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ABSTRACT

We present a novel approach to scene classification using
combined  audio  signal  and  video  image  features  and
compare  this  methodology  to  scene  classification  results
using  each  modality  in  isolation.  Each  modality  is
represented using summary features, namely Mel-frequency
Cepstral  Coefficients  (audio)  and  Scale  Invariant  Feature
Transform (SIFT) (video) within a multi-resolution bag-of-
features  model.  Uniquely,  we extend the classical  bag-of-
words approach over both audio and video feature spaces,
whereby we introduce the concept of compressive sensing
as a novel methodology for multi-modal fusion via audio-
visual  feature  dimensionality  reduction.  We  perform
evaluation  over  a  range  of  environments  showing
performance that is both comparable to the state of the art
(86%,  over  ten  scene  classes)  and  invariant  to  a  ten-fold
dimensionality  reduction  within  the  audio-visual  feature
space using our compressive representation approach.

Index  Terms—  multi-resolution,  bag  of  words,  MFCC,
compressed sensing, audio-visual, multi-modal

1. INTRODUCTION

Automating  the  process  of  scene  understanding  and
classification is a significantly large challenge [1][2]. Many
prior works have attempted to replicate human abilities for
this  task,  such  that  actions  dependent  upon  scene
understanding  can  maximise  the  chances  of  achieving  a
given  goal.  Notably,  machine  perception  tasks  are  often
considered  in  a  single  modality,  whereas  we  as  humans
rarely  rely  on  a  single  sensing  modality,  performing  the
same tasks  within a contextual  bias  [3][4].  In  addition to
emulating human abilities our work is also motivated by the
fact  that  the  most  readily available  mobile  devices  today,
have both audio and visual signal capture capabilities. As a
result,  employing  the  second  available  source  of  sensing
seems a viable solution in many practical situations.

Prior work on scene classification uses a range of both
audio  [2][5],  visual  [1] and  multi-modal  feature
classification  [6][7].  An existing approach  to  environment
and event classification presented by [2] is purely based on
audio signal. Here  the  authors  employ the Mel-frequency
Cepstral  Coefficients  (MFCC)  for  audio  description,
performing  classification  over  ten  environment  classes
{office, lecture, bus, urban driving, railway station, beach,
bar, laundrette,  football  match,  city  centre street}. In  this
work  [2] a  Hidden Markov Model  trained  with  a  Viterbi

algorithm  achieves  a  per  class  accuracy  between  75%  -
100% on this ten class task.

The  recent  visual  scene  classification  work  of  [1]
proposes  the  highly  successful  multi-resolution  bag-of-
features  model. This  improves  significantly  over  the
classical  bag-of-words  approaches  for  scene  classification
[8][9] achieving an accuracy of ~84%. Notably, earlier work
does not take into account a spatial layout of features  [10]
[11].  The  approach  of  [1] overcomes  this  weakness  by
extracting visual features from a spatial layout of horizontal
and  vertical  image  partitions,  concatenating  the  resulting
feature codewords within a multi-resolution framework and
achieving  classification  via  a  Support  Vector  Machine
(SVM).  By  contrast,  scene  classification  work  using
combined audio and visual features is in its infancy  [5][6]
[7].

In prior audio-visual classification work a notable task
is  that  of  emotion classification  [6].  In  this  work  [6] the
model proposed is responsible for assigning a set of audio-
visual  features  to  a  number  of  emotion  classes  with  the
unsolved problem identified as feature selection. The overall
accuracy achieved for this method was ~85%. Among other
successful  audio-visual  classification  is  a  framework
presented by Bicego et. al. [7]. Their study focuses on event
recognition  for  surveillance  purposes,  achieving  very
satisfactory results of ~89%. Studies developed in this area
are  presented  in  [5],  where  authors  survey  the  recent
advances in audio-visual affect recognition [12][13].

In contrast to earlier work upon this topic [5][6][7] ,we
propose an approach combining the use of multi-resolution
bag-of-visual-words  [1] and  the  highly  successful  MFCC
audio  features  [2] in  a  novel  multi-modal  classification
approach. Recognising the sparseness of this classification
feature space  [1][2], we propose a novel methodology that
utilises  the  representative  power  of  compressive  sensing
[14] to facilitate the derivation of  truly fused  audio-visual
words over which we then apply both SVM and Decision
Forest  [15] classification  techniques.  As  the  goal  of  our
approach  is  general  and  unconstrained  audio-visual  scene
classification,  it  is  different  from  earlier  feature
concatenation  techniques,  such  as  the  Audio-Video
Concurrence (AVC) utilised in [7] or Affective Audio-Visual
Words  employed  in  [6].  In  contrast  to  these  and  earlier
feature  concatenation  based approaches we show that  our
compressive audio-visual feature representation facilitates a
significant reduction in dimensionality with only marginal
impact on  the resulting classification performance. 



2. AUDIO-VISUAL WORDS

Within our proposed framework we firstly outline our audio
and visual feature representations.

2.1 Visual Word Representation

Our  visual  words  are  extracted  from  images  using  the
seminal  Scale-Invariant  Feature  Transform (SIFT)  [16] to
obtain feature descriptors applied within the multi-resolution
bag-of-features  technique  of  [1].  All  images  are  pre-
processed,  prior  to  the  SIFT  feature  extraction  using  the
real-time saliency detection approach of  [17]. This reduces
overall scene complexity and aids the later derivation of a
sparse visual scene representation.

In order to generate visual  scene descriptors we first
generate  a  vocabulary  of  visual  codewords  following the
classical bag-of-visual-features approach. This is performed
by first, sub-sampling each training image, over a given set,
by  a  factor  of  two  and  performing  dense  SIFT  feature
extraction  over  an  image  pyramid  (depth  =  3,  sampling
grid: 40x30) [1]. In this work we use a training set of 1300
images  to  generate  this  fixed  length  vocabulary  of
codewords via k-means clustering [18].

Based  on  this  visual  vocabulary  we  then  generate
visual scene descriptors, based on SIFT features detected in
horizontal and vertical partitions across the image following
[1] (illustrated  in  Fig.  1).  A visual  codeword  is  created
redundantly for each vertical  and horizontal partition over
multiple scales, s (s = 3). For each level in this pyramid, the
original  image  is  partitioned  into  eight  horizontal  and
vertical subregions for s=1, four subregions for s=2 and two
subregions for  s=3,  thus producing 28 image partitions in
total (Fig.  1.). The visual codewords extracted from all of
these partitions are then concatenated to produce our global
28k dimension multi-resolution visual descriptor (Fig. 1).

Fig. 1. Contribution of each resolution image to the image representation

In  this  work  we  consider  the  use  of  hard-assignment  in
visual  word construction as it  results most frequently in a
sparse  signal  distribution  within  the  codeword
representation and this is  known to be most suited to the
compressive sensing derived feature combination approach
which we employ (Section 2.3).  Notably, our approach to
visual descriptor construction differs from the original work
of [1] in terms of classification methodology applied. Here,
we  intend  to  use  global  classification  upon  this  image
descriptor  as  opposed  to  independent  classification,
performed at each of pyramid resolution, as per  [1]. 

2.2. Audio Word Representation

We represent the audio signal utilising the widely used Mel-
frequency  Cepstral  Coefficients  (MFCC)  [19].  MFCC
extraction is comprised over a number of basic steps. Firstly,
the audio signal is divided into small, overlapping frames,
with  the  approximate  frame  length  of  20ms,  allowing
consideration of them as a periodic signal. Furthermore, in
order to avoid spectral leakage caused via discontinuities at
each  end of  the frame,  we multiply an audio signal  by a
widely used Hamming window function [20]. Secondly, we
compute  the  power  spectrum  of  each  windowed  frame
which  results  in  short-time  Fourier  transform  [21].
Subsequently,  each  frame  is  filtered  in  a  Mel-frequency
domain using a set of triangular, overlapping filters with a
variable  width  increasing  with  frequency  scale  and  thus
reflecting  human  audio  sensitivity  [22].  Following  this
operation, the resulting energy values for frequencies within
the same Mel-filterbank are summed, resulting in a set of n
values,  where  n is  a  number  of  Mel-filterbanks.
Subsequently,  we  calculate  the  discrete  cosine  transform
over this set, treating it as a signal. Finally, the amplitude of
the resulting spectrum creates a set of desired MFCC [23],
equal  in  size  to  the  number  of  Mel-filterbanks  used.  Our
representation is based on the use of a significant training
set of audio samples over which the MFCC sets associated
to each extracted frame are clustered using k-means. The set
of  resulting  clusters  is  then  used  as  an  audio-word
vocabulary, akin to the visual-word vocabulary of Section
2.1,  for  describing  unseen  MFCC examples  derived  from
frames associated with single audio sample.

  2.3. Multi-modal Feature Representation

The most significant challenge in multi-modal classification
is  a  derivation an effective  feature  combination or  fusion
methodology.  The simple  concatenation  of  multi-modal
feature  representations  is  a  commonplace  [5][6].  By
contrast, here we look to the use of a compressive sensing
derived  methodology  [14][24] as  an  approach  for  the
combinatorial mapping of a multi-modal feature space into a
single  compressed  multi-dimensional  representation.  Prior
work in  compressive  sensing  [14] has  shown that  such a
combination  can  be  formed  with  minimal  loss  of  the
underlying  information  contained  within  the  larger  signal
and  this  differs  significantly  from  other  dimensionality
reduction schemes such as PCA or LDA [14].

Fig. 2. Multi-modal fusion via compressive sensing projection



The motivation for this approach comes from the fact that
the resulting codeword representation in both modalities is
significantly  sparse.  A compressive  sensing  methodology
provides  a  solution  for  this  issue,  by  multiplying  the
concatenated  representations  of  image  and  audio  training
data samples  by a random projection matrix  [14].  This is
illustrated in Fig. 2, where we can see the projection matrix
of size  M x N,  where  N is  the length of the audio-visual
sample representation, and  M is the length of the resulting
compressed audio-visual feature representation. This results
in  a  compressed  vector  representation  (y),  which  is  in
significantly lower dimension (M) and dense in nature [14].

3. CLASSIFICATION

In this study classification is performed via Support Vector
Machine utilising the Radial  Basis Function (RBF) kernel
[25] and Decision Forests [26]. SVM training is carried out
using grid search over the kernel parameter space  [27] and
similarly  Decision  Forests  are  evaluated  over  a  range  of
parameters (at most 100 trees, max. depth = 25, min. amount
of samples per leaf node = 5 and max. categories = 15). The
evaluation  of  each  classification  approach  is  determined
using random sub-set  based cross-validation over a set  of
2000  samples  (set  size  =  1000)  [28].  Training  data  is
generated  from  previously  prepared  audio-visual  samples
over a set of ten environment classes: {university (outdoor),
university  (indoor),  canteen,  city  centre,  railway  station,
motorway, footpath, shopping centre, open-air market, bus}.
Furthermore,  we  evaluate  the  use  of  the  standard,
uncompressed  feature-space  for  this  environment
classification  task  using  the  concatenated  audio-visual
descriptors (Section. 2.3) in their original dimension, N. Our
evaluation is performed both with the proposed joint audio-
visual  feature  representation  (Section  2.3)  and  for
comparison  each  of  the  uncompressed  audio  and  visual
feature representations separately (Sections 2.1 / 2.2).

All data samples have been collected using a 640 x 480
image  resolution  (MPEG-2  compression).  The
corresponding,  synchronised  audio signal  is  captured as  a
16-bit uncompressed data (48 kHz sampling). Based on the
data gathered, we generated four pairs of vocabularies with
visual vocabularies containing kv = {100, 400, 700, 1000}
words and with audio vocabulary size ka = 28kv (due to the
image partitioning approach of Section 2.1). This results in
audio and visual feature descriptors of the same dimension
that contribute equally to same amount of vector elements to
the  concatenated  audio-visual  feature  descriptor
(dimensionality = 28ka + 28kv = 56kv) prior to compression. 

4. RESULTS

In  our  first  experiment,  we  investigate  the  classification
effectiveness  for  all  four  codebook  pairs  generated  (kv =
{100, 400, 700, 1000}, ka = 28kv) for audio-visual  feature
descriptor  generation.  Audio-visual  feature  fusion  was
performed  using  compressive  sensing  with  M=3000 as
outlined (Section 2.3). For reference we perform the scene

classification results using just the visual descriptor (Fig. 3)
and  audio  descriptor  (Fig.  4).  The  results  of  this  are
presented in Fig. 3/4 where we can see that classification via
the SVM classifier maintains an overall  accuracy between
84% to 87%, regardless of codebook size, outperforming the
Decision  Forest  approach.  The  Decision  Forest  is  clearly
better suited to the examples that use shorter codebooks and
this observation is present throughout Fig. 3/4. As we can
see, the multi-modal scene classification using the combined
and compressed audio-visual word descriptor (Fig.  5,  M =
3000) outperforms visual modality (Fig. 3) using  the SVM
classifier and performs very similarly to the performance of
the  uncompressed  audio  features  (if  not  marginally
outperforming them in some cases).

 Fig.  3.  Scene  classification  results  using  visual  feature  descriptors

(uncompressed SIFT feature derived codeword, Section 2.1)

Fig.  4.  Scene  classification  results  using  audio  feature  descriptors

(uncompressed MFCC feature derived codeword, Section 2.2)

Fig.  5. Scene classification  results  using audio-visual  feature  descriptors

(compressed audio-visual combined codeword, M = 3000)

Fig.  6.  Classification  results  obtained  using  varying  levels  of  combined

audio-visual descriptor compression (M) (Section 2.3)

Audio-visual descriptor length (M), k
v
=100, k

a
=2800



From these results we can see that any negative impact on
accuracy  from  using  a  compressed  audio-visual  bag-of-
words feature representation (Fig. 5) is marginal compared
to  uncompressed  audio  (Fig.  4)  or  non-existent
uncompressed  visual  features  (Fig.  5,  which  actually
perform worse). Comparison of the visual feature case with
and  without  visual  saliency  pre-processing  (Section  2.1)
resulted in an uniform drop in accuracy (~5%), illustrating
the importance of this step within the process.

Fig.  7.  Confusion  matrix  for  compressed  audio-visual  descriptor  based
classification using the SVM classifier (kv = 400; M = 3000).

Fig.  8.  Confusion  matrix  for  uncompressed  audio-visual  descriptor
classification using the SVM classifier.

Furthermore, we perform a set of classification tests using a
variable compression ratio, M, of the combined audio-visual
descriptor  (Fig,  6).  As can  be seen from the results  from
both  of  the  classification  approaches  (Fig.  6),  applying
higher  levels  of  compression  (i.e.  M <  3000)  does  not
adversely affect  overall  classification performance.  On the
contrary,  we  observe  almost  the  best  performance  when
using  the  highest  compression  level  (M=500,  SVM,

normalised  accuracy  =  86.3%).  This  represents  a
dimensionality reduction from 56kv (kv = 100) to  M=500
(ten-fold)  with  only  a  marginal  effect  on  classification
performance  (comparing  Fig.  6  to  Fig.  3/4).  Comparable
results are  obtained for  M = 3000   across  a  variety of  k
values (number of clusters). Furthermore we observe a mild
increase  in  classification  performance  as  dimensionality
reduction is increased (i.e. M, 3000 → 500 in Fig. 6). These
results (Fig. 3 - Fig. 5) illustrate that the use of a combined
yet compressed audio-visual descriptor (Fig. 5) has marginal
impact on effective scene classification compared to the use
of  either  visual  or  audio  feature  descriptors  in  isolation.
Moreover,  the  average  accuracy  achieved  when  using
uncompressed features (84.2%, over all values of  k) is 2%
lower than the best result achieved using compressed data
(86.3%,  M = 500, SVM, Fig.  6).  The negligible effect  on
classification observed  despite  the significant  reduction in
dimensionality  leads  to  a  notable  gain  in  computational
performance  and  bandwidth/storage  requirements  of
classification models  (Fig. 3 – Fig. 6).

Additionally,  we examine the per  class  accuracy via
the use of confusion matrices presented in Fig. 7 / Fig. 8.
Here we can see that the accuracy across the environment
classes varies significantly. Using compressed audio-visual
descriptors  (Fig.  7),  we  see  that  all  of  the  classes  score
above  60%  successful  detection  whereas  when  using
uncompressed  audio-visual  descriptors  have  two  weak
classes (city centre, university outside) scoring below 60%
(Fig.  8).  This  indicates  the  potentially  stronger
discriminative power of the compressed audio-visual feature
representation  which  impacts  upon marginal  classification
cases.  Future work will investigate this in greater detail.

5. CONCLUSIONS

We present a unique approach for audio-visual environment
sensing combing state-of-the art methods for both audio and
visual  feature  extraction  (multi-resolution  bag-of-features
model,  Mel-frequency  Cepstral  Coefficients  (MFCC)  [2]
[21]) via a novel multi-modal fusion technique inspired by
compressive sensing. 

Our  evaluation  shows  marginal  impact  on
classification performance despite a ten-fold reduction in the
original audio-visual feature space dimensionality. 
 Moreover,  we  have  shown  that  classical  bag-of-words
approach can be successfully employed for MFCC feature
representation in addition to conventional visual descriptors.
Our  evaluation  has  shown  that  this  concept  produces
successful  environmental  classification  with  an  accuracy
comparable  to  the  state  of  the  (~86%)  [6][7] that
outperforms  either  of  the  audio  or  visual  modality  in
isolation in some cases.

This  performance  is  achieved  within  a  significantly
lower  dimensional  space  of  audio-visual  descriptors  and
thus  at  a  lower  computational  cost.  Future  work  will
consider  a  more  in-depth  investigation  of  chosen  MFCC
within a given audio frame as extending MFCC feature set
can notably increase classification accuracy [19].
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