
Minimal Disconnected Cuts in Planar Graphs?
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Abstract. The problem of finding a disconnected cut in a graph is
NP-hard in general but polynomial-time solvable on planar graphs. The
problem of finding a minimal disconnected cut is also NP-hard but its
computational complexity is not known for planar graphs. We show that it
is polynomial-time solvable on 3-connected planar graphs but NP-hard for
2-connected planar graphs. Our technique for the first result is based on
a structural characterization of minimal disconnected cuts in 3-connected
K3,3-free-minor graphs and on solving a topological minor problem in the
dual. We show that the latter problem can be solved in polynomial-time
even on general graphs. In addition we show that the problem of finding
a minimal connected cut of size at least 3 is NP-hard for 2-connected
apex graphs.

1 Introduction

A cutset or cut in a connected graph is a subset of its vertices whose removal
disconnects the graph. The problem Stable Cut is that of testing whether a
connected graph has a cut that is an independent set. Le, Mosca, and Müller [12]
proved that this problem is NP-complete even for K4-free planar graphs with
maximum degree 5. A connected graph G = (V,E) is k-connected for some
integer k if |V | ≥ k+ 1 and every cut of G has size at least k. It is not hard to see
that if one can solve Stable Cut for 3-connected planar graphs in polynomial-
time then one can do so for all planar graphs (in particular the problem is trivial
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if the graph has a cut-vertex or a cut set of two vertices that are non-adjacent).
Hence, the problem is NP-complete for 3-connected planar graphs.

Due to the above it is a natural question whether one can relax the condition
on the cut to be an independent set. This leads to the following notion. For a
connected graph G = (V,E), a subset U ⊆ V is called a disconnected cut if U
disconnects the graph and the subgraph induced by U is disconnected as well,
that is, has at least two (connected) components. This problem is NP-compete
in general [13] but polynomial-time solvable on planar graphs [8]. However, the
property of the cut being disconnected can be viewed to be somewhat artificial
if one considers the 4-vertex path P4 = p1p2p3p4, which has two disconnected
cuts, namely {p1, p3} and {p2, p4}. Both these cuts contain a vertex, namely
p1 and p4, respectively, such that putting this vertex out of the cut and back
into the graph keeps the graph disconnected. Therefore, Ito et al. [7] defined the
notion of a minimal disconnected cut of a connected graph G = (V,E), that is, a
disconnected cut U so that G[(V \U) ∪ {u}] is connected for every u ∈ U (more
generally, we call a cut that satisfies the later condition a minimal cut). Here,
the graph G[S] denotes the subgraph of G induced by S ⊆ V (G). We note that
every vertex of a minimal cut U of a connected graph G = (V,E) is adjacent
to every component of G[V \ U ]. See Figure 1 for an example of a planar graph
with a minimal disconnected cut.

The corresponding decision problem is defined as follows.

Minimal Disconnected Cut
Instance: a connected graph G.
Question: does G have a minimal disconnected cut?

S

Fig. 1. An example of a planar graph with a minimal disconnected cut, namely the
set S.

Ito et al. [7] showed that Minimal Disconnected Cut is NP-complete. However
its computational complexity remains open for planar graphs. It can be seen,
via a straightforward reduction, that the problem of deciding whether a graph
has a minimal stable cut is NP-complete for any graph class (and thus for the
class of planar graphs) for which Stable Cut is NP-complete. Moreover, the
problem of deciding whether a graph has a minimal cut (that may be connected
or disconnected) is polynomial-time solvable: given a vertex cut U we can remove
vertices from U one by one until the remaining vertices in U form a minimal cut.

Our Results. As a start we observe that Minimal Disconnected Cut is
polynomial-time solvable for outerplanar graphs (as these graphs do not contain



K2,3 as a minor, any minimal cut has size at most 2). In Section 2 we prove that
Minimal Disconnected Cut is also polynomial-time solvable on 3-connected
planar graphs. The technique used by Ito et al. [8] for solving Disconnected
Cut in polynomial-time was based on the fact that a planar graph either has
its treewidth bounded by some constant or else contains a large grid as a minor.
However, grids (which are 3-connected planar graphs) do not have minimal
disconnected cuts. Hence, we need to use a different approach, which we describe
below.

We first provide a structural characterization of minimal disconnected cuts for
the class of 3-connected K3,3-free-minor graphs, which contains the class of planar
graphs. In particular we show that any minimal disconnected cut of a 3-connected
planar graph G has exactly two components and that these components are paths.
In order to find such a cut we prove that it suffices to test whether G contains,
for some fixed integer r, the biclique K2,r as a contraction. We show that G has
such a contraction if and only if its dual contains for some fixed r the multigraph
Dr, which is obtained from the r-vertex cycle by replacing each edge by two
edges, as a subdivision (see also Figure 2). We then present a characterization of
any graph that contains such a subdivision. Next we use this characterization to
prove that the corresponding decision problem is polynomial-time solvable even
on general graphs.

In Section 3 we give our second result, namely that Minimal Disconnected
Cut stays NP-complete for the class of 2-connected planar graphs. This proof
is based on a reduction from Stable Cut and as such different from the NP-
hardness proof for general graphs [7], the gadget of which contains large cliques.
In the same section we show that the problem of finding a minimal connected
cut of size at least 3 is NP-complete for 2-connected apex graphs (graphs that
can be made planar by removing one vertex); to the best of our knowledge the
computational complexity of this problem has not yet been determined even for
general graphs. We note that the problem of finding whether a graph contains
a (not necessarily minimal) connected cut of size at most k that separates two
given vertices s and t is linear-time FPT when parameterized by k [14].

We finish our paper with some further observations on related problems in
Section 4.

Related Work. Vertex cuts play an important role in graph connectivity. In
the literature various kinds of vertex cuts, besides stable cuts, have been studied
extensively and we briefly survey a number of results below.

A cut U of a graph G = (V,E) is a clique cut if G[U ] is a clique, a k-clique
cut if G[U ] has a spanning subgraph consisting of k complete graphs; a strict
k-clique cut if G[U ] consists of k components that are complete graphs; and a
matching cut if EG[U ] is a matching. It follows from a classical result of Tarjan [17]
that determining whether a graph has a clique cut is polynomial-time solvable.
Whitesides [18] and Cameron et al. [3] proved that the problem of testing whether
a graph has a k-clique cut is solvable in polynomial time for k = 1 and k = 2,
respectively. Cameron et al. [3] also proved that testing whether a graph has a
strict 2-clique cut can be solved in polynomial time. As mentioned the problem



of testing whether a graph has a stable cut is NP-complete. This was first shown
for general graphs by Chvátal [4]. Also the problem of testing whether a graph
has a matching cut is NP-complete. This was shown by Brandstädt et al. [2].
Bonsma [1] proved that this problem is NP-complete even for planar graphs with
girth 5 and for planar graphs with maximum degree 4.

The Skew Partition problem is that of testing whether a graph G = (V,E)
has a disconnected cut U so that V \ U induced a disconnected graph in the
complement of G. De Figueiredo, Klein and Reed [5] proved that even the list
version of this problem, where each vertex has been assigned a list of blocks in
which it must be placed, is polynomial-time solvable. Afterwards, Kennedy and
Reed [11] gave a faster polynomial-time algorithm for the non-list version.

Finally, for an integer k ≥ 1, a cut U of a connected graph G is a k-cut of
G if G[U ] contains exactly k components. For k ≥ 1 and ` ≥ 2, a k-cut U is a
(k, `)-cut of a graph G if G[V \U ] consists of exactly ` components. Ito et al. [8]
proved that testing if a graph has a k-cut is solvable in polynomial time for k = 1
and NP-complete for every fixed k ≥ 2. In addition they showed that testing
if a graph has a (k, `)-cut is polynomial-time solvable if k = 1, ` ≥ 2 and NP-
complete otherwise [8]. The same authors show, by using the approach for solving
Disconnected Cut on planar graphs, that both problems are polynomial-time
solvable on planar graphs.

Terminology. Let G = (V,E) be a connected simple graph. A maximal connected
subgraph of G is called a component of G. Recall that, for a subset S ⊆ V (G),
we let G[S] denote the subgraph of G induced by S, which has vertex set S and
edge set {uv | u, v ∈ S, uv ∈ E(G)}. A vertex u ∈ V \ S is adjacent to a set
S ⊆ V \{u} if u is adjacent to a vertex in S. We say that two disjoints sets S ⊂ V
and T ⊂ V are adjacent if S contains a vertex adjacent to T , or equivalently if T
contains a vertex adjacent to S.

Let G be a graph. We define the following operations. The contraction of
an edge uv removes u and v from G, and replaces them by a new vertex made
adjacent to precisely those vertices that were adjacent to u or v in G. Unless
we explicitly say otherwise we remove all self-loops and multiple edges so that
the resulting graph stays simple. The subdivision of an edge uv replaces uv by a
new vertex w with edges uw and vw. Let u ∈ V (G) be a vertex that has exactly
two neighbours v, w, and moreover let v and w be non-adjacent. The vertex
dissolution of u removes u and adds the edge vw.

A graph G contains a graph H as a minor if H can be obtained from G by a
sequence of vertex deletions, edge deletions and edge contractions. We say that
G contains H as a contraction, denoted by H ≤c G, if H can be obtained from
G by a sequence of edge contractions. Finally, G contains H as a subdivision
if H can be obtained from G by a sequence of vertex deletions, edge deletions
and vertex dissolutions, or equivalently, if G contains a subgraph H ′ that is a
subdivision of H, that is, H can be obtained from H ′ after applying zero or more
vertex dissolutions. We say that a vertex in H ′ is a subdivision vertex if we need
to dissolve it in order to obtain H; otherwise it is called a branch vertex (that is,
it corresponds to a vertex of H).



For some of our proofs the following global structure is useful. Let G and H be
two graphs. An H-witness structure W is a vertex partition of a (not necessarily
proper) subgraph of G into |V (H)| nonempty sets W (x) called (H-witness) bags,
such that

(i) each W (x) induces a connected subgraph of G,
(ii) for all x, y ∈ V (H) with x 6= y, bags W (x) and W (y) are adjacent in G if x

and y are adjacent in H.

In addition, we may require the following additional conditions:

(iii) for all x, y ∈ V (H) with x 6= y, bags W (x) and W (y) are adjacent in G only
if x and y are adjacent in H,

(iv) every vertex of G belongs to some bag.

By contracting all bags to singletons we observe that H is a minor or contraction
of G if and only if G has an H-witness structure such that conditions (i)-(ii) or
(i)-(iv) hold, respectively. We note that G may have more than one H-witness
structure with respect to the same containment relation.

We denote the complete graph on k vertices by Kk and the complete bipartite
graph with bipartition classes of size k and `, respectively, by Kk,`.

2 The Algorithm

We first present a necessary and sufficient condition for a 3-connected K3,3-minor-
free graph to have a minimal disconnected cut.

Theorem 1. A 3-connected K3,3-minor-free graph G has a minimal disconnected
cut if and only if K2,r ≤c G for some r ≥ 2.

Proof. Let G = (V,E) be a 3-connected graph that has no K3,3 as a minor. First
suppose that G has a minimal disconnected cut U . Let p and q be the number
of components of G[U ] and G[V \ U ], respectively. Because U is a disconnected
cut, p ≥ 2 and q ≥ 2. By definition, every vertex of every component of G[U ] is
adjacent to all components in G[V \U ]. Hence, G contains Kp,q as a contraction.
Because G has no K3,3 as a minor, G has no K3,3 as a contraction. This means
that p ≤ 2 or q ≤ 2. Because p ≥ 2 and q ≥ 2 holds as well, we find that
K2,r ≤c G for some r ≥ 2.

Now suppose that K2,r ≤c G for some r ≥ 2. Throughout the remainder of
the proof we denote the partition classes of Kk,` by X = {x1, . . . , xk} and Y =
{y1, . . . , y`}. We refer to the bags in a Kk,`-witness structure of G corresponding
to the vertices in X and Y as x-bags and y-bags, respectively. Because K2,r ≤c G,
there exists a K2,r-witness structure W of G that satisfies conditions (i)-(iv).
Note that W (x1)∪W (x2) is a disconnected cut. However, it may not be minimal.

Suppose that W (x1) contains a vertex u that is adjacent to some but not all
y-bags, i.e., the number of y-bags to which u is adjacent is h for some 1 ≤ h < r.
Then we move u to a y-bag that contains one of its neighbors unless W (x1)∪W (x2)



no longer induce a disconnected graph (which will be the case if u is the only
vertex in W (x1)). We observe that G[W (x1) \ {u}] may be disconnected, namely
when u is a cut vertex in G[W (x1)]. We also observe that u together with its
adjacent y-bags induces a connected subgraph of G. Hence, the resulting witness
structureW ′ is a Kq,r′ -witness structure of G with q ≥ 2 (as the resulting vertices
in W (x1)∪W (x2) still induce a disconnected graph) and r′ = r−(h−1). Because
1 ≤ h < r, we find that 2 ≤ r′ ≤ r. We repeat this rule as long as possible.
During this process, W (x2) does not change, and afterwards, we do the same for
W (x2). Let W∗ denote the resulting witness structure that is a Kq∗,r∗-witness
structure satisfying conditions (i)-(iv) for some q∗ ≥ 2 and 2 ≤ r∗ ≤ r.

We will now prove the following claim. Afterwards, we are done; due to this
claim and because there are at least two x-bags and at least two y-bags in W∗,
the x-bags of W∗ form a minimal disconnected cut U of G.

Claim 1. Every vertex of each x-bag of W∗ is adjacent to all y-bags.

We prove Claim 1 as follows. First suppose that there exists an x-bag of W∗,
say W ∗(x1), that contains a vertex u adjacent to some but not to all y-bags of
W∗, say u is not adjacent to W ∗(y1). By our procedure we would have moved u
to an adjacent y-bag unless that makes the disconnected cut connected. Hence
we find that there are exactly two witness bags W ∗(x1) and W ∗(x2) and that
W ∗(x1) = {u}. In our procedure we only moved vertices from x-bags to y-bags.
This means that u belonged to an x-bag of the original witness structure W.
This x-bag was adjacent to all y-bags of W (as W was a K2,r-witness structure).
As we only moved vertices from x-bags to y-bags, this means that there must
still exist a path from u to a vertex in W ∗(y1) that does not use any vertex of
W ∗(x2); a contradiction. Hence every x-bag of W∗ only contains vertices that
are either adjacent to all y-bags or to none of them.

Now, in order to obtain a contradiction, suppose that an x-bag, say W ∗(x1),
contains a vertex u not adjacent to any y-bag. Because G is 3-connected, G
contains three vertex-disjoints paths P1, P2, P3 from u to a vertex in W ∗(y1) (by
Menger’s Theorem). Each Pi contains a vertex vi in W ∗(x1) whose successor on
Pi is outside W ∗(x1). Hence, by our assumption, vi has a neighbour in every
y-bag (including W ∗(y1)). Recall that the number of y-bags is r∗ ≥ 2. Then
the subgraph induced by the vertices from W ∗(y1) and W ∗(y2) together with
the vertices on the three paths P1, P2, P3 form a K3,3-minor of G. This is not
possible. Hence, every vertex of each x-bag of W∗ is adjacent to all y-bags. This
completes the proof of Claim 1 and thus the proof of Theorem 1. ut

By Theorem 1 we may restrict ourselves to finding a K2,r-contraction for some
r ≥ 2 in a 3-connected planar graph. Below we state some additional terminology.

Recall that Dn is the multigraph obtained from the cycle on n ≥ 3 vertices by
doubling its edges. We let D2 be the multigraph that has two vertices with four
edges between them. The dual graph Gd of a plane graph G has a vertex for each
face of G, and there exist k edges between two vertices u and v in Gd if and only
if the two corresponding faces share k edges in G. Note that the dual of a graph
may be a multigraph. As 3-connected planar graphs have a unique embedding



D2 D4C4 K2,4

Fig. 2. The graphs D2, C4, D2, K2,4. Note that the dual of C4 = K2,2 is D2, that D4

is obtained from C4 by duplicating each edge and that D4 is the dual of K2,4.

(see e.g. Lemma 2.5.1, p.39 of [16]) we can speak of the dual of a 3-connected
planar graph. We need the following lemma. Its proof, which we omit, follows
from using a result from [9].

Lemma 1. Let G be a 3-connected planar graph. Then G contains K2,r as
a contraction for some r ≥ 2 if and only if the dual of G contains Dr as a
subdivision.

By Lemma 1 it suffices to check if the dual of the 3-connected planar input
graph contains Dr as a subdivision for some r ≥ 2. We show how to solve this
problem in polynomial time for general graphs. In order to do so we need the next
lemma which gives a necessary condition for a graph G to be a yes-instance of this
problem. In its proof we use the following notation. For a path P = v1v2 . . . vp, we
write viPvj to denote the subpath vivi+1 . . . vj or vjPvi if we want to emphasize
that the subpath is to be traversed from vj to vi.

Lemma 2. Let v, w be two distinct vertices of a multigraph G such that there
exist four edge-disjoint v-w-paths in G. Then G contains a subdivision of Dr for
some r ≥ 2.

Proof. We prove the lemma by induction on |V (G)| + |E(G)|. Then we can
assume that G is the union of the four edge-disjoint v-w-paths. Let us call these
paths P1, P2, P3, and P4. If these four paths are vertex-disjoint (apart from v
and w) then they form a subdivision of D2. Hence, we may assume that there
exists at least one vertex of G not equal to v or w that belongs to more than one
of the four paths.

First suppose that there exists a vertex u that belongs to all four paths P1,
P2, P3 and P4. Let G′ be the graph consisting of the vertices and edges of the
four subpaths vP1u, vP2u, vP3u and vP4u. As G′ does not contain w, it holds
that |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|. By the induction hypothesis, G′, and
thus G, contains a subdivision of Dr for some r ≥ 2.

Now suppose that there exists a vertex u that belong to only three of the four
paths, say to P1, P2, and P3. Let G′ be the graph that consists of the vertices
and edges of the four paths uP1w, uP2w, uP3w and uP1vP4w. As G′ does not
contain an edge of vP2u we find that |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|. By
the induction hypothesis, G′, and thus G, contains a subdivision of Dr for some
r ≥ 2.

From now on assume that every inner vertex of every path Pi (i = 1, . . . , 4)
belongs to at most one other path Pj (j 6= i). We say that two different paths



Pi and Pj cross in a vertex u if u is an inner vertex of both Pi and Pj . Suppose
Pi and Pj cross in some other vertex u′ as well. Then we say that u is crossed
before u′ by Pi and Pj if u is an inner vertex of both vPiu

′ and vPju
′.

We now prove the following claim.

Claim 1. If Pi and Pj (i 6= j) cross in both u and u′ then we may assume without
loss of generality that either u is crossed before u′ or u′ is crossed before u.

We prove Claim 1 as follows. Suppose that u is not crossed before u′ by Pi and Pj

and similarly that u′ is not crossed before u by Pi and Pj . Then we may assume
without loss of generality that u is an inner vertex of vPiu

′ and that u′ is an
inner vertex of vPju. See Figure 3 for an example of this situation. However, in
that case we can replace Pi and Pj by the paths vPiuPjw and vPju

′Piw. These
two paths together with the two unused original paths form a subgraph G′ of G
with fewer edges than G (as for instance no edge on uPiu

′ belongs to G′). We
apply the induction hypothesis on G′. This completes the proof of Claim 1.

v w

u

u′

Pi

Pj

Fig. 3. The paths Pi and Pj where u is not crossed before u′ by Pi and Pj and similarly
u′ is not crossed before u by Pj and Pi. Note that the paths Pi and Pj may have more
common vertices, but for clarify this is not been shown.

We need Claim 1 to prove the following claim, which is crucial for our proof.

Claim 2. We may assume without loss of generality that there exists a vertex
u /∈ {v, w} that is on two paths Pi and Pj (i 6= j) so that every inner vertex of
vPiu and vPju has degree 2 in G.

We prove Claim 2 as follows. By our assumption there exists at least one vertex
in G that is on two paths. Let s /∈ {v, w} be such a vertex, say s belongs to P1

and P2. Assume without los of generality that every inner vertex of vP1s has
degree 2. Then, by Claim 1, we find that P1 and P2 do not cross in an inner
vertex of vP2s.

If every inner vertex of vP1s and vP2s has degree 2 in G then the claim has
been proven. Suppose otherwise, namely that there exists an inner vertex s′ of
vP1s or vP2s whose degree in G is larger than 2, say s′ belongs to vP2s. As P1

does not cross vP2s, we find that s′ must belong to P3 or to P4. Choose s′ in
such a way that every inner vertex of vP2s

′ has degree 2 in G. Assume without
loss of generality that s′ belongs to P3.

If every inner vertex of vP3s
′ has degree 2 then the claim has been proven

(as every inner vertex of vP2s
′ has degree 2 as well). Suppose otherwise, namely

that there exists an inner vertex s′′ of vP3s
′ whose degree in G is larger than 2.



Choose s′′ in such a way that every inner vertex of vP3s
′′ has degree 2 in G. By

Claim 1, no inner vertex of vP3s
′ belongs to P2, so s′′ does not lie on P2. This

means that s′′ belongs either to P1 or to P4.

v w

s

s′

s′′

P1

P2

P3

Fig. 4. The paths P1, P2 and P3 where s belongs to P1 and P2, s′ belongs to vP2s and
P3 and s′′ belongs to vP3s

′ and P1.

Suppose s′′ belongs to P1. See Figure 4 for an example of this situation. As
every inner vertex of vP1s has degree 2, we find that s is an inner vertex of
vP1s

′′. However, we can now replace P1, P2 and P3 by the three paths vP1sP2w,
vP2s

′P3w and vP3s
′′P1w. These three paths form, together with P4, a subgraph

of G with fewer edges than G (for instance, no edge of sP1s
′′ belongs to G′). We

can apply the induction hypothesis on this subgraph. Hence we may assume that
s′′ does not belong to P1.

From the above we conclude that s′′ belongs to P4. See Figure 5 for an
example of this situation. We consider the paths vP3s

′′ and vP4s
′′. If every inner

vertex of vP4s
′′ has degree 2 in G then we have proven Claim 2 (recall that every

inner vertex of vP3s
′′ has degree 2 in G as well). Suppose otherwise, namely that

there exists an inner vertex t of vP4s
′′ whose degree in G is larger than 2. Choose

t in such a way that every inner vertex of vP4t has degree 2 in G. By Claim 1
we find that t is not on P3. If t is on P2 we can use a similar replacement of
three paths by three new paths as before that enables us to apply the induction
hypothesis. Hence, we find that t belongs to P1.

v w

s

s′

s′′

t

P1

P2

P3

P4

Fig. 5. The paths P1, P2, P3 and P4 where s belongs to P1 and P2, s′ belongs to vP2s
and P3, s′′ belongs to vP3s

′ and P4 and t belongs to vP4s
′′ and P1.

As every inner vertex of vP1s has degree 2 in G we find that s is an inner
vertex of vP1t. Then we take the four paths vP1sP2w, vP2s

′P3w, vP3s
′′P4w and

vP4tP1w. These four paths form a subgraph G′ of G with fewer edges than G



(as for instance G′ contains no edge from sP1t). We can apply the induction
hypothesis on G′. Hence we may assume that such a vertex t cannot exist. Thus
we have found the desired vertex and subpaths, namely s′′ with subpaths vP3s

′′

and vP4s
′′. This completes the proof of Claim 2.

By Claim 2 we may assume without loss of generality that there exists a vertex u
that belongs to P1 and P2 such that every inner vertex of vP1u and vP2u has
degree 2. Let G∗ be the graph obtained from G by contracting all edges of
vP1u and vP2u (recall that we remove loops and multiple edges). Let u∗ be the
new vertex to which all the edges were contracted. Notice that there are four
edge-disjoint u∗-w-paths in G∗. Then, by the induction hypothesis, G∗ contains a
subdivision H of Dr for some r ≥ 2. If u∗ does not belong to H, then G contains
H as well and we would have proven the lemma. Assume that u∗ belongs to H.

First suppose that u∗ is a subdivision vertex of H in G∗. Let u∗ have neigh-
bours s1 and s2 in H. Take a shortest path Q from s1 to s2 in the subgraph of G
induced by s1, s2 and the vertices of vP1u and vP2u. This results in a graph H ′,
which is a subgraph of G and which is a subdivision of Dr as well.

Now suppose that u∗ is a branch vertex of H in G∗, say u∗ corresponds
to z ∈ V (Dr). Note that any vertex in Dr has one neighbour if r = 2 and
two neighbours if r ≥ 3. We let s and t be the two branch vertices of H that
correspond to the neighbours of z in Dr (note that s = t if r = 2). Let s1 and
s2 be the neighbours of u∗ on the two paths from u∗ to s, respectively, in H.
Similarly, let t1 and t2 be the neighbours of u∗ on the two paths from u∗ to t,
respectively, in H. Note that, as G is a multigraph, it is possible that s1 = s2 = s
and t1 = t2 = t.

Recall that every internal vertex on vP1u and on vP2u has degree 2 in G. As
u is an inner vertex of P1 and P2 but not of P3 and P4, it has degree 4 in G. As
G is the union of P1, P2, P3 and P4, we find that v has degree 4 as well. Then,
after uncontracting u∗, we have without loss of generality one of the following
two situations in G. First, u is adjacent to s1 and s2 and v is adjacent to t1 and
t2. In that case u and v become branch vertices of a subdivision of Dr+1 in G (to
which the internal vertices on the paths uP1v and uP2v belong as well, namely
as subdivision vertices). Second, u is adjacent to s1 and t1, whereas v is adjacent
to s2 and t2. Then u and v become subdivision vertices of a subdivision of Dr in
G (and we do not use the internal vertices on the paths uP1v and uP2v). This
completes the proof of the lemma. ut

Lemma 2 gives us the following result.

Theorem 2. It is possible to find in O(mn2) time whether a graph G with n
vertices and m edges contains Dr as a subdivision for some r ≥ 2.

Proof. Let G be a graph with m edges. We check for every pair of vertices s and
t whether G contains four edge-disjoint paths between them. We can do this via
a standard reduction to the maximum flow problem. Replace each edge uv by
the arcs (u, v) and (v, u). Give each arc capacity 1. Introduce a new vertex s′

and an arc (s′, s) with capacity 4. Also introduce a new vertex t′ and an arc



(t, t′) with capacity 4. Check if there exists an (s′, t′)-flow of value 4 by using the
Ford-Fulkerson algorithm. As the maximum value of an (s′, t′)-flow is at most 4,
this costs O(m) time per pair, so O(mn2) time in total.

If there exists a pair s, t in G with four edge-disjoint paths between them then
G has a subdivision of Dr, for some r ≥ 2, by Lemma 2. If not then we find that
G has no subdivision of any Dr (r ≥ 2) as any subdivision of Dr immediately
yields four edge-disjoint paths between two vertices and our algorithm would
have detected this. ut

We are now ready to state our main result.

Theorem 3. Minimal Disconnected Cut can be solved in O(n3) time on
3-connected planar graphs with n vertices.

Proof. Let G be a 3-connected planar graph with n vertices. By Theorem 1 it
suffices to check whether K2,r ≤c G for some r ≥ 2. By Lemma 1, the latter is
equivalent to checking whether the dual of G, which we denote by G∗, contains
Dr as a subdivision for some r ≥ 2. To find G∗ we first embed G in the plane
using the linear-time algorithm from Mohar [15]. As the number of edges in a
planar graph is linear in the number of vertices, G∗ has O(n) vertices and O(n)
edges and can be constructed in O(n) time. We are left to apply Theorem 2. ut

3 Hardness

We show the following result, which complements Theorem 3. We omit its proof.

Theorem 4. Minimal Disconnected Cut is NP-complete for the class of
2-connected planar graphs.

A cut S in a graph G is a minimal connected cut if G[S] is connected and
for all u ∈ S we have that G[(V \ S) ∪ {u}] is connected. We call the problem of
testing whether a graph a minimal connected cut of size at least k the Minimal
Connected Cut(k) problem. By modifying the proof of Theorem 4 we obtain
the following result (proof omitted).

Theorem 5. Minimal Connected Cut(3) is NP-complete even for the class
of 2-connected apex graphs.

We cannot use the reduction in the proof of Theorem 5 to get NP-hardness
for Minimal Connected Cut(1), the reason being that the gadget graph
constructed in our omitted proof contains minimal disconnected cuts of size 2.

4 Conclusions

We proved that Minimal Disconnected Cut is NP-complete for 2-connected
planar graphs and polynomial-time solve for planar graphs that are 3-connected.
Our proof technique for the latter result was based on translating the problem to



a dual problem, namely the existence of a subdivision of Dr for some r, for which
we obtained a polynomial-time algorithm even for general graphs. One can also
solve the problem of determining whether a graph contains Dr as a subdivision
for some fixed integer r by using the algorithm of Grohe, Kawarabayashi, Marx,
and Wollan [6] which tests in cubic time, for any fixed graph H, whether a graph
contains H as a subdivision. However, when r is part of the input we can show
the following result via a reduction from Hamilton Cycle (proof omitted).

Theorem 6. The problem of deciding whether a graph contains the graph Dr as
a subdivision is NP-complete if r is part of the input.
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