollo
ation point ξ; cij is the free term deriving from the Cau
hyPrin
ipal Value integration of the strongly singular kernels p∗ij ; u∗ij and p∗ij are the displa
ement andtra
tion fundamental solutions; d∗rij and s∗rij follow from derivation and substitution into the generalizedHooke's law of u∗ij and p∗ij , respe
tively. Expli
it expressions of the kernels u∗ij , p∗ij , d∗rij and s∗rij aregiven in [2℄.The extended boundary element method (X-BEM) was �rst proposed by Simpson and Trevelyan[4℄ for fra
ture me
hani
s problems in isotropi
 materials. The main idea is to model the asymptoti
behavior of the displa
ements around the 
ra
k tips by introdu
ing new degrees of freedom. Thedispla
ements uh(x) are thus rede�ned as
u
h(x) =

∑

i∈N

Ni(x)ui +
∑

k∈N CT

Nk(x)
∑

α

Fα(x)a
α
k (6)where N and N CT are the sets with nonenri
hed and enri
hed nodes, respe
tively, Ni is the standardLagrangian shape fun
tion asso
iated with node i, ui is the ve
tor of nodal degrees of freedom, and a

α
krepresents the enri
hed basis fun
tions whi
h 
apture the asymptoti
 behavior around the 
ra
k tips.In elasti
 materials, aαk is an 8-
omponent ve
tor for two-dimensional problems, sin
e only two nodalvariables (u1, u2) and four enri
hment fun
tions are needed to des
ribe all the possible deformationstates in the vi
inity of the 
ra
k-tip [5℄.In this work, we use the anisotropi
 enri
hment fun
tions obtained by Hattori et al. [5℄ for theX-FEM:

Fl(r, θ) =
√
r
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where βi = √
cos θ + µi sin θ, r is the distan
e between the 
ra
k tip and an arbitrary position, θ is theorientation measured from a 
oordinate system 
entered at the 
ra
k tip, and A, B and µ are obtainedfrom the following eigenvalue problem:
( −L

−1
M −L

−1

Z−M
T
L
−1

M −M
T
L
−1

)(

Am

Bm

)

= µm

(

Am

Bm

) (no sum on m) (8)with
Z := C1ij1; M := C2ij1; L := C2ij2 (9)Let us emphasize that the anisotropi
 enri
hment fun
tions 
an also be used for isotropi
 materials,sin
e this is a degenerated 
ase from anisotropi
 materials. For more details please refer to referen
e[5℄. The enri
hed anisotropi
 BEM formulation is similar to the one used by Simpson and Trevelyan[4℄ for isotropi
 materials. The extended DBIE and the TBIE 
an be restated as:

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)Fα(x)a
α
kdΓ =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x)(10)
cij(ξ)pj(ξ) +Nr

∫

Γ

s∗rij(x, ξ)uj(x)dΓ(x) +Nr

∫

Γc

s∗rij(x, ξ)Fα(x)a
α
kdΓ = Nr

∫

Γ

d∗rij(x, ξ)pj(x)dΓ(x)(11)where Γc = Γ+∪Γ− stands for the 
ra
k surfa
es Γ+ and Γ−. In this work, only the element 
ontainingthe 
ra
k tip re
eives the enri
hment fun
tion. Thus, if the element does not belong to the 
ra
k tipthe dual BEM formulation is the same as stated previously in Eqs. (4) and (5). Let us remind thatstrongly singular and hypersingular terms arise from the integration of the p∗ij , d∗rij and s∗rij kernelsand they are regularised in the same way as shown in [2℄.Numeri
al resultsIn this se
tion we 
ompare the numeri
al results from the extended BEM, the dual BEM with quarter-point elements [2℄ and the X-FEM. For validation purposes, we will fo
us on isotropi
 materials fornow.The Stress Intensity Fa
tors (SIF) are 
al
ulated di�erently for ea
h method: for the X-BEM, aJ-integral is 
arried out; for the quarter-point dual BEM, a dire
t extrapolation is performed from thedispla
ements at the 
ra
k tip; and for the X-FEM, the intera
tion integral is used [2, 4, 6℄.Edge 
ra
kFigure 1 illustrates a square plate (h/w = 0.5) with a single edge 
ra
k of length a under a uniformloading σ. The size of the 
ra
k is de�ned by a/w = 0.5. Results for the X-FEM are obtained usingtopologi
al and geometri
al enri
hment, with a �xed area of re/a = 0.2. For more information aboutboth adopted enri
hment types please refer to [5℄ for instan
e.For the dual BEM and the X-BEM a 10 
ontinuous quadrati
 element per side mesh was used.The 
ra
k is dis
retized with 10 dis
ontinuous elements. The dual BEM presents a quarter-point inthe element at the 
ra
k tip, while the X-BEM presents an enri
hed element. Figure 2 illustrates theSIFs obtained from all the 
ompared numeri
al approa
hes. The number of elements is given for theX-FEM only. The normalized mode I referen
e is taken from [7℄.It is evident that the BEM solutions are more a

urate than both solutions obtained with di�erentenri
hment types.Centered 
ra
kA re
tangular plate h/w = 2 with a 
entered 
ra
k of length 2a under a uniform loading is representedin Figure 5, where two di�erent θ values were evaluated: θ = 0o and θ = 45o. The size of the 
ra
k is
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Figure 1: Edge 
ra
k problem.
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a/w = 0.5 in both 
ases . The BEM meshes present 6 quadrati
 elements per side, and 10 dis
ontinuouselements at the 
ra
k.Figure 4 shows the mode I for the dual BEM, X-BEM and X-FEM, this latter with several resultsa

ording to the used number of elements per side. Referen
e [8℄ was employed to validate the numeri
alresults. It is evident that the dual BEM and the X-BEM approa
hes present better a

ura
y than theX-FEM approa
h.
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Number of elements along edge (X-FEM)Figure 4: Mode I SIFs for the 
entered 
ra
k problem - θ = 0o.Now we analyse a fra
ture problem presenting mixed mode types. Figures 5(a) and 5(b) illustratethe mode I and mode II, respe
tively, when θ = 45o. The referen
es solutions were obtained from thereferen
e [9℄. In this 
ase, the best results are obtained with the dual BEM for the mode I, and withthe X-BEM for mode II, while the X-FEM results still 
onserves a relatively low error.
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entered 
ra
k problem - θ = 45o.SummaryAn enri
hed boundary element method was proposed in this work. This method uses the bene�ts of thepartition of unit to model in a more general way the asymptoti
 displa
ements around the 
ra
k tip.Existing anisotropi
 enri
hment fun
tions for the X-FEMwere employed at the proposed method. Some



numeri
al examples were evaluated, and the results 
ompared to a well established BEM formulationand the X-FEM . It was observed that the dual BEM and the X-BEM have superior performan
e
omparing to the X-FEM. Nevertheless, the dual BEM has obtained slightly better a

ura
y than theX-BEM. The X-BEM has been proven to be a viable alternative to the dual BEM with quarter-pointelements.A
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