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Abstra
t. In this work we explore the use of enri
hment fun
tions embedded into the boundary

element method (BEM) formulation. The main advantage of this approa
h is the redu
ed additional

degrees of freedom generated 
ompared to the 
lassi
 partition of unity approa
h. The enri
hment

fun
tions were obtained using the Stroh formalism, a 
on
ise formulation whi
h depends only on the

material properties. Some numeri
al examples are provided to show the performan
e of the proposed

approa
h.

Introdu
tion

The boundary element method (BEM) has been established as a referen
e dis
retisation method when

dealing with fra
ture me
hani
s problems. High a

ura
y, stability in providing results for the singular

stress �elds at the 
ra
k tips are some of the advantages of the BEM 
ompared to the more 
ommonly

used domain dis
retisation methods su
h as the �nite element method (FEM). Over the last 15 years,

FEM has experien
ed a breakthrough, after the introdu
tion of the partition of unity [1, 2℄, leading to

the so 
alled extended �nite element method (X-FEM). Solutions obtained with X-FEM 
ould mat
h

the ones found with BEM [3℄. Later, the partition of unity has also been applied to BEM for isotropi


materials [4℄.

However, in fra
ture me
hani
s, the most important parameter is the stress intensity fa
tor (SIF).

Di�erent methods have been used, the most 
ommon are the energy approa
hes using the J-integral [5℄

or the more general intera
tion integral . These methods 
an require as mu
h 
omputational resour
es

as �nding the solution of the fra
ture me
hani
s problem when using BEM or the extended �nite

element method (X-FEM). Moreover, dealing with 2D or 3D fra
ture problems and/or multiple 
ra
ks


an make SIF 
al
ulation 
umbersome.

The proposed method in this paper removes the mentioned limitations, sin
e the SIF will now be

part of the fra
ture me
hani
s problem, extending the work the authors [6℄ have done for isotropi


materials. By using an enri
hment similar to the one employed by Benzley [7℄, it is possible to use

enri
hment fun
tions that span the asymptoti
 behaviour at the 
ra
k tip for a fully anisotropi
 material

to then in
lude the SIF as part of the solution of the fra
ture problem. The same enri
hment fun
tions

obtained in [3℄ are employed. The Stroh formalism was used in these enri
hment fun
tions, whi
h is a

powerful mathemati
al formulation.

The impli
it enri
hment is embedded into a dual BEM formulation, and some numeri
al examples

are presented to validate the proposed method.

Governing equations

Consider an anisotropi
 elasti
 domain Ω, in whi
h the stati
 equilibrium equations in the presen
e of

body for
es b are de�ned as

σij,j + bi = 0 (1)

Symmetry applies for the stress and strain tensors, i.e.:

σij = σji (2)

εij = εji (3)



where

εij =
1

2
(ui,j + uj,i) (4)

and ui stands for the displa
ement on the i-dire
tion.
The linear 
onstitutive equations are given by the generalised Hooke's law

σij = Cijklεkl (5)

where Cijkl de�ne the material 
onstants tensor, satisfying the following symmetry relations

Cijkl = Cjikl = Cijlk = Cklij (6)

that lead to a tensor with only 21 independent 
omponents for the 3D 
ase, and 6 
omponents in the

2D 
ase.

Enri
hment formulation

Adopting a polar 
oordinate system (r, θ) with origin at the 
ra
k tip, the asymptoti
 displa
ement �eld

around a 
ra
k-tip in a plane anisotropi
 domain 
an be expressed by means of the Stroh formalism

[9℄ as

uj(r, θ) =

√

2

π
ℜ
(

KαAjmB
−1
mα

√

r (cos θ + µm sin θ)
)

(7)

where the summation 
onvention over repeated indi
es applies; i,M = 1, 2; α = I, II is related to the

elasti
 fra
ture modes; and ℜ(·) is the real part of (·); A, B and µ are obtained from the following

eigenvalue problem

(

−C22
−1

C21 −C22
−1

C11 −C21
T
C22

−1
C21 −C21

T
C22

−1

)(

Am

Bm

)

= µm

(

Am

Bm

)

(no sum on m) (8)

with

C11 := C1ij1; C21 := C2ij1; C22 := C2ij2 (9)

Using the same methodology as in [3℄, the displa
ements terms in Eq. (7) 
an be rearranged into

the following set of enri
hment fun
tions:

Ψlj(r, θ) =

(

ψIx ψIIx

ψIy ψIIy

)

=

√

2r

π
ℜ
(

A11B
−1
11 β1 +A12B

−1
21 β2 A11B

−1
12 β1 +A12B

−1
22 β2

A21B
−1
11 β1 +A22B

−1
21 β2 A21B

−1
12 β1 +A22B

−1
22 β2

)

(10)

where βi =
√
cos θ + µi sin θ, r is the distan
e between the 
ra
k tip and an arbitrary position, θ is the

orientation measured from a 
oordinate system 
entred at the 
ra
k tip. Note that these enri
hment

fun
tions are the equivalent of Williams' expansion for the isotropi
 
ase [6℄.

The displa
ement �eld 
an be de�ned in a similar fashion as [6, 7, 8℄

uj =

M
∑

a=1

Nauaj + K̃IψIj + K̃IIψIIj (11)

where Na
represents the shape fun
tion for node a, uaj is a general 
oe�
ient rather than the nodal

displa
ement, M is the number of nodes, K̃I , K̃II stand for the mode I and mode II elasti
 SIF, respe
-

tively, and they are now part of the solution ve
tor instead of being 
al
ulated after the displa
ement

solution is obtained. For the numeri
al dis
retisation of the fra
ture me
hani
s problem, the BEM is

used.



Boundary Element Method (BEM)

The BEM has been established as a referen
e when dealing with linear elasti
 fra
ture me
hani
s

problems [10℄. When dealing with fra
ture me
hani
s problems, the dual BEM framework is usually

applied. In this 
ase, a new boundary integral equation (BIE) is introdu
ed, in order to avoid the

degeneration of the linear system of equations due to the use of the same BIE to model two overlapping

surfa
es (
ra
k surfa
es). The displa
ement BIE and the tra
tion BIE are de�ned as

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x) (12)

cij(ξ)pj(ξ) +Nk

∫

Γ

s∗kij(x, ξ)uj(x)dΓ(x) = Nk

∫

Γ

d∗kij(x, ξ)pj(x)dΓ(x) (13)

where Γ represents the boundaries (in
luding 
ra
ks) of the arbitrary elasti
 domain Ω, Nk is the

normal at the observation point, u∗ij and p
∗

ij are the displa
ement and tra
tion fundamental solutions,

while d∗kij and s
∗

kij are obtained through derivation and further appli
ation of the generalised Hooke's

law on the u∗ij and p
∗

ij kernels, respe
tively.

Substituting Eq .(11) into Eqs. (12) and (13) yields in

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)K̃lψlj(ξ)dΓ =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x)

(14)

cij(ξ)pj(ξ) +Nk

∫

Γ

s∗kij(x, ξ)uj(x)dΓ(x) +Nk

∫

Γc

s∗kij(x, ξ)K̃lψlj(ξ)dΓ = Nk

∫

Γ

d∗kij(x, ξ)pj(x)dΓ(x)

(15)

where Γc = Γ+∪Γ− stands for the 
ra
k surfa
es Γ+ and Γ− . Let us remark that strongly singular and

hypersingular terms arise from the integration of the p∗ij , d
∗

rij and s
∗

rij kernels and they are regularised

using the methodology proposed in [11℄, while the weakly singular terms are handled using Telles

transformation [12℄.

The addition of K̃I and K̃II requires two more equations so the linear system of equations 
an be

solved. The additional equations 
ome from a restri
tion in the 
ra
k fa
es, in order to remove the

displa
ement dis
ontinuity observed at the 
ra
k tip. The displa
ement 
ontinuity 
an be enfor
ed as

L
∑

a=1

Naua upper
j =

L
∑

a=1

Naua lower
j (16)

where L is the number of nodes used for the 
ra
k tip extrapolation. Eq. (16) is applied for both x
and y dire
tions, resulting in two di�erent equations per 
ra
k tip. Moreover, these shape fun
tions

have to be evaluated at the 
ra
k tip.

Numeri
al results

Cra
k in an in�nite anisotropi
 domain

First, we analyse a 
ra
k subje
t to a uniform loading in an in�nite anisotropi
 domain. This problem

has a pure mode I exa
t solution of KI = σ∞
√
πa, where σ∞ represents the applied loading and a is

the half-length of the 
ra
k. The problem is depi
ted in Figure 1.

Table 1 shows the results for a 
ra
k dis
retised with 8 dis
ontinuous elements per 
ra
k surfa
e,

and with the following material 
onstants given in the Voigt notation: C11 = 137.97 GPa, C12 = 5.78
GPa, C16 = 20.54 GPa, C22 = 12.45 GPa, C26 = 2.30 GPa and C66 = 12.98 GPa. A modi�ed version

of the J-integral has been used for anisotropi
 materials, for more details see referen
e [13℄.

The extrapolation method 
onsists of using the 
ra
k opening displa
ement (COD) and the 
ra
k

relative sliding (CRS) to estimate the SIFs. The SIFs are thus given by [14℄

(

KII

KI

)

=

√

π

8r
(ℜ(iAB

−1))−1

(

∆u1
∆u2

)

(17)
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Figure 1: Cra
k in an in�nite domain under uniform loading.

with r = L/6, and L is the length of the element 
ontaining the 
ra
k tip.

SIF 
al
ulation KI = 1 Error (%)

Unenri
hed J-integral 1.0256 2.5656
Unenri
hed Extrapolation 1.1554 15.5441

Dire
t SIF 1.0000 0.00115
Enri
hed J-integral 1.0001 0.0091

Enri
hed Extrapolation 0.9999 −0.00002

Table 1: Results for the 
ra
k in an in�nite anisotropi
 domain.

It is 
lear that the results obtained with the impli
it enri
hment are mat
hing the exa
t solution.

It is expe
ted to have higher errors in the SIF extrapolation and the J-integral when no enri
hment is

used sin
e there is no spe
i�
 modelling of the asymptoti
 behaviour at the 
ra
k tip in this 
ase.

Edge 
ra
k in a square 
omposite plate

Next a square plate (h/w = 1) with an edge 
ra
k (a/w = 0.5) subje
t to a uniform loading is

presented. The plate is a symmetri
 angle ply 
omposite laminate 
onsisting of four graphite-epoxy

laminae. Figure 2 illustrates the problem.

The material properties of the plate are given as: E1 = 144.8 GPa, E2 = 11.7 GPa, G12 = 9.66 GPa
and ν12 = 0.21. The �bre orientation of the plate is rotated from θ = 0◦ to θ = 90◦. Results are given
in Figure 3 and are 
ompared with the BEM formulation from referen
e [14℄. The BEM mesh 
onsists

of 8 dis
ontinuous elements for the external boundaries, plus 8 dis
ontinuous elements for ea
h 
ra
k

surfa
e.

The error of the extrapolation method for the unenri
hed 
ase 
ompared to the referen
e [14℄ is

over 16 %. One 
an verify that the dire
t SIF approa
h, the enri
hed extrapolation and J-integral as

well as the unenri
hed J-integral present ex
ellent agreement with the referen
e solution.

Con
lusions

An impli
it enri
hment framework 
overing anisotropi
 materials has been presented in this work. The

SIFs have been introdu
ed as additional degrees of freedom straight into the dual BEM formulation,

so when the displa
ement solution is obtained, so are the SIFs. This te
hnique 
an save pre
ious


omputational time espe
ially when dealing with a large number of 
ra
ks. Moreover, only 2 new
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Figure 2: Edge 
ra
k plate under a uniform load.
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Figure 3: Results for the normalised mode I in an anisotropi
 
omposite plate.

degrees of freedom are introdu
ed per 
ra
k tip, 
ompared to the partition of unity where every

enri
hed node means additional degrees of freedom. The numeri
al examples show ex
ellent agreement

with exa
t and referen
e solutions.
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