
Auto-completion of Contours in Sketches, Maps and
Sparse 2D Images Based on Topological Persistence

Vitaliy Kurlin
vitaliy.kurlin@gmail.com

Microsoft Research Cambridge and
Durham University, Durham, UK, http://kurlin.org

Abstract—We design a new fast algorithm to automatically
complete closed contours in a finite point cloud on the plane.

The only input can be a scanned map with almost closed
curves, a hand-drawn artistic sketch or any sparse dotted image
in 2D without any extra parameters. The output is a hierarchy
of closed contours that have a long enough life span (persistence)
in a sequence of nested neighborhoods of the input points.

We prove theoretical guarantees when, for a given noisy
sample of a graph in the plane, the output contours geometrically
approximate the original contours in the unknown graph.

I. INTRODUCTION: AUTO-COMPLETION OF CONTOURS

A. Problem: from a Point Cloud to Closed Contours

Recognizing closed contours is a primary phenomenon
according to the Gestalt laws of perception. Humans can
easily form closed loops from incomplete contours with gaps.
Closed contours bound semantic regions whose extraction is
needed for higher level image understanding. So an automatic
completion of contours is important for low level vision.

The problem is most similar to Saund [11], who studied
how to find perceptually closed paths using weights or prefer-
ences for quality criteria. We propose a mathematical definition
of persistent contours and suggest a hierarchical solution.

The input is a cloud C, which is a finite set of points
with real coordinates in the plane R2, see Fig. 1. Such a cloud
can be a noisy sample or a scan of a hand-drawn sketch or an
artistic drawing. In a simple case, C can be a binary image.
However C might be sparse without any pixel connectivity.

The output is a hierarchy of most likely closed contours
that we can extract from a given finite sample of an original
sketch. A contour is a non-self-intersecting cycle of straight
edges connecting points in the given cloud. So a single output
is a union of several contours that bound different regions in
the plane. For easier visualization, we present each output by
coloring all bounded regions using random colors in Fig. 1.

The algorithm was a bit faster than humans in our exper-
iments for counting most likely closed contours in big clouds
with numerous gaps as in Fig. 1. All these closed contours
were actually found without using any input parameters like a
threshold distance for neighboring points, see section V.

Fig. 1. Input: only a noisy cloud C randomly sampled near a graph G ⊂ R2.
Output: regions bounded by most persistent contours (best viewed in color).

B. Applications: Maps, Closed Objects, Auto-colorization

In addition to the motivations from Saund [11] we suggest
four more applications for the auto-completion of contours.

Map reading. Conventional paper maps contain many level
set curves. These curves are often split into disjoint arcs by
labels showing the actual height at the points in the curve
above the sea level. Hence auto-completion of contours can
help digitize paper maps for real-time robot navigation.

Object recognition. Objects in real-life images are often
detected by using saliency feature points such as SIFT or
SURF. The input can be a noisy and incomplete contour of
a person in a video, while the output should be a closed
silhouette produced in real-time. So it is important to quickly
reconstruct a full boundary from a sparse cloud of features.

Automatic colorization. Artistic drawings are line
sketches that often contain gaps, but may give an impression
of closed contours. We may enhance these black-and-white
drawings by automatically coloring regions that appear visually
closed if they are bounded by almost complete contours.

Auto-closure of polygons. A typical difficulty for users
of graphics software is to accurately match endpoints of a
polygonal line for further painting a resulting bounded region.
A quick auto-completion of contours will allow us to suggest
an automatic matching of final endpoints on-the-fly.

C. Related Work in Image Segmentation and Graphics

We review only most closely related approaches below.

1

Pixel-based segmentation is a traditional approach to
find boundary contours in an image based on a regular grid
of pixels. Such a segmentation usually minimizes an energy
function that contains a cost of assigning a single label
and a cost of assigning two different labels to neighboring
pixels. The resulting minimization problem is often NP-hard.
Including higher-order potential between more than two pixels
has even larger computational costs and still encodes only
local properties. Chen et al. [4] suggested the first algorithm
for a binary segmentation with global topological constraints,
namely a foreground object is connected and has no holes.

Persistence-based clustering is an excellent method of
Skraba et al. [12] using the 0-dimensional persistence. Their
problem is to segment a cloud into bases of attraction of a
function. Then given points essentially form final regions and
do not bound them as in our problem for finding closed con-
tours. So the inputs in their problem and ours are complemen-
tary, which is formalized as a duality between persistence in
dimensions 0 and 1 in Lemma 14. Hence a direct comparison
of their output with our approach seems impossible.

Input scale parameters are essentially needed for many
algorithms including the image segmentation using topological
persistence by Letscher and Fritts [10]. Similarly to our
method, for a given point cloud C, a Delaunay triangulation
is built on C. Then small triangles are merged into persistent
regions using two given threshold parameters: α for the radius
of disks centered at the points of C, and p for the desired
level of persistence. We extend this method and avoid the input
parameters by using stability of 1-dimensional persistence.

Fig. 2. A cloud C and its (non-unique) Delaunay triangulation Del(C)

Fast 1-dimensional persistence for point clouds in the
plane can be computed by the standard algorithm of Attali et
al. [1]. This approach was applied by Kurlin [9] for counting
topologically persistent holes in noisy clouds. However, the
1-dimensional persistence diagram contains only unstructured
data. A segmentation of a cloud requires more information
about neighboring relations of persistent regions. So we extend
this fast algorithm from [1] by adding a more complicated data
structure Map(α), which allows us to merge all regions into
most persistent ones, see section V and Theorem 15.

Homology inference conditions were obtained in many
cases to guarantee a correct topological reconstruction from a
sample. Our Theorem 20 says that the true number of contours
in an unknown graph G can be found from a noisy sample C
without using the bound ε of noise, hence doesn’t follow from
[3, section 5.2]. Indeed, [3, Theorem 4.7] requires counting
homology classes that live between given bounds ε and 3ε.
Our earlier algorithm [5] for a graph reconstruction from a
noisy sample in the plane also used the noise parameter ε.

D. Contributions: Parameterless Algorithm and Guarantees

The key differences between our new approach and the
known segmentation methods above are the following.

• We solve the harder problem of completing contours or
segmenting a cloud of points with real coordinates in R2.

• The only input is a point cloud without extra parameters.
The algorithm is unsupervised and requires no training data.

• Quality of contours is measured by topological persistence.
Hence all contours form a natural data-driven hierarchy.

Arbitrary clouds of points are taken as the input. So
our method works for any feature points that can be placed
between usual pixels on a regular grid. A hierarchy of closed
contours will be produced for any input.

No scale parameters are needed, because we analyze a
given cloud at all values of the radius α. The 1st output consists
of those contours whose persistence is above a 1st widest gap
in a persistence diagram, see Definition 7. The 2nd output has
contours with a persistence above a 2nd widest gap etc.

Data-driven measurements are used for quantifying per-
sistence of contours. If a point cloud C lives in a metric space,
then we have only a distance function for studying a shape of
C. So a natural representation of such a shape is the offset Cα,
which is a neighborhood of C whose width is a scale parameter
α > 0. This complicated offset Cα continuously deforms to the
simpler α-complex C(α), see Fig. 3, Definition 3, Lemma 4.

Fig. 3. The α-offset Cα deforms to the α-complex C(α) at α =
√
2.

The persistence of a contour is its life span in the
ascending filtration of offsets Cα. When α is increasing, a
contour can be born at α = birth and can die in a larger
offset at α = death. So the persistence is death− birth, see
Definition 6. For instance one long contour is born in C

√
2,

see Fig. 3. Another short contour is born in C2, see Fig. 4.

Fig. 4. The α-offset Cα deforms to the α-complex C(α) at α = 2.

Here is a high-level description of our key contributions.

2

• Fast time: for any n points in R2, a hierarchy of closed
contours is computed in time O(n log n), see Theorem 15.

• Guarantees: if a cloud C is densely sampled from a good
graph G ⊂ R2, all contours of G can be geometrically
approximated by using only the cloud C, see Theorem 20.

II. GRAPHS, TRIANGULATIONS AND α-COMPLEXES

Definition 1 (a plane graph, its cycles and contours): A
plane graph is a subset G ⊂ R2 consisting of finitely many
vertices and non-intersecting arcs joining vertices. A cycle
of G is a subset L ⊂ G consisting of edges that connect
neighboring vertices: p1 to p2, p2 to p3 and so on until pk to
p1. A cycle is a closed loop, but may have self-intersections.

A cycle will be called a contour if it encloses a connected
region in the complement R2−G. The boundary of the external
region in R2 −G is the boundary contour of G.

If every bounded region in the complement R2 − G of a
plane graph is a triangle, then the graph G defines a trian-
gulation on its vertices. The following Delaunay triangulation
Del(C) is a fast and small structure on a cloud C ⊂ R2.

Definition 2 (Delaunay triangulation): For a cloud C =
{p1, . . . , pn} ⊂ R2 of n points, a Delaunay triangulation
Del(C) has all triangles with vertices pi, pj , pk ∈ C whose
circumcircle doesn’t enclose any other points of C, see Fig. 2.

A Delaunay triangulation is not unique if C contains 4
points on the same circle. The boundary edges of Del(C) form
the convex hull(C) of C. The complement R2− hull(C) will
be called the external region. If Del(C) has k triangles and b
boundary edges, then counting E edges over k triangles gives
3k + b = 2E. By the Euler formula n − E + (k + 1) = 2 in
the plane, we conclude that k = 2n− b− 2, E = 3n− b− 3,
so Del(C) has O(n) edges and triangles. Also Del(C) can be
found in time O(n log n) with O(n) space [2, section 9.1].

A Delaunay triangulation Del(C) is an example of a
general 2-dimensional complex consisting of vertices, edges
and triangles in R2. To study the shape of a cloud C at different
scales, we shall define subcomplexes that contain the elements
of Del(C) whose sizes are bounded above by a fixed radius
α. It will be convenient to re-define a Delaunay triangulation
Del(C) in terms of Voronoi cells, which are neighborhoods of
points p ∈ C and will be used for building the α-complex.

For a point pi ∈ C, the Voronoi cell consists of all points
q ∈ R2 that are closer to pi than to all other points of C,
so V (pi) = {q ∈ R2 : d(pi, q) ≤ d(pj , q) ∀j 6= i}. Then a
Delaunay triangulation Del(C) consists of all triangles with
vertices p, q, r ∈ C such that V (p)∩V (q)∩V (r) is not empty.
If the Voronoi cells are restricted to a scale α > 0, we get the
α-complexes C(α). For any p ∈ R2 and α > 0, denote by
B(p;α) the closed disk with the center p and radius α.

Definition 3 (α-complexes): For a finite cloud C ⊂ R2,
the α-complex C(α) ⊂ R2 contains all edges between points
p, q ∈ C such that V (p) ∩ B(p;α) meets V (q) ∩ B(q;α),
see [8, section III.4]. Similarly, the α-complex C(α) contains
all triangles with vertices p, q, r such that the full intersection
V (p) ∩B(p;α) ∩ V (q) ∩B(q;α) ∩ V (r) ∩B(r;α) 6= ∅.

A hole of C(α) is a connected region in R2 − C(α). The
boundaries of all holes are boundary contours of C(α).

If α > 0 is small, C(α) consists of all isolated points of
C. For any large enough α, the complex C(α) is Del(C). So
all α-complexes form a sequence of nested complexes, called
a filtration C = C(0) ⊂ · · · ⊂ C(α) ⊂ · · · ⊂ C(+∞) =
Del(C). So Del(C) is built on isolated points of C by adding
edges and triangles at the following critical values:

• an edge between points pi, pj is added at α = 1
2d(pi, pj);

• an acute triangle (that has all angles less than π
2) is added at

the critical value α equal to the circumradius of the triangle;

• a non-acute triangle is added to C(α) at the scale α that is
equal to the half-length of the largest side in the triangle.

Fig. 5. The α-complexes C(α) of the cloud C in Fig. 2 for α =
√
5, 2.5.

The α-complex C(
√
5) ⊂ R2 in Fig. 5 has 3 holes bounded

by 3 independent cycles that generate the group H1 = Z3
2.

The rightmost hole is the triangle with sides 2
√
2, 2
√
5, 2
√
5,

which are in C(α) at α =
√
5. This acute triangle has the

circumradius R3 = 5
3

√
2 ≈ 2.357 and enters C(α) at α = R3.

So the rightmost hole persists only over
√
5 ≤ α < R3.

The leftmost hole in the complex C(
√
5) ⊂ R2 from Fig. 5

is the triangle with sides 4, 2
√
5, 2
√
5. This hole appears in

C(α) earlier at α = 2 as a square in Fig. 4. The triangle has
the circumradius R2 = 2.5 and enters C(α) at α = 2.5. So
the leftmost hole persists over the interval 2 ≤ α < 2.5.

The following lemma actually motivates the concept of the
α-complex, which is a simpler object than the α-offset Cα.

Lemma 4: [7] For any scale α, the α-offset Cα of a cloud
C ⊂ R2 continuously deforms to the α-complex C(α) ⊂ R2.

III. PERSISTENT HOMOLOGY AND ITS STABILITY

The persistent homology is a flagship method of topo-
logical data analysis. The key idea is to study the evolution
of topological invariants in a filtration of complexes {S(α)}
when a scale α is increasing. For our purposes, the convenient
invariant of a complex S is the homology group H1(S).

Definition 5 (homology group H1): Cycles of a complex
S can be algebraically written as linear combinations of edges
with coefficients 0 or 1 in the group Z2 = Z/2Z = {0, 1}.
The vector space C1 consists of all these linear combinations.
The boundaries of all triangles in S (as cycles of 3 edges)
generate the subspace B1 ⊂ C1. The quotient C1/B1 is the 1-
dimensional homology group H1(S) with the coefficients Z2.

For coefficients Z2, the group H1(S) is a vector space
whose dimension is the first Betti number β1(S) equal to the
number of independent loops in S, so H1(S) = Zβ1(S)

2 .

3

The homology group H1 can be defined for topological
spaces that are more general than a complex S in Definition 5.
For instance, any α-offset Cα continuously deforms to the α-
complex C(α) and has the same homology group H1.

For simplicity we consider an ascending filtration {Sα} of
complexes instead of general spaces. Here the scale α is in-
creasing through finitely many critical values α1, . . . , αm when
H1(S(α)) changes. The inclusions S(α1) ⊂ · · · ⊂ S(αm)
induce the linear maps H1(S(α1))→ · · · → H1(S(αm)).

Definition 6 (births and deaths): In a filtration {S(α)} of
complexes a homology class γ ∈ H1(S(αi)) is born at
a time αi = birth(γ) if γ is not in the image of the
map H1(S(α)) → H1(S(αi)) for any α < αi. The class
γ dies at αj = death(γ) ≥ αi when the image of γ
under H1(S(αi)) → H1(S(αj)) merges into the image of
H1(S(α))→ H1(S(αi)) for some smaller scale α < αi.

The filtration {C(α)} of α-complexes for a cloud C in
Fig. 2, has 3 pairs (birth,death) corresponding to 3 life
intervals of holes (or their bounding contours). The largest
hole is born at α =

√
2 in Fig. 3 and dies only at α = R1 =

5
7

√
26 ≈ 3.642, which is the circumradius of the largest central

triangle in Del(C), see Fig. 2. The persistence of this hole is
R1 −

√
2 ≈ 2.23. The two smaller holes in Fig. 5 have lower

persistences R2 − 2 = 0.5 and R3 −
√
5 ≈ 0.12, see Fig. 6.

All pairs (birth,death) are usually visualized as points in
the persistence diagram on the plane, which is defined below.

Fig. 6. The persistence diagram of {C(α)} for the cloud C in Fig. 2.

Definition 7 (persistence diagram PD): For a filtration
{S(α)} of complexes, let α1, . . . , αk be all values of the scale
α when the group H1(S(α)) changes. Let µij be the number
of independent classes in H1(S(α)) that are born at αi and
die at αj . The persistence diagram PD{S(α)} is the multi-set
consisting of all points (αi, αj) with the multiplicity µij and
all diagonal points (x, x) with the infinite multiplicity.

Points near the diagonal have a low persistence death −
birth and are considered as noise. A persistence diagram
includes all diagonal so that we can compare diagrams with
different numbers of off-diagonal points in Definition 10.

Definition 8 (widest gap): For a cloud C ⊂ R2, a widest
gap in the persistence diagram PD{C(α)} of the filtration of
α-complexes is a diagonal strip {a < y−x < b} with a largest
vertical width b−a, see Fig. 6. If there are several widest gaps
with the same width, we choose the highest gap.

The widest gap separates pairs (birth,death) with a high
persistence death− birth from pairs with a low persistence.

Definition 9 (persistent regions and contours): For a fi-
nite cloud C ⊂ R2, all m pairs (birth,death) above the widest
gap in PD{C(α)} are called persistent. Each persistent pair
(birth,death) corresponds to a region bounded by the new
contour in C(α) at α = birth. For each triangle T outside
these m regions in Del(C), we merge T with its neighbor
along a longest edge of T . After all mergers the resulting m
regions and their boundary contours are called persistent.

There is only one pair (
√
2, R1) above the widest gap in

the persistence diagram in Fig. 6. The corresponding contour
coincides with C(

√
2) in Fig. 3. The remaining 3 right-angled

triangles outside this contour merge with the external region.
So the only contour in C(

√
2) is persistent by Definition 9.

If we consider pairs (birth,death) above the k-th widest
gap for k > 1 in Definition 9, we shall get the k-th collection
of persistent contours. So the hierarchy of persistent contours
corresponds to diagonal gaps in a persistence diagram.

Definition 10 (the bottleneck distance): Let ||p − q||∞ =
max{|x1−x2|, |y1−y2|} be the distance between p = (x1, y1),
q = (x2, y2) in R2. The bottleneck distance between persis-
tence diagrams PD,PD′ is dB = infψ supq∈PD ||q − ψ(q)||∞
over all bijections ψ : PD→ PD′ of multi-sets PD and PD′.

Definition 11 (ε-sample): For any ε > 0, a finite cloud C
is an ε-sample of a plane graph G if C ⊂ Gε and G ⊂ Cα.

Stability Theorem 12 below is a key foundation of topolog-
ical data analysis saying that the persistence diagram is stable
under perturbations of original data. We quote only a simple
version of the Stability Theorem for filtrations of offsets.

Theorem 12 (stability of persistence under noise): [6]
If a finite cloud C ⊂ R2 of points is an ε-sample of a plane
graph G ⊂ R2, then we have dB(PD{Gα},PD{Cα}) ≤ ε.

By Lemma 4 any offset Cα has the same homology group
H1 as C(α). So we may replace the filtration {Cα} of offsets
by the filtration{C(α)} of simpler complexes in Theorem 12.

IV. DUALITY BETWEEN α-COMPLEXES AND α-GRAPHS

We shall analyze the evolution of contours in the 2-
dimensional α-complexes C(α) using the simpler filtration of
1-dimensional α-graphs C∗(α) that are dual to C(α).

Let us associate a node vi to every triangle in Del(C).
We shall call the external region of Del(C) also a ‘triangle’
and represent it by an extra node v0. So vi are abstract
nodes, not geometric centers of Delaunay triangles, though it
is convenient to show them as small red centers in Fig. 7.

Definition 13 (α-graphs): The metric graph C∗ dual to
Del(C) has the nodes v0, v1, . . . , vk and edges of a length dij
connecting nodes vi, vj such that the corresponding triangles in
Del(C) share a common (longest) side of length dij . Then C∗
is filtered by the α-graphs C∗(α) that have only the edges of
a length dij > α. Any isolated node v (except v0) is removed
from the graph C∗(α) if the corresponding triangle Tv in
Del(C) is not acute or has a small circumradius rad(v) ≤ α.

The smallest graph C∗(+∞) is the isolated vertex v0 corre-
sponding to the external region in Del(C). When α drops from
2.5 to

√
5 in Fig. 7, two isolated nodes v2 and v3 enter C∗(α),

4

because rad(v2) = R2 = 2.5, rad(v3) = R3 = 5
3

√
2 >

√
5.

However, these nodes remain isolated in C∗(
√
5) because all

sides of their triangles have half-lengths not more than
√
5.

Fig. 7. The complex C(α) and graph C∗(α). Left: α = 2.5. Right: α =
√
5.

The ascending filtration of a Delaunay triangulation
Del(C) by α-complexes gives rise to the descending filtration
of α-graphs C∗ = C∗(0) ⊃ · · · ⊃ C∗(α) ⊃ · · · ⊃
C∗(+∞) = {v0}. Each connected component of C∗(α) has
the corresponding region enclosed by a boundary contour of
the complex C(α). For instance, if C(α) contains a triangular
cycle, but not the enclosed triangle Tv , then the circumradius
rad(v) > α and the corresponding node v belongs to C∗(α).

Fig. 8. The complex C(α) and graph C∗(α). Left: α = 2. Right: α =
√
2.

So there is a 1-1 correspondence between all isolated nodes
(except v0) of the graph C∗(α) and all triangular boundary
contours of the complex C(α). We extend this duality to all
components of C∗(α) and all boundary contours of C(α).

Lemma 14 (duality between C and C∗): For any α > 0,
all components of the α-graph C∗(α) are in a 1-1 correspon-
dence with all boundary contours of the α-complex C(α).

Proof: When the scale α is decreasing, the birth of a
boundary contour in the α-complex C(α) means that a small
hole appears around the center (of the circumcircle) of an acute
triangle Tv in the Delaunay triangulation Del(C). By Defini-
tion 13 at the same time the isolated node v corresponding to
the triangle Tv enters the graph C∗(α) as a new component.

The death of a boundary contour in C(α) means that the
contour is torn at its longest edge e for α = half-length of e.
If the edge e is shared by triangles Tu, Tv , the corresponding
nodes u, v are linked, their components merge in C∗(α).

So there is a 1-1 correspondence between births of contours
in C(α) and components in C∗(α), and similarly between their
deaths. In general, for any fixed value of α, each component
of C∗(α) consisting of nodes v1, . . . , vk is dual to the contour
going along the boundary of the union T1∪· · ·∪Tk ⊂ Del(C)
of the triangles represented by the nodes v1, . . . , vk.

By Duality Lemma 14, when α is decreasing from +∞
to 0, the α-complex C(α) ⊂ R2 is shrinking, while the α-
graph C∗(α) is growing. Initially, C(+∞) = Del(C) and we

show all triangles of Del(C) in blue. If a triangle of Del(C)
disappears from C(α) at a critical value α, we show this
triangle in white, so eventually all blue triangles become white.

V. DATA STRUCTURES AND OUR ALGORITHM

In addition to the data structure Forest(α) from [9],
we introduce Map(α) that captures all neighboring relations
between regions. These relations are not contained in the
unstructured persistence diagram. Hence the nice algorithm of
Attali et al. [1] for a fast 1-dimensional persistence requires
the essential extension to work for a segmentation of clouds.

Following [9], we consider the array Forest(α) of nodes of
the α-graph C∗(α) whose nodes are in a 1-1 correspondence
v ↔ Tv with the triangles of a Delaunay triangulation Del(C),
where the external region of Del(C) is also called a ‘triangle’
for convenience. We shall call a node u ∈ Forest(α) blue or
white according to its corresponding triangle Tu ⊂ Del(C). So
initially all nodes are isolated and blue. When α is decreasing,
the nodes start turning white (are born) and join each other to
form white connected components of Forest(α).

Merging two components. When two nodes are linked and
their white components merge, a younger component dies.
Since α is decreasing a component is younger if its first white
node was born at a smaller value of α than for the older
component. The older component survives by the standard
elder rule [8, p. 150] that maximizes persistence. The new
larger white component contains the dead nodes from the
younger component and the live nodes (or corresponding live
triangles) from the older component. Any younger component
dies at a smaller value of α than its birth. So the persistence of
a white component in C∗(α) and the corresponding boundary
contour in C(α) is pers = birth− death > 0.

Forest(α) of nodes. Any node v has these attributes:

• birth(v) = sup{α | v ∈ C∗(α)} when Tv enters C(α);

• uplink(v) points to a unique parent of the node v;

• height(v) is the height of Tree(v) going down from v;

• live(v) is the list of triangles that are alive in Tree(v);

• bar(v) = index of the region in Map(α) containing Tv .

For each acute triangle Tv in Del(C), the corresponding
node v has birth(v) = circumradius rad(v) of Tv . For any
non-acute triangle Tv , the node v is linked to an existing
component when α = half of the longest edge of Tv , so the
triangle Tv merges with its neighbor. Starting from any node
v, we come to root(v) by going up along uplinks until the
root node root(v) points to itself.

Then u, v belong to the same component of Forest(α) if
and only if root(u) = root(v) as in a union-find structure.
When we need to join two nodes u, v from different compo-
nents, we actually join their roots by adding a smaller tree to
a taller tree. Keeping the height minimal, we guarantee that
the root can be reached in O(log n) steps in a tree of size n.

5

Any root keeps most important information about its tree.
For instance, the birth time for any node v is extracted as
birth(root(v)). To justify the notation bar, we mention that
any pair (birth,death) ∈ R2 can also be considered as the
time interval [birth,death] ⊂ R. These intervals or bars form
a bar code, which is equivalent to the persistence diagram PD.
A value bar(v) = k means that the triangle Tv belongs to the
region whose boundary contour was the k-th to die.

Map(α) of persistent regions. Any entry of Map(α) repre-
sents a component c of C∗(α) and has the attributes:

• ind(c) is the index of c when it was added to Map(α);

• birth(c) = scale α when a first node enters c;

• death(c) = α when c is absorbed by an older component;

• core(c) points to nodes in c that lived just before c died;

• heir(c) points to the root of a component that absorbed c;

• supr(c) is the index of the component rooted at heir(c).

The input is a set of n points given by real coordinates
(x1, y1), . . . , (xn, yn) ∈ R2. We start by finding the Delaunay
triangulation in time O(n log n) with O(n) space.

Initialization. We set birth(v0) = +∞ for the external node
v0 ∈ Forest(α). After finding Del(C), we go through each
triangle Tv of Del(C) and set the birth of the corresponding
node v ∈ Forest(α) as the circumradius rad(v) for acute Tv
and birth(Tv) = 0 for non-acute Tv . All bar(v) have the
initial value 0 meaning that the bar indices are undefined. All
arrays live(v) and Map(α) are empty. We put all edges of the
triangles in the decreasing order starting from the longest edge
of a length d. We start from the initial largest value α = 1

2d.

The ‘while’ loop goes through each edge e of Del(C) in the
decreasing order of length until Forest(α) becomes connected.
Let the edge e is shared by two neighboring triangles Tu, Tv .
If α is going down through the critical value equal to the half-
length of e, we add the new edge e between the corresponding
nodes u, v to the α-graph C∗(α). This addition doesn’t affect
Forest(α) if the nodes u, v were already connected, namely
they have a common root as in Case 1 below.

It is possible that one of the nodes, say u, was not
included in Forest(α) at the initialization stage, because the
corresponding triangle Tu is not acute, so u was blue. In
this Case 2 we link the node u to the white component of
v. However, it is impossible that both nodes u, v are blue.
Indeed, otherwise the triangles Tu, Tv are not acute and share
their longest side e. Hence Tv is enclosed by the circumcircle
of Tu, which is forbidden in a Delaunay triangulation.

In remaining cases 3 and 4 the nodes u, v are in different
components of Forest(α) that we should merge by linking
their roots. At the end of the ‘while’ loop, Map(α) contains the
full 1-dimensional persistence diagram of the filtration {C(α)}
and also all neighboring relations of persistent regions.

Case 1: the edge e has the same region on both sides, namely
the neighboring triangles Tu, Tv that share the edge v have the

same root root(u) = root(v). This value of α is not critical,
because both u, v are already connected in Forest(α).

Case 2: e is the longest edge of a non-acute triangle Tu
and another triangle Tv whose node v was in Forest(α). We
find root(v) and add the new node u to Forest(α) setting
uplink(u) = root(v), birth(u) = birth(root(v)). We increase
height(root(v)) by 1 only if it was 1. If bar(v) is defined,
then v belongs to a dead component. Hence u joins this
dead component and we set bar(u) = bar(v). If bar(v) is
undefined, Tv is a live triangle, we add u to live(root(v)).

Creating a new entry in Map(α). In Cases 3-4 we merge
two components of Forest(α) containing the nodes u, v.
First we compare the births of root(u), root(v) to decide
which component is younger, hence dies. If birth(root(u)) ≤
birth(root(v)), we call the component of u younger. So we
can create a new entry c in Map(α), say with an index
i. Namely, we set ind(c) = i, birth(c) = birth(root(u)),
death(c) = α (the current value equals the half-length of e).
Each node w ∈ live(root(u)) dies, we set bar(w) = i.

Then we copy the pointer live(root(u)) to core(c) so that
the component c knows all its nodes that were alive just
before c died. We don’t know yet, which entry of Map(α)
will correspond to the heir component that is absorbing c now
and will die later. Let heir(c) point to the first triangle from
live(root(v)) in the surviving component, not live(root(u)),
which has just died. After the ‘while’ loop is finished we can
find the index of this heir component as bar(heir(c)).

Case 3: height(root(u)) ≤ height(root(v)). Then we link
root(u) of the shorter tree to root(v) of the taller tree to
keep to maximum height of all trees in Forest(α) minimal, so
root(v) becomes uplink(root(u)). If the heights were equal,
then height(root(v)) jumps up by 1. All live triangles in the
new larger tree at root(v) came from live(root(v)).

Case 4: height(root(u)) > height(root(v)). Then we link
root(v) of the shorter tree to root(u) of the taller tree.
Hence root(u) becomes uplink(root(v)), but height(root(u))
remains the same. We should keep all triangles from
live(root(v)) at the root of the new tree, so we replace
live(root(u)) by live(root(v)). That is why it was important
to save live(root(u)) in core(c) as we did above.

Final component in Map(α). When Forest(α) becomes
connected, in Map(α) it remains to add only the final entry c
corresponding to the external region. The final root v has the
list live(v) containing the node v0 and possibly other nodes
that didn’t die earlier, because they were linked directly to v0.
This list live(v) is copied to core(c) as before Cases 3 and
4. We similarly set birth,death and bar(w) equal to the final
index of c for any w ∈ live(v), but there is no heir(c).

Initial segmentation. Each triangle from Del(C) contributes
to a single entry of Map(α), namely all lists core(c) are
disjoint. Hence Map(α) contains m = O(n) entries and is
sorted in time O(n log n) in the decreasing order of pers =
birth − death. We output the initial segmentation where all
triangles from core(c) belong to the region having the new
sorted ind(c). We get a segmentation into a smaller number of
regions by merging regions of large indices (low persistence)
with regions of smaller indices (high persistence).

6

Fig. 9. Initial segmentation: 3 regions. Final segmentation: 1 region.

The widest gap in persistence. We find the maximum gap
between persistences of successive entries in sorted Map(α)
in time O(n). In the conditions of Theorem 20, this widest gap
separates m pairs (birth,death) with a high persistence from
all other pairs. Even if the conditions of Theorem 20 do not
hold, the widest gap gives an approximation to the expected
number m of regions for a final segmentation below.

Indices supr of superior components. We go through each
entry c ∈ Map(α) and build the 1-1 correspondence old index
7→ new index in sorted Map(α). We go again through each c
and access the triangle heir(c). The bar index bar(heir(c)) of
this triangle is the original (non-sorted) index of the superior
component that absorbed c after merger. Using the 1-1 cor-
respondence of indices in Map(α) above, we know the new
index supr(c) of the superior or more persistent component
(the region with a higher persistence) that absorbed c.

Final segmentation into m regions. Now we shall output m
regions instead of k in the initial segmentation. For go through
all entries c of sorted Map(α) starting from the least persistent
region with the maximum index k > m. If the current index
ind(c) > m, we add the list core(c) of the current component c
to core(supr(c)), which enlarges the superior region supr(c)
with a higher persistence. If ind(supr(c)) > m, the region
supr(c) will also merge with its superior later. After merging
all regions of ind(c) > m with their superiors one by one, we
output lists core(c) of triangles for ind(c) = 1, . . . ,m.

VI. MAIN THEOREMS 15, 20 AND CONCLUSION

Theorem 15 (fast computation of persistent contours):
For any point cloud C of n points in the plane, the algorithm
in section V to compute the persistent contours of C has the
time complexity O(n log n) and memory space O(n).

Proof: A Delaunay triangulation Del(C) for a cloud
C ⊂ R2 of n points has k = O(n) triangles and is found in
time O(n log n) [2, section 9.1]. The ‘while’ loop in Algorithm
1 goes once through not more than O(n) edges in Del(C).
We can associate to each edge e its two neighboring triangles
Tu, Tv ⊂ Del(C) in advance, so identifying the corresponding
nodes u, v in line 8 is easy. We shall prove that finding
root(u), root(v) in line 9 by going along uplinks in any tree of
Forest(α) with k nodes requires O(log k) = O(log n) steps.

The height of a tree can increase only in Case 2 (from
1 to 2) or in Case 3, where the height jumps by 1 after we
link two trees of the same height. In Cases 3–4 we always
link a smaller tree to a taller one. So any two paths from a
root to terminal nodes (leaves) can differ by at most 1, where
we include all trivial paths consisting of a single node. Hence
almost any node is linked to at least nodes one level down,

Algorithm 1 Build Map(α) of persistent regions in a cloud
C

1: Input: a cloud C of n points (x1, y1), . . . (xn, yn)
2: Compute Del(C) with k triangles on the n points of C
3: Sort edges of Del(C) in the decreasing order of length
4: Forest ← isolated nodes v0, . . . , vk with all birth times

0 except birth(v0) ← +∞ and for each acute triangle
Tv ⊂ Del(C) we update birth(v)← circumradius of Tv

5: Set the number of links in Forest(α): l← 0
6: while l < k (stop when Forest(α) becomes a tree) do
7: Take the next longest edge e, set α← 1

2 length(e)
8: Find u, v dual to the triangles Tu, Tv that share e
9: Find root(u), root(v) going along uplinks from u, v

10: if root(u) = root(v) then Case 1: no changes
11: else birth(root(u)) = 0 and birth(root(v)) > 0
12: Case 2: run Algorithm 2 below, set l← l + 1
13: end if
14: if birth(root(u)) > birth(root(v)) then swap u, v,
15: so we assume that the component of u is younger
16: end if
17: Create a new entry c, ind(c)← i = 1+ old size
18: Set birth(c) ← birth(root(u)), death(c) = α,

core(c)← live(root(u)) and heir(c)← 1st triangle from
live(root(v)), bar(w)← i for each w ∈ live(root(u))

19: if height(root(u)) ≤ height(root(v)) then
20: Case 3: uplink(root(u)) ← root(v) and add 1 to

height(root(v)) if height(root(u)) = height(root(v))
21: else Case 4: uplink(root(v)) ← root(u),

live(root(u))← live(root(v))
22: end if
23: Update the number of links l← l + 1 in Forest(α)
24: end while
25: Create the final entry with the external node v0
26: Return array Map(α) generated by Cases 3 and 4

Algorithm 2 Case 2: link the node u to the component of v
1: Set uplink(u)← root(v), birth(u)← birth(root(v))
2: if height(root(v)) = 1 then height(root(v))← 2
3: end if
4: if bar(v) is already defined then set bar(u)← bar(v)
5: else Add u to live(root(v)) in the subtree at root(v)
6: end if

except all terminal nodes and some nodes only one level up.
Then any tree of height h ≥ 1 should contain at least 2j−1

nodes at level 1 ≤ j ≤ h− 1 plus at least one node at level h,
so at least 1+ 2+ 22 + · · ·+2h−2 +1 = 2h−1 nodes in total.
If k ≥ 2h−1, then the height is h ≤ 1 + log2 k = O(log k).

All other steps in the ‘while’ loop need O(1) time. Then
we spend O(n log n) time for sorting O(n) entries in Map(α).
The lists live(v) of triangles are disjoint in Forest(α) as well as
similar lists core(c) in Map(α). Then O(n) Delaunay edges,
triangles or corresponding nodes with attributes need only
O(n) space in Forest(α) and similarly in Map(α).

Let L be any closed non-self-intersecting loop in R2. We
consider all offsets Lα when α is increasing. There is a first
critical scale α when the internal boundary of Lα touches
itself, so Lα is no longer an annulus. There is a last critical

7

scale α when the internal boundary of Lα shrinks to a point,
so all holes of Lα are filled, which is true for all larger α.

Definition 16: Maps f0, f1 : X → Y are homotopic if they
can be included into a continuous family of maps ft : X → Y ,
t ∈ [0, 1]. A set S ⊂ R2 is contractible to a point q ∈ S if
id : S → S is homotopic to S → q. A set S ⊂ R2 is circular
if there is a projection S → S1 ⊂ S homotopic to id : S → S.

Below we consider closed loops that go along boundaries
of regions in R2 −G. The internal loop of the graph igoes
along the short vertical edge twice, namely up and down.

Definition 17 (simple contours, a simple graph G ⊂ R2):
A closed contour L ⊂ R2 is simple if there is a scale ρ(L)
called the radius such that the α-offset Lα is circular for any
0 ≤ α < ρ(L) and Lα is contractible for any α ≥ ρ(L). A
graph G ⊂ R2 is simple if G is connected and the boundaries
of all bounded regions in R2 −G are simple contours.

Definition 17 means that a simple contour L has only one
critical scale α when Lα stops being circular and becomes
contractible. So the hole initially enclosed by Lα for small α
dies at α = ρ(L) without splitting into other smaller holes.

Fig. 10. A simple graph G with Gρ/2, PD{Gα} and its ε-neighborhood.

The boundary of any convex region in R2 is simple, but
a simple contour can enclose a non-convex region. A typical
non-simple contour is the circular graph L = C(

√
2) in Fig. 3.

as the offset L2 ⊂ C(2) in Fig. 4 includes the vertical edge
that splits the initial hole enclosed by L = C(

√
2) into 2 holes.

Lemma 18 says that any simple graph G has the persistence
diagram PD{Gα} with points only in the vertical axis.

Lemma 18: Let G ⊂ R2 be a simple graph. Denote by
ρ1, . . . , ρm the radii of the boundaries of all m bounded
regions in R2 − G. Then the persistence diagram PD{Gα}
has exactly m off-diagonal points (0, ρi), i = 1, . . . ,m.

Lemma 19 says that, for any ε-sample C of a simple graph,
the diagram PD{Cα} of the filtration of α-offsets has all
points ε-close to the diagonal or to the vertical axis, see Fig. 10.

Lemma 19: Let C ⊂ R2 be any ε-sample of a simple graph
G with radii ρ1 ≤ · · · ≤ ρm. Then PD{Cα} has m points in
the vertical strip {birth ≤ ε, death ≥ ρ1 − ε}. All other
points are in the diagonal strip {0 ≤ death− birth ≤ 2ε}.

Theorem 20 gives conditions on a simple graph G when our
algorithm uses only an ε-sample C of G to find all expected
contours that are 2ε-close to the true simple contours.

Theorem 20 (guarantees for persistent contours): Let
G ⊂ R2 be a simple graph. Denote by ρ1 ≤ · · · ≤ ρm the
radii of the boundaries of all m bounded regions in R2 − G
as in Definition 17. If ρ1 > 7ε+ max

i=1,...,m−1
{ρi+1 − ρi}, then

any finite ε-sample C of the graph G has exactly m persistent
contours, which are contained in the 2ε-offset G2ε ⊂ R2.

The cloud C in Fig. 2 can be considered as an ε-sample of
the graph G = C(

√
2) in Fig. 3 for ε =

√
2. This graph G is

not a simple contour as two smaller contours are born at α = 2
and α =

√
5. The conditions of Theorem 20 do not hold. But

our algorithm correctly reconstructs the original graph G in
Fig. 9 due to a low persistence of the smaller contours. So the
algorithm may work beyond the guarantees of Theorem 20.

The condition ρ1 > 7ε + max
i=1,...,m−1

{ρi+1 − ρi} implies

that the diagonal gap {0 < y − x < ρ1} is the widest
in PD{Gα}, see Lemma 18 and contains a widest gap in
PD{Cα}. The diagram PD{Cα} is in the ε-neighborhood of
PD{Gα} by Stability Theorem 12, see Lemma 19 and Fig 10.
Hence without extra input parameters we can find the widest
gap in PD{Cα} and filter out all noise near the diagonal.

Detailed proofs of Lemmas 18, 19 and Theorem 20 and
more experiments are in the full version at author’s website
http://kurlin.org. Here is a summary of our key contributions.

• The O(n log n) time algorithm from section V accepts any
cloud of points in R2 without extra parameters and outputs a
hierarchy of closed contours selected by their persistence.

• Theorem 20 proves that the persistent contours approximate
true contours of a graph G given only by a noisy sample C.

Potential further problems include computing persistent cycles
in clouds from high-dimensional or metric spaces, and extend-
ing Theorem 20 to non-simple graphs and unbounded noise.
The author is open to collaboration on any related projects and
thanks all reviewers for comments and helpful suggestions.

REFERENCES

[1] Attali, D., Glisse, M., Hornus, S., Lazarus, F., Morozov, D.: Persistence-
sensitive simplification of functions on surfaces in linear time.
TopoInVis’09: Topological Methods in Data Analysis and Visualization.

[2] de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computa-
tional Geometry: Algorithms and Applications. Springer (2008).

[3] Chazal, F., A. Lieutier, A.: Weak feature size and persistent homol-
ogy: computing homology of solids in Rn from noisy data samples.
Proceedings of SoCG 2005: Symposium on Computational Geometry.

[4] Chen, C., Freedman, D., Lampert, C.: Enforcing topological constraints
in random field image segmentation. Proceedings of CVPR 2011:
Computer Vision and Pattern Recognition, 2089–2096.

[5] Chernov, A., Kurlin, V.: Reconstructing persistent graph structures from
noisy images. Image-A, v. 3 (2013), no. 5, p. 19-22.

[6] Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence
diagrams. Discrete and Computational Geometry 37 (2007) 103–130.

[7] Edelsbrunner, H.: The union of balls and its dual shape. Discrete
Computational Geometry 13 (1995) 415–440.

[8] Edelsbrunner, H., Harer, J.: Computational topology. An introduction.
AMS, Providence, Rhode Island (2010).

[9] Kurlin, V.: A fast and robust algorithm to count topologically persistent
holes in noisy clouds. In Proceedings of CVPR 2014: Computer Vision
and Pattern Recognition. Available at http://arxiv.org/abs/1312.1492.

[10] Letscher, D., Fritts, J.: Image segmentation using topological persis-
tence. Proceedings of CAIP 2007: Computer Analysis of Images and
Patterns, 587–595.

[11] Saund, E.: Finding Perceptually Closed Paths in Sketches and Drawings.
Transactions PAMI, v. 25 (2003), 475-490.

[12] Skraba, P., Ovsjannikov, M., Chazal, F., Guibas, L.: Persistence-based
Segmentation of Deformable Shapes. Proceedings of CVPR 2010
NORDIA Workshop on Deformable Shape Analysis, 2146–2153.

8

http://kurlin.org

APPENDIX A: MORE EXPERIMENTS ON AUTO-COMPLETION

The cloud C in Fig. 1 was randomly sampled around a
predefined graph G. We generate a point q ∈ C in 2 steps:

(1) choose a random seed point p in the graph G so that the
distribution of seeds over the total length of G is uniform;

(2) choose a final point q in [p−s, p+s]× [p−s, p+s], which
is the square neighborhood of a size s around the seed p.

Fig. 11 shows two more intermediate outputs for the cloud
C of 2229 points in Fig. 1. Each acute Delaunay triangle from
Del(C) acts as a ‘center of gravity’. We attach all adjacent
non-acute triangles one by one to get an initial segmentation
in Fig. 11. For each region in segmentations, we randomly
choose a color from a list of 16. So the same region may have
different colors in initial and final segmentations.

For the cloud C in Fig. 1, the persistence diagram PD{Cα}
in Fig. 11 has one red point at the top of the vertical death
axis. This point actually corresponds to the largest component
of the α-graph C∗(α) dual to C(α), see Definition 13.

Formally, the largest component of C∗(α) never dies (or
dies at α = +∞). We set the death moment as the largest
critical value α, namely the maximum among the circumradii
of all Delaunay triangles and the half-lengths of all edges.

That is why this exceptional point is not taken into account
when we look for a widest diagonal gap. After ignoring the
top red point, PD{Cα} above a widest diagonal gap has 22
points corresponding to 22 final colored regions in Fig. 1.

Fig. 12 shows six graphs whose random samples are
processed later. In the final output we color only persistent
regions for more visibility. The external region has the white
color. There are no gaps between the regions, so the persistent
contours are the boundaries of these colored regions.

Fig. 13 shows the cloud C of 574 points sampled around
the first graph in Fig. 12. The algorithm outputs one persistent
contour between the internal yellow region and external white
one. The persistence diagram PD{Cα} has 2 red points that
are well-separated from the noise near the diagonal.

Fig. 14 shows the random sample C of 685 points that
were uniformly generated around the second graph in Fig. 12.
The algorithm outputs 3 persistent contours between the most
internal green disk, small red annulus, gray large annulus and
white external region. PD{Cα} has 4 red points well-separated
from the noise near the diagonal. Recall that the top red point
is not used for finding a widest diagonal gap in PD{Cα}.

Fig. 15 shows 875 points sampled around the third graph in
Fig. 12. The algorithm outputs 1 persistent contour between
the internal and external regions. PD{Cα} has 2 red points
that are well-separated from the noise near the diagonal.

Fig. 16 shows the random sample C of 788 points that were
randomly generated around the fourth graph in Fig. 12. This
graph is not simple by Definition 17, however the algorithm
outputs two expected contours between the left gray region, the
right green region and external white one. Indeed, the diagram
PD{Cα} has 3 red points above a widest gap. Fig. 17 shows

Fig. 11. Top left: Del(C) for the cloud C in Fig. 1. Top right: initial seg-
mentation after merging triangles (best viewed in color). Bottom: PD{Cα}.

Fig. 12. Six sketches G ⊂ R2 whose noisy samples are processed below.

the random sample C of 547 points generated around the fifth
graph in Fig. 12. Fig. 18 shows the random sample C of 623
points generated around the sixth graph in Fig. 12.

APPENDIX B: PROOFS OF LEMMAS 18, 19, THEOREM 20

By a hole of a compact set S ⊂ R2 we mean any bounded
connected component of the complement R2 − S.

Proof of Lemma 18. By Definition 17 the boundary of every
hole of G is a simple contour. Since the graph G is connected,
no new holes are born in any α-offset Gα when the scale α
is increasing. So each hole in Gα is gradually contracting to
a point from the original simple contour L ⊂ G at α = 0.

Moreover, each of these m simple contours Li dies at α =
ρ(Li). So all off-diagonal points in the persistence diagram

9

Fig. 13. Top: C sampled around the 1st graph in Fig. 12 and Del(C).
Middle: initial/final segmentations (best viewed in color). Bottom: PD{Cα}.

PD{Gα} correspond to the boundaries of m original holes of
G. Each of these m simple contours persists over the interval
0 ≤ α < ρ(Li), i = 1, . . . ,m, by Definition 17 and gives the
point (0, ρ(Li)) ∈ PD{Gα}, see Fig. 10 in section VI. �

For a disconnected graph G, new holes may be born in
some α-offset Gα outside simple contours. For instance, if G
is formed by only 3 isolated vertices of the equilateral triangle
with a side 2s, then a new hole is born in Gα at α = s.

Proof of Lemma 19. By Stability Theorem 12 the persistence

Fig. 14. Top: C sampled around the 2nd graph in Fig. 12 and Del(C).
Middle: initial/final segmentations (best viewed in color). Bottom: PD{Cα}.

diagram PD{Cα} of any ε-sample C of a graph G is contained
in the ε-offset of the diagram PD{Gα}. By Lemma 18
PD{Gα} consists of the diagonal x = y and the points (0, ρi),
i = 1, . . . ,m. Here each ρi is the i-th largest radius of a simple
contour that is the boundary of a hole of G.

The ε-offset of the diagonal in the half-plane {x ≤ y} is
the diagonal strip {0 ≤ y−x ≤ ε}. The ε-offsets of all points
(0, ρi) in the death axis such that ρ1 ≤ · · · ≤ ρm are contained
in the vertical strip {birth ≤ ε, death ≥ ρ1 − ε}. �

Proof of Theorem 20. By Lemma 18 the persistence diagram

10

Fig. 15. Top: C sampled around the 3rd graph in Fig. 12 and Del(C).
Middle: initial/final segmentations (best viewed in color). Bottom: PD{Cα}.

PD{Gα} has only points (0, ρi), i = 1, . . . ,m, outside the
diagonal. The widest diagonal gap in PD{Gα} is the lowest
strip {0 < y − x < ρ1}, because the widths ρi+1 − ρi of
all other diagonal gaps are smaller due to the given condition
ρ1 > 7ε+ max

i=1,...,m−1
{ρi+1 − ρi}.

By Lemma 19 the persistence diagram PD{Cα} has the
empty diagonal strip {2ε < y − x < ρ1 − 2ε}. Indeed, the ε-
offset of the point (0, ρ1) in the L∞ metric on {0 ≤ x ≤ y} is
the rectangle [0, ε]× [ρ1−ε, ρ1+ε], see Fig. 10 in section VI.
This rectangle projects along the diagonal {x = y} to the

Fig. 16. Top: C sampled around the 4th graph in Fig. 12 and Del(C).
Middle: initial/final segmentations (best viewed in color). Bottom: PD{Cα}.

interval [ρ1 − 2ε, ρ1 + ε] in the vertical axis. Similarly, the
ε-offset {0 ≤ y−x ≤ 2ε} of the diagonal {x = y} in the L∞
metric on {0 ≤ x ≤ y} projects to [0, 2ε] in the vertical axis.

The original m points (0, ρi) ∈ PD{Gα} correspond to m
new points in PD{Cα}. Under this matching of points, the
empty diagonal gap {ρi < y − x < ρi+1} in the persistence
diagram may become wider by at most 3ε in the vertical direc-
tion. Indeed, the highest projection of [0, ε]×[ρi+1−ε, ρi+1+ε]
along {x = y} to the vertical axis is ρi+1+ε, while the lowest
projection of [0, ε]× [ρi− ε, ρi+ ε] along {x = y} is ρi−2ε.

11

Fig. 17. Top: C sampled around the 5th graph in Fig. 12 and Del(C).
Middle: initial/final segmentations (best viewed in color). Bottom: PD{Cα}.

So the vertical width of the original widest gap in PD{Gα}
may become smaller in PD{Cα} by at most 4ε. The vertical
width of any other diagonal gap may become larger by at
most 3ε. The given condition ρ1 > 7ε+ max

i=1,...,m−1
{ρi+1−ρi}

guarantees that the new widest gap in PD{Cα} still separates
m points from the noise near the diagonal. By Definition 9
the cloud C has exactly m persistent contours corresponding
to m perturbed points near (0, ρi) above y − x = ρ1 − 2ε.

To prove that each persistent contour L is contained in 2ε-
offset G2ε, we notice that C ⊂ Gε. If we show that all edges

Fig. 18. Top: C sampled around the 6th graph in Fig. 12 and Del(C).
Middle: initial/final segmentations (best viewed in color). Bottom: PD{Cα}.

of L have a half-length at most ε, then L ⊂ Cε ⊂ G2ε as
required. Indeed, all points above the widest gap in PD{C(α)}
are in the vertical strip {birth ≤ ε, death ≥ ρ1 − ε}, so
the maximum birth is α ≤ ε. The longest edge of a contour
persisting over birth ≤ α < death has the half-length equal to
birth ≤ α ≤ ε, because adding this longest edge gave a birth
to the contour. The contours born at α > ε are obtained by
splitting only previously existing regions including the external
one. Hence the long edges of these contours are inside and not
on the boundaries of m persistent regions with birth ≤ ε. �

12

	Introduction: auto-completion of contours
	Problem: from a Point Cloud to Closed Contours
	Applications: Maps, Closed Objects, Auto-colorization
	Related Work in Image Segmentation and Graphics
	Contributions: Parameterless Algorithm and Guarantees

	Graphs, triangulations and -complexes
	Persistent Homology and its Stability
	Duality between -complexes and -graphs
	Data Structures and our Algorithm
	Main Theorems 15, 20 and conclusion
	References

