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Abstract

We address the issue of improving depth coverage in consumer depth cameras based
on the combined use of cross-spectral stereo and near infrared structured light sensing.
Specifically we show that fusion of disparity over these modalities prior to subsequent
optimization, within the disparity space image, facilitates the recovery of scene depth
information in regions where structured light sensing alone fails. This joint approach,
leveraging disparity information from both structured light and cross-spectral stereo, fa-
cilitates the recovery of global scene depth comprising both texture-less object depth,
where stereo sensing commonly fails, and highly reflective object depth, where struc-
tured light active sensing commonly fails. The proposed solution is illustrated using
dense gradient feature matching and is shown to outperform prior approaches that use
late-stage fused cross-spectral stereo depth as a facet of improved sensing for consumer
depth cameras.

1 Introduction
Low-cost consumer depth cameras have risen to widespread prevalence across many areas
of 3D computer vision [19]. This has seen the combined use of colour and 3D depth most
commonly leverage the use of near infrared structured light projection (830nm) with regular
visible-band colour sensing (400-700nm) to provide co-registered colour (RGB) and depth
(D) as combined RGB-D image components. In terms of real-time performance and general
depth accuracy, this outperforms common stereo vision approaches on texture-less object
surfaces [10] but notably fails in depth recovery for transparent, specular and reflective sur-
face regions [2].

Based on the common physical characteristics of such devices - comprising a colour
camera, an infrared pattern projector and corresponding infrared camera (e.g. Microsoft
Kinect / PrimeSense Carmine, [19]) - an obvious yet commonly under-utilized cross-modal
stereo configuration exists between the two camera sensors.

Prior work on this topic (Chiu et al. [2]) has already considered such a cross-spectral
formulation to improve depth recovery. This work centres on the recovery of an optimized
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pseudo-infrared version of the colour image, Ipseudo
ir , via a weighted combination of the indi-

vidual RGB colour channels [2], such that a conventional stereo matching approach can then
be applied in conjunction with the sensed infrared image [9] over the resulting {Ipseudo

ir , Iir}
stereo image pair. An alternative scheme based on using any one or all of three colour chan-
nels to form a stereo pair, {Ic, Iir} for c∈ {R,G,B}, is also considered but is outperformed by
the former approach [2]. Later work [3] replaces the scalar weights with localized 3×3 patch
filters derived from prior learning but achieves only a marginal performance improvement.
In both cases, a simple late-stage union of the resulting stereo depth information with that
from structured light shows improved depth recovery for transparent and specular surfaces
where conventional consumer depth cameras of this configuration fail [2, 3].

Related work has considered the topic of fusing time-of-flight (ToF) camera sensing
with stereo depth [23]. Zhu et al. [23] use global MAP-MRF optimization to solve the stereo
vision problem via posteriors based on ToF depth within the optimization phase. Later work
refined this by introducing the notion of reliability of each depth image within the fusion
framework [24].

Other work has considered depth recovery improvement in depth cameras as a classi-
cal image in-painting problem [17]. Qi et al. [17] successfully tackles the in-painting of
depth shadows due to object occlusion [1] without considering the challenges transparent
and specular surfaces. Alternatively [21] augment the existing RGB-D sensing set-up with
an additional colour stereo sensor to show improved depth recovery on human faces follow-
ing fusion method of [23].

Work on the conventional cross-spectral stereo problem, outside of the specifics of RGB-
D depth recovery improvement, is more developed [12, 13, 15, 20]. Krotosky and Trivedi
[12, 13] investigate cross-spectral stereo for pedestrian detection and tracking, using a window-
based Mutual Information (MI) approach inspired by the original work of Egnal [5]. How-
ever, depth computation is only performed for isolated objects (i.e. pedestrians) via prior
foreground extraction and subsequent localised stereo matching [12, 13]. Krotosky and
Trivedi [13] additionally demonstrate the failure of dense depth computation using MI in
the global energy minimisation framework of [8] caused by the lack of a global intensity
transform between the images. Torabi and Bilodeau [20] describe a very similar window-
based approach but replace MI by Local Self-Similarity (LSS) as a correspondence measure.
LSS was originally proposed in [18] for object detection, retrieval and action recognition in
visually differing scenes and better performance than MI for this task is reported but again
only on isolated scene objects [20]. More recently, Pinggera et al. [15] introduce a new dense
depth recovery approach using Histogram of Oriented Gradient (HOG) feature descriptors
[4] to address the problem of cross-spectral stereo matching between colour and far-infrared
images. Essentially HOG descriptors are computed for each pixel to capture local geome-
try, invariant to spectral image characteristics, and are shown in [15] to notably outperform
prior work [13, 20] and conventional radiometric (illumination) invariant stereo matching
techniques [10].

With reference to this prior work on cross-spectral stereo, the previously discussed pseudo-
infrared driven depth improvement approach proposed by Chiu et al. [2, 3] most closely
follows the early work of a number of authors [5, 6, 7, 11] using simulated cross-spectral
data (i.e. where one image has undergone a radiometric transform to simulate an infrared
image). Recently Pinggera et al. [15] showed the limited applicability of such approaches
[5, 6, 7, 11] in comparison to the use of dense gradient features with an appropriate optimi-
sation approach.
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By contrast to this earlier RGB-D depth improvement prior work [2, 3], we propose the
use of "best in class" dense gradient features from [15] to facilitate recovery of secondary
cross-spectral stereo disparity directly from the depth camera {Iir, IRGB} image pair. Our
main contribution is the fusion of this secondary cross-spectral (CS) disparity information
with a priori depth information, obtained via conventional structured light (SL) sensing,
within the disparity space image constructed prior to conventional disparity optimization
for scene depth recovery. Our work extends that of [2], which focused its evaluation on
boundary recovery for object segmentation, to provide dense depth recovery spanning object
occlusions in addition to transparent and specular objects. This provides combined textured
and texture-less surface depth recovery from a single consumer depth camera without the
need for additional sensor augmentation or adaptation [23].

2 Proposed Approach
We consider a cross-spectral (CS) stereo matching process, based on [15], into which we
fuse a priori depth information obtained from structured light (SL). Our discussion focuses
on the recovery of disparity (calibrated pixel-wise differences) from which scene depth is
subsequently recovered based on established stereo calibration techniques [22] (using a cali-
bration target visible in both spectral bands [15]). Our subsequent approach can be split into
three steps:- 1) match cost computation, 2) disparity optimisation and 3) disparity fusion.

2.1 Match Cost Computation
We consider the stereo matching cost computation approaches proposed by [2] and [15].
Chiu et al. [2] propose the construction of a single channel pseudo-infrared image from
the individual RGB colour components. This is constructed via optimization to recover
a set of weights {wr, wg, wb} corresponding to each of the {R,G,B} colour components
that maximizes the number of stereo disparity matches for the chosen disparity optimization
technique (Eqn. 1).

max
wr ,wg,wb

# stereo matches{Ipseudo
ir = wrIr +wgIg +wbIb, Iir}

subject to wr +wg +wb = 1
(1)

Based on this formulation, the matching cost, Cpseudo
ir (x,y,d), is then computed directly

as the pixel difference between this pseudo-infrared image, Ipseudo
ir , and the true infrared

image, Iir, obtained from the depth camera itself for each pixel location (x,y) and stereo
disparity, d. The optimization problem, to recover the required set of colour component
weights {wr,wg,wb}, is simply solved using grid search over the plane wr +wg +wb = 1.
However, no direct relation exists between the colour and infrared pixel values, as colour is
visible-band illumination dependant whilst infrared is jointly dependant upon illumination
and material reflectivity (in/to infrared light). Subsequently, the resulting {wr,wg,wb} will
be different for each and every scene making this approach computationally demanding for
any practical use. Computational saving could possibly made by employing a fixed pseudo-
infrared formulation such as [5, 6, 7, 11] but this has been shown to compromise matching
performance [15].

By contrast Pinggera et al. [15], motivated by the observation of {Iir↔ IRGB} pixel inten-
sity dis-similarity yet localised image structure similarity, identify dense gradient features as
an optimal cross-spectral stereo matching approach. As such, [15] proposes a matching cost
based on a variant of the Histograms of Oriented Gradient (HOG) descriptor [4]. The HOG
descriptor is based on histograms of oriented gradient responses in a local region around
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the pixel of interest. Here a rectangular block, pixel dimension b× b, centred on the pixel
of interest is divided into n× n (sub-)cells and for each cell a histogram of unsigned gradi-
ent orientation is computed (quantised into H histogram bins for each cell over the interval
(0,π)). The histograms for all cells are then concatenated to represent the HOG descriptor for
a given block (i.e. associated pixel location). For image gradient computation centred gra-
dient filters [−1,0,1] and [−1,0,1]T are used as per [4]. To maximise invariance the whole
descriptor is normalised to the L2 unit norm with the resulting HOG descriptor as a n×n×H
description vector per pixel. A comparison, hence matching cost CHOG(x,y,d), between two
HOG descriptors at pixel positions (x,y) and (x+d,y) (assuming scan-line stereo rectifica-
tion) is thus computed using the L1 distance. Dense HOG descriptors for every image pixel
are computed efficiently by using integral histograms [16] allowing fast descriptor computa-
tion but preventing the use of spatial weighting (e.g. Gaussian) of gradient responses within
any given descriptor in this case.

2.2 Disparity Optimization
The disparity optimization step computes the disparity result D(x,y) from the specified cost
matching function C(x,y,d). Here, following the earlier cross-spectral stereo work of [2]
and [15] we similarly use Hirschmueller’s seminal Semi-Global Matching (SGM) [9] which
is both computationally efficient and provides improved global disparity smoothness con-
straints compared to alternative approaches [10, 14]. Within our SGM optimization we addi-
tionally specify a uniqueness ratio, u, such that disparity, d, corresponding minimum match
cost, minc()C(x,y,d), should be considered valid for pixel location (x,y) only if the next

largest match cost for alternative disparity d′, C(x,y,d′) satisfies C(x,y,d′)−C(x,y,d)
C(x,y,d′) −u > 0.

This allows us to control the disparity optimization in order to filter out poor quality dis-
parity information originating from potentially ambiguous stereo matches (i.e. when the dif-
ference between minimal C(x,y,d) and next possible C(x,y,d′) disparity solution is small).
Within our depth recovery context, this allows us to filter out unreliable disparity estimates
within texture-less scene regions from the resulting disparity image. Within such regions
depth recovered from structured light projection will be reliable whilst conversely stereo
depth will be of greater reliability within highly textured regions (including transparent and
specular surfaces).

2.3 Disparity Fusion
In the prior work of [2], disparity fusion between structured light sensing and cross-spectral
stereo is performed based on a simple union in projected depth space based on co-registration
from a priori calibration [22]. Disparity, d, to depth, z, projection is carried out based on the
relationship d = f B

z using camera focal length, f , and stereo base-line, B, recovered during
this earlier stereo calibration. A corresponding disparity image is then recovered via back-
projection from depth space using the same formulation. In cases where this results in a
"disparity collision" (i.e. two 3D depth space points are projected to a single 2D disparity
image pixel) we favour structured light derived disparity over cross-spectral stereo. This
essentially performs the conditional union of disparity from structured light (SL) and cross-
spectral stereo (CS via Cpseudo

ir (x,y,d)) such that SL is favoured over CS when present.
By contrast, we propose using disparity fusion that is integral to the disparity optimiza-

tion itself and essentially performs such a union in early-stage disparity cost space rather
than in a late-stage union of the resulting disparity following [2]. This is achieved by mod-
ifying the disparity space image, formed by C(x,y,d), which constitutes the disparity cost
space over which disparity optimization will be performed. We construct an alternative cost
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(a) Infrared (normalised) (b) RGB Colour

(c) SL disparity (from device) (d) CS disparity (CHOG(x,y,d)) (e) CS-DSI disparity (proposed)

Figure 1: Fused disparity estimation:- (SL,CS)→CS−DSI

function, CDSI(x,y,d) such that the use of disparity from structured light sensing, DSL(x,y),
is incorporated as follows:

CDSI(x,y,d) =


CHOG(x,y,d) if DSL(x,y) is unavailable at pixel (x,y)

lowc if d = DSL(x,y)

highc if d 6= DSL(x,y)
(2)

Following from Eqn. 2, in cases where no SL disparity is available we revert to CS
with its associated cost CHOG(x,y,d). Alternatively where there is agreement between both
sensing modalities we favour this (CDSI(x,y,d) = lowc, i.e. low cost) and where we have
disagreement we heavily penalize disparity case (CDSI(x,y,d) = highc, i.e. high cost) within
the overall disparity cost space.

Empirically we use lowc = 0 and highc = e37 in this work. This results in a formulation,
as illustrated in Fig. 1, where an incomplete disparity result from structured light (SL, Fig.
1(c)) combined with poor-quality, otherwise largely incomprehensible cross-spectral stereo
disparity (CS, Fig. 1(d)) and be successfully fused within the disparity space image to pro-
vide a complete and comprehensible scene disparity result that is representative of the scene
objects and surfaces (CS-DSI, Fig. 1(e) compared to scene of Fig. 1(a) / 1(b)).

3 Evaluation
We present our evaluation over a number of example scenes based on comparing the dispar-
ity, as a function of depth [22], recovered using the varying approaches. Explicitly we com-
pare the proposed disparity space image approach (CS-DSI), the original disparity obtained
via structured light sensing (SL), the disparity obtained via cross-spectral stereo in isolation
via CHOG(x,y,d) [15] (CS) and that obtained via prior cross-spectral depth improvement
work of [2] (CS-union) (Figs. 1, 2, 5). This is supported by quantitative evaluation against
ground truth based on analysis of the overall match quality in relation uniqueness ratio, u,
specified within the SGM disparity optimization in use (Fig. 3 & 4(a) / 4(b)).

All data is collected using a Microsoft Kinect X360 depth camera providing 1280×1024
resolution {IRGB, Iir} image pairs (for CS) and 640×480 resolution depth, Idepth (SL, up-
scaled for use in fusion). Static scenes are used for evaluation whereby the infrared projector
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used for initial depth image capture (internal to the sensor unit) is subsequently de-activated
for capture of the corresponding {IRGB, Iir} pair. This results in a infrared image unaffected
by SL pattern projection. Our CS-DSI and CS approaches uses HOG parameters (H = 9, n=
3, b = 18) following [15] with SGM uniqueness ratio, u, varied in the range {0→ 0.5} and
block-size=11.

Figure 2 shows the disparity results obtained from the {IRGB, Iir, Idepth} triplet shown in
Fig. 2(a) - 2(c) for both of the CS-union (Fig. 2(e)) and the proposed CS-DSI (Fig. 2(f))
against illustrative ground truth depth derived using manual depth labelling (Fig. 2(d)). The
resulting CS-DSI disparity (Fig. 2(f)) presents a clearer disparity image with notably less
missing disparity values and noise than CS-union (Fig. 2(e)) and the original SL disparity
(Fig. 2(c)). The improvement in quality of the disparity resulting from CS-DSI, against the
original SL disparity, is further supported by the earlier example shown in Fig. 1.

Within the CS-DSI and CS-union results shown in Fig. 2 we perform SGM disparity
optimization over either the disparity space image obtained using Cpseudo

ir (x,y,d) (for CS-
union, as per [2]) or that obtained using CDSI(x,y,d) which in turn uses CHOG(x,y,d) (as
per [15]). Figure 3 shows the resulting disparity optimization using only CS in isolation
(via CHOG(x,y,d) with SGM) for varying SGM uniqueness ratios, u, with disparity regions
matching corresponding ground truth (Fig. 2(d)) shown in green. In general we note the
poor performance of using CS in isolation on the texture-less scene regions (background) and
consistent performance on textured regions despite transparency and specularity (foreground
jars, Fig. 3).

As we can see in Fig. 3 (grey and green regions), as our uniqueness ratio, u, is increased
our matching criteria gets stricter resulting in a decrease in the number of overall matches
obtained. Notably we can also observe that the ratio of good matches (in green, i.e. matching
ground truth) to overall matches (green + grey) increases as u is increased. Based on this
observation we can introduce a ratio of good matches (against ground truth) to total matches
obtained, Mgood , and similarly a ratio of total matches obtained to all possible matches within
the scene, Mtotal .

From the graph in Figure 4(a) we can observe that the ratio of good matches, Mgood ,
decreases when we try to increase the overall number of matches, Mtotal , with respect to
varying u for both matching costs considered here. Similarly, for both matching costs, we
obtain Mgood > 0.8 for higher values of u (i.e. very strict matching) but with less selective
matching (lower u values) we obtain Mgood < 0.6. However, CHOG(x,y,d) notably outper-
forms Cpseudo

ir (x,y,d) in all cases (Fig. 4(a)) showing that our HOG matching formulation
consistently outperforms the pseudo-infrared approach of [2] under varying disparity opti-
mization conditions.

In Figure 5, we present the disparity results obtained from the {IRGB, Iir, Idepth} triplet
shown in Fig. 5(a) - 5(c). Based on the SL disparity shown in Fig. 5(c), we create an
artificially challenging depth recovery scenario by removing the primary foreground objects
in the SL disparity image (see Fig. 5(d)). This modified SL disparity, D(x,y), is then used
as the input to in our earlier formulations for CS-union (Eqn. 1) and CS-DSI (Eqn. 2) to
produce the results shown in Fig. 5(e) (CS-union) and Fig. 5(f) (CS-DSI). The results show
the recovery of the missing scene disparity in both cases with lesser disparity holes and
greater clarity in the CS-DSI result (comparing Fig. 5(e) to Fig. 5(f)).

Notably, the performance of CS in isolation (using CHOG(x,y,d)) is worse than CS-DSI
(or CS-union) for the foreground object disparity recovery (Fig. 5(g) and 5(h)). This illus-
trates the additional constraint brought to the disparity recovery process via the combined
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(a) Infrared (normalised) (b) RGB Colour

(c) SL disparity (from device) (d) Ground truth disparity

(e) CS-Union disparity [2] (f) CS-DSI disparity (proposed)

Figure 2: Disparity recovery on transparent and specular objects

use of the remaining background SL disparity (Fig. 5(d)) within the overall disparity opti-
mization process. Essentially we show that in the case of no local SL disparity constraint
within disparity recovery, the CS-DSI method does not simply resort to a simple CS driven
process in these regions (akin to [15]). As such it is not simply performing depth filling
[1] by alternating between the SL and CS modality as required. Instead the presence of SL
disparity globally constrains the overall CS-DSI disparity estimation process such that the
foreground result present in Fig. 5(f) (CS-DSI) is superior to that of using CS alone (Fig.
5(g) and/or 5(h))) and indeed SL alone (Fig. 5(c)). The CS-DSI results presented in Figs. 5
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(a) u = 0 (b) u = 0.2 (c) u = 0.4

Figure 3: CS disparity image with varying SGM uniqueness ratio, u.
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Cpseudo
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(a) Good match ratio vs. total matches ratio for differ-
ent matching costs, u = {0→ 0.4}

0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

Mtotal for SL

Mtotal

M
go

od

CS-DSI
CS-union

(b) Good match ratio vs. total matches ratio for dif-
ferent disparity fusion approaches, u = {0→ 0.5}.

Figure 4: Match ratio comparisons for matching cost and disparity fusion approaches

and 1 support the case that this fused disparity output via this process is indeed "greater than
the sum of the individual parts". By contrast, the simple depth-union based approach of [2]
to which we compare (CS-union) is very much simply the sum of the individual parts.

Using our original SL disparity (Fig. 5(c)) as ground truth against our modified version
(Fig. 5(d)) we can compute our earlier Mgood and Mtotal match ratios to provide a quantitative
measure of relative performance for both disparity fusion approaches (Fig. 4(b)). From
Figure 4(b), we can see that the CS-DSI disparity fusion method consistently outperforms
the CS-union approach [2] over a range of SGM uniqueness ratio values, u, in terms of the
Mgood and Mtotal match ratio metrics.
Practical Issues: As reported in [2] the Microsoft Kinect X360 hardware does not facili-
tate simultaneous capture of the RGB, {IRGB}, and infrared, {Iir}, video streams. Maximal
speeds of 1.5-2 fps are achievable via stream switching which is still viable for many appli-
cations. De-activation of the infrared projector is currently performed manually and depth,
{Idepth}, image capture is limited to 640×480 resolution. Within this work, these limitations
are considered bespoke to this particular consumer depth camera based around its original
design criteria.

4 Conclusions
Improved disparity can be recovered from a consumer depth camera based on the fusion of
cross-spectral stereo and existing structured light sensing performed prior to conventional
disparity space optimization within the disparity space image. Missing depth information is
recovered for transparent and specular objects in addition to that missing due to inter-object
occlusions and other sensing noise.
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(a) Infrared (normalised) (b) RGB Colour

(c) SL disparity (from device) (d) Modified SL disparity

(e) CS-union disparity (f) CS-DSI disparity (proposed)

(g) CS, CHOG, u = 0 disparity (h) CS, CHOG, u = 0.1 disparity

Figure 5: Disparity recovery over large scale disparity holes
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This directly extends prior work [2, 3] which is shown to produce lesser disparity recov-
ery and requires computational expensive scene dependant optimization. By contrast, we
offer improved depth recovery from a single sensing unit (consumer depth camera) without
the need for individual per scene optimization, making it highly suitable for mobile sensing
applications and dynamic scenes. This extends both the work of [21], which requires addi-
tional sensors to achieve the similar results, and the disparity in-painting approach of [17]
which does not readily recover transparent and specular object disparity.

Future work will investigate the negation of structured light pattern effects within the
infrared component of the process [3] and the generality of the proposed disparity space
image fusion approach for use with alternative stereo matching and disparity optimization.
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