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ABSTRACT

Target tracking within conventional video imagery
poses a significant challenge that is increasingly be-
ing addressed via complex algorithmic solutions. The
complexity of this problem can be fundamentally at-
tributed to the ambiguity associated with actual 3D
scene position of a given tracked object in relation to
its observed position in 2D image space. We propose
an approach that challenges the current trend in com-
plex tracking solutions by addressing this fundamental
ambiguity head-on. In contrast to prior work in the
field, we leverage the key advantages of thermal-band
infrared (IR) imagery for the pedestrian localization
to show that robust localization and foreground target
separation, afforded via such imagery, facilities accu-
rate 3D position estimation to within the error bounds
of conventional Global Position System (GPS) position-
ing. This work investigates the accuracy of classical
photogrammetry, within the context of current target
detection and classification techniques, as a means of
recovering the true 3D position of pedestrian targets
within the scene. Based on photogrammetric estima-
tion of target position, we then illustrate the efficiency
of regular Kalman filter based tracking operating on
actual 3D pedestrian scene trajectories. We present
both a statistical and experimental analysis of the as-
sociated errors of this approach in addition to real-time
3D pedestrian tracking using monocular infrared (IR)
imagery from a thermal-band camera.

Keywords: thermal target tracking, temporal fil-
tering, intelligent target reporting, thermal imaging,
pedestrian detection, people detection, sensor networks,
temporal fusion, passive target positioning, 3D pedes-
trian localization

1. INTRODUCTION

Contemporary approaches to visual target tracking
are commonly addressed by increasingly complex al-
gorithmic solutions [1]. This complexity is directly
attributable to the fundamental ambiguity associated
with actual 3D scene position of a given scene object
in relation to its observed position in 2D image space.
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The complexity arises from the dual ambiguity in both
2D object position in the image (i.e. which image pix-
els constitute the target) and 3D object position within
the scene in relation to the camera sensor (i.e. are we
observing a small object, near field or a large object,
far field ?).

Within the context of pedestrian tracking, we demon-
strate that reasonable performance can practically be
achieved through the combined use of infrared imagery
(thermal-band, spectral range: 8-12µm) and the applic-
ation of real-time photogrammetry. We leverage the
key advantage of such thermal-band infrared (IR) im-
agery for the pedestrian target localization within the
image (e.g. Figure 8). This facilitates both robust de-
tection of human signatures within the scene [2–4] and
robust localization of their scene bounds in pixel-space.
We can use the principles of photogrammetry to re-
cover 3D object position within the scene based on a
known camera projection model and an assumption on
the real-world size of our targets along a single dimen-
sion. The use of photogrammetry within this context
is largely over-looked within the current literature with
only limited utilization within a target localization and
tracking context. Despite this, recent statistical studies
strongly support the validity of the principle that un-
derpins the assumption upon which this approach rests
- that variance in human height is in fact quite small
[5, 6].

Here we experimentally investigate the accuracy of
classical photogrammetry, within the context of current
target detection and classification techniques [2–4], as
a means of recovering the true 3D position of pedes-
trian targets within the scene. We present a real-time
approach for the detection, classification and localiza-
tion of pedestrian targets via thermal-band (infrared)
sensing suitable for use in a deployed network of au-
tonomous sensor nodes.

Despite extensive work in ground-based sensor net-
works [7–10], the use of photogrammetry within this
context has received only limited attention [11]. The
visible-band work of [11] uses a similar approach within
a Bayesian 3D tracking framework but does not explic-
itly address issues of accuracy or its use within a de-
tection filtering framework [2]. In addition, some gen-
eral scene understanding approaches have also used this



principle to determine relative object dimensions and
positions within the scene [12, 13] although alternative
approaches such as active sensing [14], structure from
motion [15] and monocular depth recovery [16, 17] have
become increasingly popular within this task of late.

Prior work explicitly dealing with thermal-band (IR)
imagery within an automated surveillance context is
presently largely focused upon pedestrian detection
[2, 4, 18–20] and tracking [21, 22]. More recently ex-
tended studies have investigated the fundamentals of
both background scene modeling [23] and feature point
descriptors [24] that commonly form the basis of many
such techniques [2, 20]. Related work has begun to
address the challenges of cross-modal stereo [25, 26]
as a future aspect of the cross-spectral sensing so-
lutions commonly deployed within autonomous sens-
ing solutions [2, 4]. The work presented in this pa-
per is a direct extension of [2] to consider photogram-
metric target localization from a single modality ( [2]
presents multi-modal target detection) incorporating a
lightweight tracking solution akin to that of [3]. Fur-
thermore it provides both statistical and experimental
validation of the photogrammetric assumptions on av-
erage human height that underpin the prior 3D track-
ing work of [11] and the general scene understanding
approaches of [12, 13].

In contrast to prior work in the field, we investigate
the accuracy now afforded to photogrammetric pedes-
trian target localization based on a) the key advantage
of reduced pixel-space localization ambiguity within
thermal-band infrared imagery and b) recent statistical
results that report narrow standard deviations within
large-scale surveys of human height variation. These
combined aspects of increased confidence in pedestrian
target dimensions identified within pixel-space [2] and
increased confidence of marginal error in any assump-
tion of corresponding real-world pedestrian height (i.e.
average human height, [5, 6]) facilitate robust localiza-
tion accuracy to within the commonly regarded “gold-
standard” of consumer-level Global Position System
(GPS) positioning (typically ±5m under ideal condi-
tions [27]). This is achieved using solely passive sens-
ing from a monocular infrared imaging camera, with no
a priori environment calibration. Within the context
of prior work [2], this is presented in-conjunction with
real-time detection, tracking and reporting of pedes-
trian surveillance targets with are localized to global
scene position relative to a GPS-enabled camera sen-
sor. This provides true 3D pedestrian tracking in a
given environment akin to [11]. Results are presented
over a range of evaluation scenarios using an evalua-
tion methodology based upon both quantification of the

error present within the photogrammetric localization
approach proposed and a range of successful pedestrian
tracking scenarios.

2. PEDESTRIAN TARGET
LOCALIZATION

We perform localization, and subsequent tracking in
real-world 3D space (“scene space”), based on the initial
detection (Section 2.1), photogrammetric based local-
ization (Section 2.2) and Kalman filter driven tracking
over these recovered 3D position estimations (Section
2.3).

2.1 Pedestrian Detection
Our approach is illustrated against the backdrop of a
classical two stage automated visual surveillance ap-
proach. First we detect initial candidate regions within
the scene (Section 2.1.1), thus facilitating efficient fea-
ture extraction over isolated scene regions, to which an
identified target type is assigned via secondary object
classification (Section 2.1.2) [2].

2.1.1 Candidate Region Detection

In order to facilitate overall real-time performance, ini-
tial candidate region detection identifies isolated re-
gions of interest within the scene. This allows sub-
sequent feature extraction and classification to be per-
formed over isolated region(s) enabling real-time pro-
cessing. Additionally, this facilitates efficient object
localization within the scene. By leveraging the sta-
tionary position of our sensor, this is achieved using
a combination of two adaptive background modeling
approaches [28, 29] working in parallel to produce a
single robust foreground model over varying environ-
mental conditions and notably within varying ambient
thermal/infrared illumination conditions within com-
plex, cluttered environments.

Within the first model, a Mixture of Gaussian (MoG)
based adaptive background model, each image pixel is
modeled as a set of Gaussian distributions, commonly
termed as a Gaussian mixture model, that capture both
noise related and periodic (i.e. vibration, movement)
changes in pixel intensity at each and every location
within the image over time [28, 30]. This background
model is adaptively updated with each frame received
and each pixel is probabilistically evaluated as being ei-
ther part of the scene foreground or background follow-
ing this methodology. The second model comprises the
use of Bayesian classification in a closed feedback loop
with Kalman filtered predictions of foreground compo-
nent position [29]. Within this model, each pixel is sim-
ilarly probabilistically classified as either foreground or



Figure 1. Candidate regions (upper) detected against current MoG background model (lower) [2]

background but this is further reinforced via Kalman
predictions for the positions of foreground objects (i.e.
connected component foreground regions [31]) present
in the previous time-step. This object-aware model sig-
nificantly aids in the recovery of fast moving foreground
objects under varying illumination conditions such as
the thermal gradients inherent within infrared imagery.

Overall this combined approach provides a slowly-
adapting background model in the traditional sense
[28], that can be robust to rapid illumination gradi-
ents, whilst similarly providing foreground consistency
to fast moving scene objects [29]. The binary output of
each foreground, based on a probabilistic classification
threshold, is combined conjunctively to provide robust
detection of both static and active scene objects.

Within our overall framework this facilitates the au-
tomated identification of foreground regions within the
incoming video imagery such that a) new objects can be
isolated from the scene background for efficient feature
generation and classification and b) objects that enter
and become static within the scene (e.g. parked car)
are adaptively learnt as part of the background model.
This concept is illustrated in Figure 1 where we see
isolated scene regions relating corresponding to the ve-
hicle and pedestrians entering the scene (Figure 1 A/B
upper). These scene regions (Figure 1 A/B upper) rep-

resent pixel values that do not fit the current adaptive
background model and are thus identified as foreground
pixels within the image. This set of foreground pixels
(Figure 1 A/B upper) is post-processed using morpho-
logical dilation and connected components analysis [31]
facilitating the rejection of small noisy candidate re-
gions prior to classification. It is notable that some
small noise regions remain and similarly noise remains
within the foreground object boundaries (Figure 1 A/B
upper).

In Figure 1 A/B (lower) we see a visualization of
the current background model in each instance based
on a weighted average of the current Gaussian mixture
model at each scene pixel. Figure 1B also shows how
the representation of the stationary vehicle that was
present in the scene for some time (Figure 1A) is incor-
porated into the background model and subsequently
removed as it departs the scene following the continu-
ous updates to the adaptive background model itself.
Traces of the vehicles prior position in the scene back-
ground are clearly visible in Figure 1B (lower) relating
to its previous position in Figure 1A. Minor traces of
the vehicles previous stationary position (maintained
shortly after entering the scene) are also visible in Fig-
ure 1A (lower) but have subsequently been removed by
updating in Figure 1B which is taken from later in the



same sequence (once the vehicle has departed).

Overall, this background modeling approach facili-
tates the efficient identification of candidate regions
for further feature extraction and classification (Section
2.1.2). As a by-product it readily facilitates the report-
ing of new, arriving and transiting/moving scene ob-
jects as scene events without continual re-reporting of
stationary scene objects that were not originally present
within the scene. The use of such adaptive background
modeling techniques is commonplace in the automated
visual surveillance and tracking literature [30].

2.1.2 Target Classification

Target classification follows a machine learning driven
approach of off-line classifier training and on-line target
classification using the trained classifier. Specifically
we follow the bag of visual words methodology [32–34].
Following this approach abstract multi-dimensional vi-
sual features are extracted over the set of training ex-
amples. In general a wide range of features are available
and widely utilised for this task [35, 36] with variation
in computational performance, complexity and invari-
ance properties. Here we utilise the Speeded Up Robust
Features (SURF) approach [37] that are both viable for
real-time performance on full motion video and known
to be suitable for multi-modal use as our base features
[20, 24].

Following the bag of visual words (or codebook)
methodology, we perform multi-dimensional feature
clustering over all of the example training imagery (for
all object classes) to produce a set of general feature
clusters that characterise the overall feature space. This
provides a fixed dimension set of cluster references for
all target types and sub-types that we are to classify.
Commonly this set of feature clusters is referred to as
a codebook or vocabulary as it is subsequently used
to encode the features detected on specific object in-
stances (positive and negative) as fixed length vectors
for input to both the off-line training and on-line clas-
sification phase of later machine learning classification.
Here we perform clustering using the common-place k -
means clustering algorithm in 128-dimensional space
(i.e. SURF feature descriptor length of 128 [37]) into
1000 clusters. A given object instance is encoded as
a fixed length vector based on the membership of the
features detected within the object to a given feature
cluster based on nearest neighbour (hard) cluster as-
signment. Essentially the original variable number of
SURF features detected over each training image or
candidate region is encoded as a fixed length histogram
representing the membership of these features to each of
these clusters. This fixed length distribution of features

forms a feature vector that is then used to differentiate
between positive and negative instances of a given class
based on a trained classifier. The feature vector forms
the input to a two-class Support Vector Machine (SVM)
classifier, pedestrian = {yes, no}, that is trained using
a RBF kernel, via grid-based kernel parameter optim-
ization, within a cross-validation based training regime
[38].

2.2 Photogrammetric Position Estimation

Based on automated detection (Section 2.1.2), target
position is initially known within “sensor space” (i.e.
pixel position within the image). Consequently, target
position is estimated based on the principles of pho-
togrammetry together with knowledge of the perspec-
tive transform under which targets are imaged and an
assumption on the physical (real-world) dimension of a
target in one plane.

All targets are imaged under a standard perspective
projection [31] as follows:

x = f
X

Z
, y = f

Y

Z
(1)

where real-world object position, (X,Y, Z), in 3D
scene co-ordinate space is imaged at image pixel posi-
tion, (x, y), in pixel co-ordinate space for a given cam-
era focal length, f . We assume both positions are the
centroid of the object with (x, y) being the centre of
the bounding box, of the image sub-region, for a tar-
get (object) detected in the scene (Section 2.1.1, e.g.
Figure 2).

With knowledge of the camera focal length, f , the
original object (target) position, (X,Y, Z), can be re-
covered based on (assumed) knowledge of either ob-
ject width, 4X, or object height, 4Y (i.e. the differ-
ence in minimum and maximum positions in each of
these dimensions for the object). From the bounds of
the detected targets (Section 2.1.2) we can readily re-
cover the corresponding object width, 4x, and object
height, 4y, in the image. Based on this knowledge, re-
arranging and substituting into Eqn. 1 we can recover
the depth (distance to target, Z) of the object position
as follows:

Z = f ′
4Y
4y

(2)

Knowing Z via Eqn. 2, we can now substitute back
into Eqn. 1 and with knowledge of the object cen-
troid in the image, (x, y), we can recover both X and
Y resulting in full recovery of real-world target position,



Figure 2. Photogrammetry facilitates the approximate recovery of a camera to target distance for an example target
(person) without any need for additional (active) range sensing [2]

(X,Y, Z), relative to the camera. In Eqn. 2, f ’ repre-
sents focal length, f , translated from standard units,
mm, to focal length measured in pixels:-

f ′ =
widthimage . f

widthsensor
(3)

where widthimage represents the width of the image
(pixels), widthsensor represents the camera CCD sen-
sor width (mm).

Crucially, if we now assume a fixed width, 4X, or
height, 4Y , for our object we can recover complete 3D
scene position relative to the camera. For pedestrian
detection we can assume average adult human height
based on available medical statistics [5, 6]. Despite
commonly held beliefs, notable large-scale studies have
shown variance on human height within the adult pop-
ulation to be low (“in populations of European descent,
the average height is ∼178 cm for males and ∼165
cm for females, with a standard deviation of ∼7 cm”
[6]). The meta-study of [6] considers a total populace
of 63,000 individuals within its analysis from several
studies over which average variation present translates
into a very narrow ∼3.9-4.2% height difference across
adults (for each gender) and an average difference of 8%
between the sexes. It is estimated that approximately
80% of this variation is due to as few as 50 genetic
factors [39]. This means that height variation can be
expected to be very small within the general populace.
Hypothetically, if all of the genetic factors causing most
of this variation were known and summed together, it
is estimated that the (extreme case) height variation
between the upper-most 5% (tallest) and lowest 5%
percentile (shortest) within the population would be
∼26cm [6] in that case (i.e. the height of a human
head).

Within our work, this variance is directly propor-
tional to the recovered object depth estimate, Z (and
similarly to (X,Y )) via Eqn. 2. Despite the crude-
ness of this assumption, empirically it has been shown
to work well within the context of target localization

in earlier work [4, 11]. This is supported by assessing
the error effect of the variation identified by [6] within
this context (Figure 3). Figure 3 (left) shows the posi-
tion error in the Z position estimate that would result
from a 7cm standard deviation in height, 4Y , within
Eqn. 2 for either male, female and the combined adult
population. It can be seen that this translates to a
maximal Z position error of ∼2.5m at a 60m range
(linearly scaling to ∼5m at a 120m range, equivalent
to established GPS error tolerances under ideal condi-
tions [27]). For extreme cases of height variation within
adults (i.e. upper/lower 5% outliers within the popula-
tion under hypothetical conditions) we see a maximal
error of ∼9m at a 60m range and an error which is
still within established GPS error tolerances for ranges
<33m (Figure 3, right). These extreme cases of varia-
tion are highly unlikely to occur with great regularity,
based upon widespread statistical surveys [5, 6].

Although this analysis considers the adult height
only, it is widely accepted that a 14-year old male is
at ∼90% of his full adult height with this percentage
being even greater for females of this age [40]. Based on
the mean height of a 14-year old male (164cm) for an in-
dividual going on to reach average male height (178cm),
adding this additional potential source of height varia-
tion (+7.9%) will only result in a position error of ap-
proaching ∼5m (established GPS error tolerances [27])
at a 43m range (Figure 3 (right)). By contrast, for
females (14-year old, 156cm [40], +2.4% height varia-
tion), this translates as a position error <4m for targets
within 60m range (Figure 3 (right)) as females are typi-
cally already at ∼95+% of full adult height by this age.
Similar analysis can be performed for varying age and
gender combinations based on [40].

Extending our analysis to consider the distribution of
height variation across the population, based on the full
adult height distribution presented within the extensive
study of [40], we can consider the Z position error intro-
duced due to height variation in the populace between
the 0.4 - 99.6 percentile (Figure 4). Based on a mean
of 178 cm for males and 165 cm for females, we plot



Figure 3. Position error in Z (distance to target) attributable to variation in height for standard deviation of 7cm (left)
and for cases of additional height variation due to genetics and age differences (right)

Figure 4. Position error in Z (distance to target) attributable to variation in height across the 0.4 →99.6 percentile of the
population [40].



the Z position error introduced at each of {10m, 30m,
60m} target distances due to this distribution height
variation in Figure 4. We can conclude that height
variation at 10m or 30m distances introduces a Z po-
sition error within GPS error tolerances for the entire
populace (male and female) (Figure 4). Furthermore
the Z position error, attributable to height variation,
at 60m distance is within GPS error tolerances for ap-
proximately the ∼2-98% percentile of the population
(based on height distribution). Essentially, the pho-
togrammetric approach we propose can be statistically
shown to introduce an error that exceeds standard GPS
position error tolerances for less than 4% of individuals
(Figure 4, [40]).

Variation within the various statistical sources used
for height information in this analysis [5, 6, 40] and in
those used within prior work [4, 13] result in at most a
variation in reference height of ±1cm. This statistical
variation is itself shown to have a negligible effect on
position error relative to other error sources and estab-
lished GPS error tolerances [27] (see Figure 3 (right)).

Figure 2 illustrates the application of this approach
to the position estimation, showing distance to target
only, with an example pedestrian target that is detected
using the approach outlined in [4]. It is similarly shown
in Figure 5 (right) using the approach used here (Sec-
tion 2.1.1). Within the earlier work [4] we can addi-
tionally see a secondary source of error present - the
estimate of object height, 4y, in the image. This is es-
timated based on the bounding box of the detected indi-
vidual (Figure 2) using either the full height dimension,
a fixed percentage thereof (Figure 2, [4]) or a secondary
process of extended limb localization within the bound-
ing box [3]. Within [4] this introduces a notable sec-
ondary source of position estimation error (Eqn. 2) as
the bounding box may be a poor approximation to the
actual height of the individual within the image (Figure
2, right →middle). In Figure 5, we explicitly compare
this earlier cascaded Haar classifier driven approach of
[4] with the approach outlined here in Section 2.1.1 [2]
over the same image sequence. In general, our chosen
approach (Figure 5, right) produces a tighter bound on
the target with greater consistency over the duration of
the sequence. This minimizes, although does not elim-
inate, this source of error on 4y in the image. Within
our evaluation (Section 3) we experimentally examine
the impact of this remaining 4y error upon the overall
Z position estimation of targets and show empirically
that its effect is small (Figures 6 / 7).

Overall, we can effectively show that strong statis-
tical support for a photogrammetric approach capable

of delivering Z position estimates to statistical toler-
ances within current GPS accuracy in the majority of
instances [5, 6, 40]. This is further supported by a tar-
get localization approach within the image, that mini-
mizes error introduced by poor height bounds on tar-
gets within the image (Section 2.1.1, [2]). Furthermore
it crucially offers a passive, as opposed to active sensing,
based position estimation for detected targets. Based
on a sensor position that is itself known a priori (from
on-board GPS or mapping) and target position relative
to the sensor recovered using this approach, (X,Y, Z)
(Eqn. 2), is readily transformed into global position
coordinates for onward target reporting within the ob-
served environment. This is illustrated for a range of
pedestrian targets and environments within Figures 8 -
10.

2.3 3D Tracking

Unlike conventional tracking approaches that track 2D
position, (x, y), within the image itself [1, 41], our pho-
togrammetric recovery of target position within the
scene, (X,Y, Z) (Section 2.2) facilitates 3D tracking
within scene space. This can be accomplished as track-
ing “within the plane” based on horizontal target posi-
tion within the scene, X, and distance to target, Z, or
full 3D scene space tracking including target elevation
(vertical position), Y. Whilst any detected foreground
object (Section 2.1.1) can be tracked based on 2D posi-
tion, we require confirmed classification as a pedestrian
target (Section 2.2).

For each candidate region identified as a new fore-
ground object (Section 2.1.1), we initially created a
new 2D track-let based on localized frame to frame
connectivity derived from sparse optic flow [42, 43].
If one of the frame samples for this object is subse-
quently classified as pedestrian (via the approach out-
lined in Section 2.1.2), this target transitions from a 2D
tracked instance within image space to a 3D tracked
pedestrian within scene space. The tracked position,
based on photogrammetric position recovery (Section
2.2) can then be propagated, over earlier instances of
the same object similarly transitioning the motion his-
tory of this instance from 2D image position to 3D
scene position. If an identified foreground object is
not classified as being a pedestrian its tracking re-
mains within 2D image space until either its spatio-
temporal filtered classification (Section 2.3.1, Eqn(s).
4 & 5) returns a pedestrian classification or it leaves
the scene. Tracking within 3D scene space is per-
formed using Kalman filter based tracking [44] on either
a state vector comprising position and velocity “within
the plane”, ~s = (X,Z, vX, vZ)T , or within R3 scene



Figure 5. A comparison of the localization of target bounds using the prior approach of [4] and that used here (Section
2.1.1, [2]).



space, ~s = (X,Y, Z, vX, vY, vZ)T . Scene and mea-
surement noise within the Kalman formulation are es-
timated empirically.

2.3.1 Spatio-temporal Target Filtering

Adapting the temporal filtering approach of [2], 3D
tracking allows us to perform target filtering both spa-
tially (as 3D tracked objects) and temporally (along
the duration of the track itself). In this way we can
similarly make use of weak classifiers following the dis-
cussion outline in [2] placing significantly less reliance
on a single well-trained classifier that performs well un-
der all conditions.

For a classifier to be truly weak its output must be
correlated, albeit poorly, against true target detection.
Despite this inherent weakness, we can make use of it
by performing a bagging or boosting ensemble classifi-
cation approach over a given time (sampling) window
[2]. False positives or false negatives will be random
and not temporally or spatially clustered over any sig-
nificant sampling period or spatial area. By contrast,
true positive (i.e. correct) detections will be temporally
and spatially clustered. This key observation allows us
to proceed with a less than optimal (weaker) classifier
approach and rely on the strength of an ensemble ap-
proach to facilitate the desired reduction in false posi-
tive reporting.

For a classifier detecting the presence of target class c
based on a given feature distribution x, represented by a
binary classification function kc(x) ∈ {0, 1}, this results
in a classification result integrated and normalized over
a temporal window of w at time t as follows:

Akc =

∑t
t−w kc(xt)

w
(4)

Here we spatially constrain this temporal window, on
a per scene object basis (from tracking, Section 2.3), to
be along the last w connected instances within a given
object track in 3D scene space. Essentially we take
the average classification, kc(x), over the last w tracked
instances of a given object. This results in a real-valued
integrated classification in the range {0 → 1} which if
treated akin to a probability can be considered to give
a likelihood of detection (normalized to a percentage
with the results of Section 3). Applying a threshold to
this parameter, τk, facilitates the translation of this to
a detection report, pedestrain = {yes|no}, for onward
transmission within the sensor network. In essence, as
Eqn. 4 gives equal weighting to each time step within
the temporal window, this can be directly translated to
state - if target is detected greater than τk% of the time

within w sequential image samples we then report it as
a confirmed target detection. An extension would be to
weight each time step decaying by time or by spatial
proximity to the sensor (c.f. Section 2.2).

Our formulation (Eqn. 4) can be further expanded as
follows to consider a non-binary classification function,
fc(x), as follows:

Afc =

∑t
t−w fc(xt)

βw
(5)

where β is the maximal value of fc(x) and thus
Afccan be treated analogous to Akc . In practice our
non-binary classification function may itself return a
probability directly from an underlying Bayesian clas-
sifier or perhaps the number of positive votes within a
decision forest classifier (where β = #trees in forest)
or the distance of the feature distribution instance
from the decision boundary in Support Vector Machine
(SVM) classification (where β = max(fc(i))∀ i, i ∈
{training examples}) [2].

Overall the use of spatio-temporal filtering constrains
any target detections via classification (Section 2.1.2)
both in terms of spatial consistency and temporal con-
sistency. Prior work has experimentally shown that
temporal filtering significantly reduces spurious false-
positives [2] whilst here we introduce additional spa-
tial constraint by simply piggy-backing off prior target
tracking in 3D scene space.

3. EVALUATION
Our results are presented using both quantitative mea-
sures of pedestrian localization accuracy (Figures 6 /
7) and qualitative assessment of 3D localization and
tracking performance over a range of exemplar sce-
narios (Figures 8 - 10). All evaluation imagery is
captured using an un-cooled infrared camera (Ther-
moteknix Miricle 307k, spectral range: 8-12µm).

Figure 6 presents the quantitative results of target lo-
calization (i.e. estimated Z position, Section 2.2) aver-
aged over multiple sample experiments plotted against
ground truth for the ranges 10→30m (Fig. 6A) and
10→60m (Fig. 6B). Both sets of experiments (Fig. 6A
/ Fig. 6B) were carried out under different experimen-
tal conditions and in different locations. Error bars
are plotted for the standard deviation in the Z posi-
tion estimates obtained (y-axes, Figure 6) and for the
expected error in range due to human height variation
at this range (x-axes, Figure 6, derived from Figure 3
/ Eqn. 2) in addition to ±5m GPS error margins [27].
From these results it can be observed that the estimated



Figure 6. Estimated target distance and associated error against ground truth.

position, including error bounds, is significantly within
those of GPS accuracy in both cases. Furthermore, the
standard deviation obtained experimentally (y-axis er-
ror bars, Figure 6) is approximately less than equal to
the expected position error due to variation in human
height (x-axis error bars, Figure 6) in the majority of
instances.

An excerpt from the experimental results of Fig. 6A
is additionally shown in Figure 7 where we see three ex-
emplar tracking results for a given pedestrian obtained
via the photogrammetric approach outlined (Figure 7
A-C, blue track) and additionally using a hand-held
GPS tracking unit (Figure 7 A-C, red track with ±5m
GPS error margin). Again we can see that the GPS
tracks recovered via photogrammetry are within the
spatial error margins of the GPS ground truth (in both
planar axes). It is notable that the error within the X
position (relative to the camera) appears larger than
Z in several places. The limited sampling frequency of
the hand-held GPS unit used for ground truth (1 read-
ing per second) also limits the granularity of the GPS
track (Figure 7 A-C, red) against that obtained via the
camera (Figure 7 A-C, blue). As a result, some level of
granularity present within the observed human track is
not present within the corresponding GPS ground truth
(e.g. Figure 7B).

Figures 8 - 10 present qualitative result for the de-
tection, classification and 3D tracking of pedestrian tar-
gets within a cluttered scene environment. Within each
sub-figure (Figures 8 - 10 A-G) we present the detected

pedestrian(s), with associated 2D image projection of
the track (right) and the planar view of the {Y/Z}
tracked position relative to the camera (left). Under
test conditions, the detection of pedestrians operates
with statistical accuracy of 0.91 (precision = 0.92, re-
call = 0.93) based on a 93% true positive and 13% false
positive detection rate on a per sample basis. The use
of spatio-temporal filtering within the tracking frame-
work presented (Section 2.3.1, using w = 10) reduce
false positives to a negligible level and produce true
positive detection close to 100% based on the episodic
evaluation paradigm introduced in [4, 45] (i.e. targets
correctly/incorrectly detected per episode or scenario
rather than per image sample).

Figure 8 A-G presents extracts from a simple pedes-
trian tracking example (right) and illustrates the re-
covery of a clear target trajectory in scene space
co-ordinates (left) over a range of ∼10-35m range.
Figure 9 A-G presents a recovery of a more com-
plex, self-intersecting target trajectory in scene space
co-ordinates (left) for a pedestrian tracking example
(right) over a ∼10-25m range. Figure 10 presents two
separate scenarios (A-D / E-G) of multiple pedestrian
tracking, over a∼10-50+m range, with recovery of more
complex and intersecting target trajectories. Figure 10
E-G illustrates the disambiguation of target tracks that
intersect in 2D image space (right) within the tracked
3D scene space co-ordinates (left). This disambigua-
tion is performed based solely on the target position
recovered via photogrammetry negating the need for



Figure 7. Three exemplar tracks (A,B,C) plotted on geo-referenced satellite imagery (blue) with corresponding ground
truth obtained from hand-held GPS tracking units (red with ±5m error boundary plotted).

complex tracking strategies as found in contemporary
work [1, 41]. By contrast to the growing complexity of
many target tracking algorithms, the proposed pipeline
that enables pedestrian tracking within scene space co-
ordinates achieves such disambiguation based on con-
ventional Kalman filter driven tracking.

4. CONCLUSIONS

Overall we have shown that the use of photogrammetry
provides an effective means for the 3D localization and
tracking of pedestrians within infrared imagery. This is
based on the improved pedestrian localization afforded
by the use of imagery within this spectral band and the
use of a background model driven detection strategy
that provides tight image-space bounds on pedestrian
scene regions. We have shown that the use of human
height as an a priori constraint for pedestrian localiza-
tion introduces a statistical error due to variation that
is within the bounds of conventional GPS localization
error for approximately 96% of the adult population
for ranges up to 60m. Variance introduced due to pre-
adult height variation, standard deviation across the
population and statistical variation is also accounted
for within our extended discussion. This is supported
by experimental results that show the error to be within
these bounds over a range of scenarios.

Pedestrian tracking within 3D scene-space co-
ordinates facilitates the ready disambiguation of multi-
ple target tracking scenarios using low-complexity ap-
proaches with reduced computational overheads. This
is inherent within the premise that whilst two pedes-
trian targets may occupy the same position within a 2D
image projection of the scene, they cannot physically
occupy exactly the same 3D scene space. Our results
are illustrated using a bag of visual words driven ap-
proach with spatio-temporal target detection/reporting
filtering based on the earlier work of [2]. The pedestrian
localization analysis extends the prior work of [4, 11] in
terms of both its statistical underpinning from [5, 6, 40]
and experimental error validation.

Future work will look to investigate the extension
of this work to visible-band imagery, using recent
advances in real-time salient object detection [46] and
use within the context of mobile platform navigation
[47, 48] and for multi-platform, multi-modal wide-area
search and surveillance tasks [4, 49].
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