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ABSTRACT: In geotechnical analysis continuum idealisations of the bulk material still provide the most
appropriate approach for engineers designing large-scale structures. In this area, the most successful framework
for describing the behaviour of soils is Critical State (CS) soil mechanics. However, the findings from discrete
element method (DEM) analysis, such as the uniqueness of the CS, can provide invaluable information in the
development such models. This paper details the key concepts behind a two-surface hyperplasticity model (?)
whose development was informed by recent DEM findings on the uniqueness of the CS. Asymptotic states of
the model will be confirmed and the DEM-continuum-experimental loop will be closed through comparison of
the developed model with experimental data on coarse-grained particulate media. This will demonstrate, that
providing the previous stress history is accounted for, the proposed model is suitable for a variety of particulate
media.

1 INTRODUCTION

This paper presents the constitutive formulation of
a two-surface hyperplasticity model whose develop-
ment was informed by recent discrete element method
(DEM) findings on the uniqueness of the Critical
State (CS). These recent findings, and their implica-
tions on the continuum plasticity formulations, are ex-
plored in a companion paper published in the same
conference proceedings.

The layout of the paper is as follows. After this
introduction, Section 2 presents the constitutive for-
mulation of the two-surface anisotropic model, in-
cluding: (i) elastic free-energy, (ii) dissipation, (iii)
Lode angle dependency, (iv) isotropic hardening, (v)
anisotropic shearing and (vi) inner surface translation.
The asymptotic states of the model are explored in
Section 3 and the model is validated against exper-
imental data in Section 4. Finally observations are
drawn in Section 5.

In this paper compressive stresses are taken as pos-
itive and the deviatoric stress measure, q, is defined as
q =
√
sijsij where sij = σij − pδij and p = σii/3. σij

and δij are the Cauchy stress and Kronecker delta ten-
sors, respectively. It is important to note that this mea-

sure of deviatoric stress is not equal to the difference
between the cell pressure, σ3, and the axial stress, σ1,
in a triaxial apparatus, instead q =

√
2/3(σ1 − σ3)..

2 CONSTITUTIVE FORMULATION

2.1 Elastic free-energy

Here we use an elastic free energy function that pro-
vides pressure sensitive bulk and shear moduli (?)

Ψ1 = κpr exp
(
Ω
)

+Gγe
ijγ

e
ij, (1)

where Ω = (εe
v − εe

v0)/κ and G is the constant shear
modulus. The elastic strain measures are given by
εe
v = εe

ii and γe
ij = εe

ij − εe
vδij/3, where δij is the

Kronecker delta tensor. κ is the bi-logarithmic elas-
tic compressibility index (the gradient of the drained
unloading line in the bi-logarithmic void ratio versus
hydrostatic pressure plane), pr is the reference pres-
sure and εe

v0 is the elastic volumetric strain at that ref-
erence pressure. Taking the partial derivative of (??)
with respect to the elastic strain, the Cauchy stress is
given by

σij = pr exp
(
Ω
)
δij + 2Gγe

ij. (2)



Taking the second derivative of the free energy func-
tion with respect to elastic strain, the non-linear elas-
tic stiffness matrix subsequently follows as

De
ijkl =

(
pr exp(Ω)

κ
− 2G

3

)
δijδkl + 2G

(
Iijkl

)
(3)

where Iijkl is a fourth order identity tensor.

2.2 Dissipation

The rate of dissipation function for the inner surface
of the two-surface anisotropic model can be expressed
as

Φ̇ =
√

(ε̇p
v + βij γ̇

p
ij)

2A2
f + (ε̇p

γBf )2 (4)

with εp
v = εp

ii, γ
p
ij = εp

ij − (εp
v/3)δij and εp

γ =
√
γp
ijγ

p
ij ,

where βij accounts for the coupling between volu-
metric and deviatoric plastic straining. Following the
standard procedure, as given by ?), we obtain the in-
ner anisotropic yield surface in true stress space as

f = (p− pχ)2B2
f + sβijs

β
ijA

2
f −A2

fB
2
f = 0, (5)

where the local deviatoric stress is given by sβij =
sij − sχij − (p− pχ)βij . As shown in Figure ??, pχ =
σχii/3 and sχij = σχij − pχδij are the hydrostatic and de-
viatoric components of the centre of the inner yield
surface, σχij . The stress-like quantities controlling the
shape of the yield envelope are given by

Af = (1− γ)(p− pχ) + (2− γ)γRpc/2 and
Bf = ρ̄(θ)M

(
(1− α)(p− pχ) + γRpc/2

)
. (6)

pc and M control the size and the axis-ratio of the
outer yield surface, α ∈ [0,1] and γ ∈ [0,1] control the
shape of the yield surface in the p-q plane, ρ̄(θ) con-
trols the deviatoric section and R ∈ (0,1] is the ratio
of the size of the inner and outer surfaces. From (??)
it is apparent that introducing a cross-coupling in the
rate of dissipation function results in the yield surface
being sheared off the hydrostatic axis, where βij is
a second order, traceless (deviatoric), tensor measure
of this inclination. If βij = 0 we recover an isotropic
yield surface, with the ellipsoid’s major axis coinci-
dent with the hydrostatic axis.

The evolution of inelastic straining on the inner
yield surface follows from the dissipation function
and is controlled through

ε̇p
ij

γ̇
=

2

3

(
B2
f (p− pχ)−A2

fs
β
ijβij

)
δij + 2A2

fs
β
ij. (7)

γ̇ is the plastic consistency parameter (and not the
rate of the material constant controlling the shape
of the yield surface) that satisfies the Kuhn-Tucker-
Karush consistency conditions: γ̇ ≥ 0, f ≤ 0 and

γ̇f = 0. Note, the position of isochoric flow on the
yield surface depends on the level of anisotropy (loss
CS uniqueness; see Section 3.1).

The ellipsoidal modified Cam clay (MCC) yield
surface and associated flow direction is obtained by
setting α = γ = 1 and R = 1. Reducing α also causes
an increase in the level of both plastic compaction and
dilation through increasing the volumetric component
of the plastic flow direction. Reducing γ has the op-
posite effect. There influence on the shape of the yield
surface was detailed by ?).

2.3 Lode angle dependency

The yield surface includes a dependency on the Lode
angle, θ, through the normalised deviatoric yield ra-
dius, ρ̄(θ), in Bf . Here, the model is presented with
a Willam-Warnke (W-W) (?) LAD that can be ex-
pressed as

ρ̄(θ) =
a1C +

√
2a1C2 + a2

2a1C2 + 1
∈ [ρ̄e,1] (8)

where a1 = 2(1− ρ̄2e)/(2ρ̄e − 1)2, a2 =
(5ρ̄2e − 4ρ̄e)/(2ρ̄e − 1)2 and C = cos(π/6 − θ).
This W-W LAD is based on a local measure of the
Lode angle, θ, from the major, βij , axis of the inner
surface. This definition ensures convexity of the yield
surface and in this case the Lode angle is calculated
from

θ =
1

3
arcsin

(
−3
√

3

2

J3

J
3/2
2

)
∈
[
−π/6, π/6

]
, (9)

where J2 = 1
2

(
rijrji

)
, J3 = 1

3

(
rijrjkrki

)
and the nor-

malised deviatoric distance from the inner surface
axis of anisotropy is

rij =
sij − sχij +Rpcγβij/2

p− pχ +Rpcγ/2 .

(10)

Note that βij corresponds to a shearing of the yield
surface in the deviatoric direction, rather than a rota-
tion away from the hydrostatic axis. This distinction
is important, as an initially convex yield surface will
remain convex for any degree of shearing.

2.4 Isotropic fluctuations

The hydrostatic extent of both the inner and outer sur-
faces are controlled by pc. The ratio of the size of the
two surfaces is keep constant, specified by R. Here,
following ?), the rate of the evolution of the size of
the outer surface is defined as

ṗc =

(
pc

λ− κ

)
ε̇p
v, (11)

where λ is the bi-logarithmic plastic compressibility
index.
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Figure 1: Two surface anisotropic model with ηcs = 0.8, α = 0.6, γ = 0.9 and ρ̄e = 0.7: (i) in p-q stress space and (ii) deviatoric
section through p = pχ. The LAD Critical State surface (CSS) and critical anisotropy surface (CAS) are identified in the deviatoric
section. The current stress state is identified by a solid black circle whereas the centre of the yield surface is identified by a square.

2.5 Anisotropic shearing

The development of anisotropy, βij , in the two sur-
face model is controlled through the following rate
relationship by proposed by ?) (based on the law de-
veloped by ?))

β̇ij = Cβ

((
rij − βij

)
〈ε̇p
v〉+ xβ

(
bβrij − βij

)
ε̇p
γ

)
, (12)

where 〈(·)〉 is the ramp function of (·). Compressive
volumetric plastic strains, ε̇p

v, try to drag the level of
anisotropy towards the local stress ratio, rij , whereas
deviatoric plastic straining shifts βij in the direction of
bβrij , where bβ is a material constant. Cβ controls the
rate of anisotropic shearing and xβ the relative contri-
bution of the volumetric and deviatoric strains on the
development of anisotropy.

2.6 Inner surface translation

The movement of the inner surface is derived through
the concept of a projection centre (?) and assuming
that the outer bounding and inner yield surfaces are
geometrically similar. The derivation of the law is
omitted in this paper for brevity, it is simply given
as

σ̇χij = Cχ||ε̇p
ij||
(

(1−R)σij +Rpcγ
(
δij + βij

)
/2
)

+
(
ε̇p
v/(λ− κ)−Cχ||ε̇p

ij||
)
σχij + pχβ̇ij, (13)

where Cχ controls the rate of translation of the sur-
face. This translation rule means that the inner yield
surface can touch the outer surface but never overlap
it. The rate of anisotropic shearing is scaled by the
hydrostatic pressure at the centre of the inner surface
to ensure that under plastic straining the centre of the

surface translates appropriately, remaining consistent
with the evolving anisotropy of the geometrically sim-
ilar surfaces. The term involving purely volumetric
plastic straining, ε̇p

v, causes the yield surface centre to
scale uniformly, from the origin, with isotropic expan-
sion or contraction of the yield and outer envelopes.
For full details of the derivation of the translation law
see ?), or ?) for an abridged version.

2.7 Complete formulation

The two-surface anisotropic model is fully described
by the equations in the preceding sub-sections. The
model requires 12 constants: 2 associated with the
hyperelasticity relationship, 6 with the isotropic en-
velopes and 4 with the development of anisotropy.
These material constants are given in Table ?? for
Lower Cromer Till and Sacramento river sand.

3 ASYMPTOTIC STATES

Unlike some anisotropic hardening laws, which de-
pend purely on plastic volumetric strains (for exam-
ple ?) and ?)), the expression adopted here gives rise
to a unique level of anisotropy at the CS (provided
that xβ 6= 0). This asymptotic of anisotropy is referred
to here as the critical anisotropy state1 (CAS). When
approaching the CS the plastic volumetric strain di-
minishes while the level of anisotropy tends towards
the deviatoric target value, bβrij . In the limiting case,
when ε̇p

v = 0, the rate of evolution of anisotropy be-
comes

(β̇ij)ε̇p
v=0 = Cβxβ

(
bβrij − βij

)
ε̇p
γ. (14)

1or critical anisotropy surface (CAS), as used in Figure ??.



Under continued plastic shearing with no change in
state, β̇ij → 0 and βcsij = bβr

cs
ij , where (·)cs denotes a

quantity at the CS. The anisotropy of the yield surface
when a material has reached the CS is independent of
both (i) the initial anisotropy and (ii) the stress path
taken to the reach this state. It is only dependent on
the stress ratio at the CS and a material constant, bβ .
This unique level of fabric anisotropy also results in
a unique CSL in the bi-logarithmic void ratio versus
hydrostatic pressure plane. The majority of previous
formulations that include anisotropic shearing of the
yield surface do not predict a unique CAS. One ex-
ception is the S-CLAY1 model (?), and subsequent
extensions.

3.1 Yield surface axis ratio

It is important to distinquish between the material
constant controlling the axis ratio of the yield sur-
face, M , and the experimentally determined stress ra-
tio at the CS (denoted here ηcs where η = q/p). If the
model includes non-zero anisotropy at the CS (that is,
if bβ 6= 0) then M 6= ηcs. Instead, M must be specified
to obtain the correct stress ratio at the CS.

The position of isochoric plastic flow on the yield
surface when at the CS is given by (?)

pcs =
1− bβ + bβγ(2− γ)

bβγ(2− γ) + γ(1− bβ)/2
, (15)

where pcs = pc/p. Therefore the relative position of
the CS on the outer surface is solely a function of bβ
and γ. The value M required to obtain the correct ηcs
is

M =
ηcs(1− γ + γpcs/2)(1− bβ)

(1− α+ αγpcs/2)
√
γ(2− γ)(pcs − 1)

. (16)

In the case when bβ = 0 it is clear from the above
equations that pcs = 2/γ and M = ηcs.

3.2 The CS, K0 loading & the friction angle

Three of the material constants required for the two
surface model are intimately linked to the effective
friction angle, φ, those are: (i) the stress ratio at the
CS, ηcs, (ii) the normalised deviatoric yield radius, ρ̄e,
and (iii) constant controlling the relative contribution
of the volumetric and deviatoric strains on the devel-
opment of anisotropy, xβ .

The stress ratio at the CS is linked to φ through

ηcs = 2
√

6 sinφ/
(
3− sinφ

)
(17)

and to the normalised deviatoric yield radius via

ρ̄e = (2 + k)/(2k + 1), (18)

where k = (1 + sinφ)/(1− sinφ) is the passive earth
pressure coefficient. xβ can be determined using the
asymptotic stress ratio under K0 loading, ηK0 , using

xβ = (ηK0 − βK0)/
(√

2/3(βk0 − bβηK0)
)
, (19)

constant LCT SRS
elastic compressibility κ 0.005 0.0038
shear modulus (MPa) G 28 40
yield surface axis ratio M 0.92 0.96
plastic compressibility λ 0.045 0.076
norm. dev. ext. yield ρ̄e 0.73 0.68*
inner surface size ratio R 0.2 0.2
shape constant α 0.4 0.3
shape constant γ 0.78 0.6
rate of anisotropy Cβ 14 6
stress path aniso. xβ 4.8 7.0*
volumetric target bβ 0.1 0.4
rate of translation Cχ 2,000 4,000

Table 1: Material constants for Lower Cromer till (LCT) and
Sacramento river sand (SRS). * denotes a constant determined
from φ (taken as 34.6◦ for SRS).

where βK0 is the level of anisotropy developed under
continuous K0 loading and can be obtained though
the solution of a quartic equation involving γ, α, bβ ,
ηcs and ηK0 (see ?) for details). If experimental data
for ηK0 is not available, it can be estimated using the
formula provided by ?)

ηK0 =
√

6 sinφ/
(
3− 2 sinφ

)
. (20)

This equation has been shown to provide reasonable
agreement to measured data over a wide range of fric-
tion angles (?). Therefore obtaing ηcs from a single
undrained traixal compression test, using the above
equations, it is possible to determine φ and estimate
ρ̄e and xβ .

4 EXPERIMENTAL VALIDATION

This section presents the experimental validation of
the model against data on both a clay (LCT) and a
sand (SRS). The material constants for all of the nu-
merical simulations are given in Tab;e ??.

4.1 Lower Cromer till (LCT)

Figure ?? shows the experimental results from LCT
(?) under undrained triaxial compression (UTC) and
undrained triaxial extension (UTE) following one-
dimensional (K0) loading to a pressure of 233.3kPa
(point B) and unloading to different (points B to G)
over consolidation ratios (OCRs). The stress path re-
sponse for the two-surface anisotropic model is shown
in Figure ?? (i). The axial strain versus deviatoric
stress response is shown in Figure ?? (ii). For all of
the tests, the full stress path is simulated using a sin-
gle set of material constants (as given in Table ??).
That is, the same constants are used for the complete
response, including one-dimensional consolidation,



Figure 2: UTC and UTE tests following K0 consolidation and swelling comparison with experimental data (shown by discrete points)
on LCT: (i) stress path in p-q space and (ii) axial strain-deviatoric stress response.

swelling and UTC or UTE. The two-surface model
shows a reasonable agreement with the experimental
data for all OCRs, as shown in Figure ?? (i) . The
only significant deviation is under UTE at an OCR of
1, where an over-stiff response is observed.

Figure 3: DTC tests following K0 consolidation and swelling
comparison with experimental data (shown by discrete points)
on LCT: axial strain-deviatoric stress response (above) and axial
strain-volumetric strain response (below).

The experimental data and two-surface model re-
sponses under DTC followingK0 loading and unload-
ing to five OCRs are shown in Figure ?? (along with
the MCC model response for OCRs of one and seven

shown by fine dashed lines). The two-surface model
gives good agreement with the experimental data for
all OCRs, in terms of both the principal stress de-
viation and the volumetric strain response. However,
the MCC model significantly over-estimates the stress
deviator for both the normally consolidated (OCR=
1) and heavily over-consolidated (OCR= 7) samples
when compared with the experimental data.

4.2 Sacramento river sand (SRS)

Figure ?? shows the experimental results from dense
SRS2 (?, ?) (with the data points obtained from ?))
under UTC following hydrostatic compression to four
different initial pressures. In order to account for this
dense state, the two surface model was initially hydro-
statically consolidated to a pressure of 6.2MPa (deter-
mined by assuming an initial void ratio of ein ≈ 0.86
for the loose sand) before unloading to the required
pressure at the start of the UTC test. As with the tests
on LCT, the full stress path is simulated using a sin-
gle set of material constants (as given in Table ??).
The two surface model offers reasonable agreement
for the four starting pressures in terms of both the p
versus (σ1 − σ3) and ε1 versus (σ1 − σ3) responses,
as shown in Figures ?? (i) and (ii), respectively.

The experimental data on dense SRS (?, ?) and
two-surface model responses under DTC following
hydrostatic loading and unloading to five different
starting pressures are shown in Figure ??. The
two-surface model gives adequate overall agreement
with the experimental data for all starting pressures,
in terms of both the principal stress deviation and the
volumetric strain response. However, the two surface
model over predicts the level of volumetric dilation

2the sand had an initial void ratio of ein ≈ 0.60



Figure 4: UTC tests at different starting pressures comparison
with experimental data (shown by discrete points) on SRS: (i)
stress path and (ii) axial strain-deviatoric stress response.

for the tests under a lower confining pressure.

5 OBSERVATIONS

This paper has distilled the key concepts behind a
two-surface hyperplasticity model (?) whose devel-
opment was informed by recent DEM findings on

Figure 5: DTC tests at different starting pressures comparison
with experimental data (discrete points) on SRS : (i) axial strain-
deviatoric stress response and (ii) axial strain-volumetric strain
response.

the uniqueness of the CS. Asymptotic states of the
model are well defined and provide a useful means
of calibration from classical relationships. Finally,
the DEM-continuum-experimental loop was closed
through comparison of the developed model with
experimental data on both fine and coarse-grained
particulate media. The simulations demonstrated, that
providing the previous stress history is accounted for,
the proposed model is suitable for a wide range of
particulate media.


