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Abstract: We introduce simple codes and fast visualization tools for knotted structures in molecules and neural networks.
Knots, links and more general knotted graphs are studied up to an ambient isotopy in Euclidean 3-space. A
knotted graph can be represented by a plane diagram or by an abstract Gauss code. First we recognize in
linear time if an abstract Gauss code represents an actual graph embedded in 3-space. Second we design a
fast algorithm for drawing any knotted graph in the 3-page book, which is a union of 3 half-planes along their
common boundary line. The running time of our drawing algorithm is linear in the length of a Gauss code
of a given graph. Three-page embeddings provide simple linear codes of knotted graphs so that the isotopy
problem for all graphs in 3-space completely reduces to a word problem in finitely presented semigroups.

1 MOTIVATION AND PROBLEMS

Knotted structures are common in nature. For ex-
ample, microscopic lines in liquid-crystals (Tkalec et
al., 2011) or Reeb graphs of complex shapes (Biasotti
et al., 2008) can be knotted. Figure 1 shows a neuron
and a microscopic scan of a chemical. These struc-
tures are usually huge and more complicated than
simple closed curves studied in classical knot theory.

Pictures of knots can be attractive for humans, but
robots would prefer a smaller form or codes represent-
ing the same knotted object. Such codes are needed
for automatic analysis, however a final output is im-
portant to visualize. We summarize our requirements
for processing knotted structures in 3 problems.

• Modeling: find a suitable mathematical model for
analyzing all possible knotted structures in 3-space.

• Encoding: represent any knotted structure by its
simple and small code in a computer’s memory.

• Visualization: design a fast algorithm to visualize
knotted structures represented by their abstract codes.

Figure 1: Neurons and molecules have branching points.

Our suggested model for knotted structures is a
possibly disconnected graph with branching vertices
and multiple edges that might be knotted in 3-space,
see Definition 1. For instance, any knot in 3-space is
a non-self-intersecting closed curve, which is a topo-
logical circle without any branching points.

Knots live in 3-space, but it is easier to draw their
planar projections with double crossings. Such plane
diagrams are usually represented by Gauss codes that
specify the order of overcrossings and undercrossings
along a knot. We extend classical Gauss codes of
knots to arbitrary knotted graphs in Definition 4.

Figure 2: Diagrams of the trefoil, Hopf link, knotted graph.

A random code (of a required form) may not rep-
resent a real knotted graph, because a planar draw-
ing may need extra crossings. We solve this planarity
problem for Gauss codes of knotted graphs in Theo-
rem 9. Namely, our algorithm checks if a Gauss code
is realized by an actual graph in 3-space with a linear
time complexity in the length of the given code.

Starting from any realizable Gauss code, we draw
a corresponding graph in the 3-page book, see Theo-
rem 12. This book consists of 3 half-planes attached
along their common boundary α called the spine.



Figure 3: Straighten a red path α to build a 3-page embedding of a knotted graph K5 ⊂ R3 from its plane diagram.

It is well-known that any graph can be topolog-
ically embedded in the 3-page book (Bernhart and
Kainen, 1979, Theorem 5.4). However, an embedded
graph may cross many times the spine of the book. It
is only known that O(|E| log |V |) spine crossings suf-
fice for embedding a graph with |V | vertices and |E|
edges (Enomoto and Miyauchi, 1999).

We largely strengthen the former result by design-
ing a linear time algorithm to continuously move any
graph embedded in 3-space to a graph within 3 pages.
We review other related work throughout the paper.
Figure 3 is a high-level illustration of our fast algo-
rithm for a knotted graph K5 ⊂ R3. Appendix con-
tains more details on the following advantages of 3-
page embeddings over traditional plane diagrams.

• Theorem 13 encodes 3-page embeddings of all
knotted graphs by easy codes that form a semigroup.

• Theorem 14 decomposes any topological equiv-
alence between 3-page embeddings of graphs into
finitely many local relations between 3-page codes.

2 KEY CONCEPTS ON GRAPHS

A homeomorphism between spaces is a bijection
that is continuous in both directions. An embedding
of one space into another is a continuous function
f : X → Y that induces a homeomorphism between
X and its image f (X) ⊂ Y . We study embeddings
of undirected finite graphs, possibly disconnected and
with loops or multiple edges. The concept of a knot-
ted graph extends the classical theory of knots to arbi-
trary graphs considered up to isotopy in 3-space R3.

Definition 1. A knotted graph G ⊂ R3 is an embed-
ding of a finite graph G. An ambient isotopy between
knotted graphs G,H ⊂ R3 is a continuous family of
homeomorphisms ft : R3 → R3, t ∈ [0,1] such that
f0 = id is the identity map on R3 and f1(G) = H.

An isotopy between directed graphs is similarly
defined and should respect directions of edges. If the

underlying graph G is a circle S1, then a knotted graph
is a knot. If G is a disjoint union of several circles,
then G ⊂ R3 is a link. A link isotopic to a union of
disjoint circles in R2 is called trivial. The simplest
non-trivial knot is the trefoil in Figure 2. The simplest
non-trivial link is the Hopf link in Figure 2.

If an ambient isotopy keeps a small neighborhood
of each vertex of a knotted graph in one moving plane,
the graph is called rigid. Rigid knotted graphs with
vertices of only degree 4 are sometimes called singu-
lar knots, because they consist of one or several cir-
cles intersecting each other at singular points.
Definition 2. A plane diagram D of a knotted graph
G ⊂ R3 is the image of G under a projection R3 →
R2 from 3-space R3 to a horizontal plane R2. In a
general position we assume that all intersections of
a plane diagram D are double crossings so that the
crossings and the projections of all vertices of G are
distinct. For each crossing of D, we specify one of two
intersecting arcs that crosses over another arc.

The key problem in knot theory is to efficiently
classify knots and graphs up to ambient isotopy. The
first natural step is to reduce the dimension from 3 to
2. Any isotopy of knotted graphs can be realized by
finitely many moves on plane diagrams. The follow-
ing result extends Reidemeister’s theorem for knots.
Theorem 3. (Kauffman, 1989) Two plane diagrams
represent isotopic knotted graphs in 3-space R3 if and
only if the diagrams can be obtained from each other
by an isotopy in R2 and finitely many Reidemeister
moves in Figure 4. (The move R5 is only for rigid
graphs, the move R5′ is only for non-rigid graphs.)

The move R4 is shown only for a degree 4 vertex,
moves for other degrees are similar. The move R5
turns a small neighborhood of a vertex in the plane
upside down. So a cyclic order of edges at vertices is
preserved in rigid graphs. The move R5′ can arbitrar-
ily reorder all edges at a vertex. Theorem 3 formally
includes all symmetric images of moves in Figure 4.

The Reidemeister moves or their analogs on Gauss
codes are not local as they involve distant parts of a
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Figure 4: Reidemeister moves on diagrams of graphs.

graph or a Gauss code. This non-locality is a key ob-
stacle for simplifying codes of knots. That is why
we later consider 3-page embeddings that allow only
finitely many local moves, see Theorem 12.

3 CODES OF KNOTTED GRAPHS

A standard way to encode a plane diagram of a
knot is to write down labels of crossings in a Gauss
code. The Gauss code of a link has several words
corresponding to all link components. We extend this
classical concept to arbitrary knotted graphs G⊂ R3.
If a component of G is a circle without vertices, we
add a base point (a degree 2 vertex) to this circle.

Definition 4. Let D ⊂ R2 be a plane diagram of a
knotted graph G with vertices A,B,C, . . . We fix direc-
tions of all edges of G and arbitrarily label all cross-
ings of D by 1,2, . . . ,n. Then each crossing of D has
the sign locally defined in Figure 5. The Gauss code
of D consists of all words WAB associated to directed
edges from a vertex A to a vertex B as follows:

• the word WAB starts with A, finishes with B and has
the labels of all crossings in the directed edge AB;

• if AB goes under another edge at a crossing i with a
sign ε ∈ {±} as in Figure 5, we add the superscript ε

to i and get the symbol iε with the sign ε in WAB.

The neighbors (vertices or crossings) of each vertex A
are clockwisely ordered in R2, so the code also spec-
ifies a cyclic order of all symbols adjacent to A.

If a graph G is a knot, Definition 4 requires at least
one degree 2 vertex (a base point) on G. For simplic-
ity, we may ignore degree 2 vertices in this case and
consider the corresponding single word cyclically.

Figure 5: Local rules for signs of crossings with examples.

In Figure 5 the diagram of the blue trefoil has
the cyclic Gauss code 12+31+23+. The diagram
of the red knotted graph has the Gauss code W =
{AB, A1−2A, B12−B}with the cyclic orders of neigh-
bors at both vertices A : (B,2,1−), B : (A,1,2−).

A Gauss code of any undirected graph depends
on a choice of extra degree 2 vertices, directions of
edges, an order of crossings. If a plane diagram of a
knotted graph corresponds to a Gauss code, then this
diagram is unique up to isotopy in the plane. We give
an explicit construction in the proof of Theorem 9.

Here is a naive approach to drawing a plane dia-
gram represented by a Gauss-like code W . We can
put vertices A,B,C, . . . and crossings 1,2, . . . ,n at ar-
bitrary points in R2. Since the code W specifies the
cyclic order of edges at each vertex A in Definition 4,
we may draw short arcs around A in a correct cyclic
order. Now we should connect all vertices and cross-
ings that have adjacent positions in the code W by
continuous non-intersecting arcs in the plane.

The last step fails for the word 12+1+2 that does
not encode any plane diagram. Indeed, if we try to
draw a closed curve with 2 self-intersections as re-
quired by 12+1+2, we have to add a 3rd intersection
(a virtual crossing) to make the curve closed. This ob-
stacle can be resolved if we draw a diagram on a torus
as in Figure 6, because we can hide a virtual crossing
by adding a handle. Another approach is to embrace
virtual crossings, which has led to virtual knots.

If we study properly embedded graphs, we need to
recognize planarity of Gauss codes, namely determine
if a Gauss code represents a plane diagram of a knot-
ted graph. So we first introduce abstract Gauss codes
in Definition 5 and then recognize their planarity in
the general case of knotted graphs in Theorem 9.

Definition 5. Let the alphabet consist of m letters
A,B,C, . . . and 3n symbols i, i+, i− for i = 1, . . . ,n. An
abstract Gauss code is a set of words such that

• the first and last symbols of each word are letters,

• the set of symbols in all words (apart from the initial
and final letters) contains, for each i = 1, . . . ,n, the
symbol i and exactly one symbol from the pair i+, i−.
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Each of the m letters defines a cyclic order of all sym-
bols adjacent to this letter. The length |W | is the total
length of all words minus the number of words.

The Gauss code of any plane diagram of a knot-
ted graph G from Definition 4 satisfies the conditions
above. Indeed, the letters A,B,C, . . . denote (projec-
tions of) vertices of G. Then every edge contains
crossings labeled by i, i+ or i− for i = 1, . . . ,n.

Figure 6: A diagram with 1 virtual, 2 usual crossings.

The clockwise order of edges around any vertex
A in the plane diagram of G in R2 defines the cyclic
order of vertices and crossings adjacent to A. If a
component of G is a circle, we may remove its ver-
tices of degree 2 and write the remaining symbols as
in the cyclic code 12+31+23+ of the trefoil in Fig-
ure 5. The total number of these symbols equals the
doubled number of crossings.

4 PLANARITY OF GAUSS CODES

The planarity problem is to determine whether it
is possible to draw a plane diagram represented by
an abstract Gauss code W . To avoid potential self-
intersections, we shall draw a diagram not in the
plane, but in the Gauss surface S(W ) defined below.

First we introduce the abstract graph G(W ) de-
scribing the adjacency relations between symbols in
a Gauss code W . Then we attach disks to G(W ) to get
the surface S(W ) containing a required diagram with-
out self-intersections. The criterion of planarity will
check if the surface S(W ) is a topological sphere S2.
Definition 6. Any abstract Gauss code W with m
letters A,B, . . . and 2n symbols from {i, i+, i− | i =
1, . . . ,n} gives rise to the Gauss graph G(W ) with
m+n vertices labeled by A,B, . . . and 1,2, . . . ,n.

We connect vertices p,q by a single edge in G(W )
if p,q (possibly with signs) are adjacent symbols in
W. Below when we travel along an edge from p to
q, we record our path by (p,q)+ if q follows p in the
code W (in the cyclic order), otherwise by (p,q)−.

We define unoriented cycles in the graph G(W ) by
going along edges and turning at vertices according
to the following rules illustrated in Figure 7:

• if we came to one of the vertices A,B,C, . . . from
its neighbor, then we turn to the next neighbor in the
clockwise order specified in the Gauss code W;

• at each vertex labeled by i ∈ {1, . . . ,n} we turn to
the next edge by one of the rules below for a unique
possible choice of δ ∈ {+,−} and both ε ∈ {+,−}

(p, i)+→ (iδ,q)δ, (p, i)−→ (iδ,q)−δ,

(p, i+)ε→ (i,q)−ε, (p, i−)ε→ (i,q)ε.

We stop traversing cycles when every edge was passed
once in each direction. The Gauss surface S(W ) is
obtained from G(W ) by gluing a disk to each cycle.

The number of edges in the graph G(W ) equals
the length |W | of the code W . The rules for traversing
cycles in Definition 6 geometrically mean that at each
vertex or crossing we turn left to a unique edge and
can pass every edge exactly once in each direction.
Hence the Gauss surface of any abstract Gauss code
is a compact orientable surface without boundary.

Lemma 7. For the Gauss code W of any plane dia-
gram of a knotted graph G ⊂ R3, the Gauss surface
S(W ) is homeomorphic to a topological sphere S2.

Proof. We assume that the given diagram D is con-
tained in a sphere S2 instead of a plane R2. Then the
Gauss graph G(W ) can be identified with the diagram
D, though G(W ) was introduced as an abstract graph
not embedded into any space. When we traverse the
cycles in D = G(W ) from Definition 6, we pass over
the boundaries of all connected components of S2−D.
Indeed, each time we turn left in the diagram D ⊂ S2

according to the geometric rules in Figure 7. Hence
the Gauss surface S(W ) can be identified with the
sphere S2 containing the diagram D = G(W ).

Example 8. We construct the Gauss surface of the
abstract Gauss code W = 12+1+2, whose diagram
with one virtual crossing is in Figure 8. For simplicity,
we removed the degree 2 vertex from the circle and
consider the word 12+1+2 in the cyclic order.

Then 4 pairs 12+, 2+1+, 1+2, 21 of adjacent sym-
bols in the code W lead to the graph G(W ) whose 2
vertices with labels 1,2 are connected by 4 edges with
labels (1,2+), (2+,1+), (1+,2), (2,1) in Figure 8.
Recall that the edges labeled by (2,1) and (2+,1+)
meet at a non-avoidable virtual crossing in the plane,
but the abstract graph G(W ) has only 2 vertices.

If we start traveling from the edge (1,2+)+ in
the same direction as in W, the next edge should
be (2,1+)− by the rule (p, i+)ε → (i,q)−ε, where
p = 1, i = 2, ε =+ uniquely determine the next sym-
bol q = 1+ from the code W (going from 2 in the
opposite direction). After the second edge (2,1+)−
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Figure 7: A geometric interpretation of the ‘turning-left’ rules for traversing cycles in the Gauss graph G(W ).

we return to the first edge (1,2+)+ by the same rule
(p, i+)ε→ (i,q)−ε for p = 2, i = 1, ε =−, q = 2+.

Figure 8: Two red dashed cycles in G(W ) for W = 12+1+2.

So the 1st cycle consists of 2 edges (12+)+
and (2,1+)−. The 2nd cycle consists of 6
edges (1+,2)+→ (2+,1+)+→ (1,2)−→ (2+,1)−→
(1+,2+)−→ (2,1)+. Both cycles of G(W ) are shown
by red dashed closed curves in Figure 8. The result-
ing Gauss surface S(W ) with 2 vertices, 4 edges, 2
faces has the Euler characteristic χ = 2− 4+ 2 = 0
and should be a torus as expected from Figure 6.

The Euler characteristic of a surface subdivided
by a graph with |V | vertices and |E| edges into |F |
faces (topological disks) is defined as χ = |V |− |E|+
|F | and is invariant up to a homeomorphism (a bijec-
tion continuous in both directions).

Any orientable connected compact surface of a
genus g (the number of handles) and b boundary com-
ponents (circles) has χ = 2− 2g− b ≤ 2. Hence a
sphere S2 with χ(S2) = 2 is detectable by the Euler
characteristic among connected compact surfaces.

Theorem 9 extends (Kurlin, 2008, Algorithm 1.4)
from links to arbitrary knotted graphs.

Theorem 9. Given an abstract Gauss code W of a
length |W |, an algorithm of time complexity O(|W |)
can determine if the given Gauss code W represents a
plane diagram of a knotted graph G⊂ R3.

Proof. The Gauss surface S(W ) of any abstract Gauss
code W contains the diagram D encoded by W due to
the geometric interpretation of the rules in Figure 7.
This surface has the maximum Euler characteristic χ

among all orientable connected compact surfaces S
that contain the diagram D and have no boundary.

Indeed, after cutting the underlying graph of the
diagram D ⊂ S, the surface S splits into several com-
ponents. The Euler characteristic of S is maximal
when all these components are disks as in the Gauss
surface. The disk has χ = 1, which is maximal among
all compact surfaces whose boundary is a circle.

To decide the planarity of W , it remains to deter-
mine if the Gauss surface S(W ) is a sphere S2, which
is detectable by the Euler characteristic χ = 2 in the
class of all orientable connected compact surfaces S
without boundary. For computing the Euler charac-
teristic χ, we use the Gauss graph G(W ), which splits
S(W ) into topological disks by Definition 6.

Namely, S(W ) has m+ n vertices, |W | edges and
the number of faces equal to the number of cycles.
We count all cycles in G(W ) in time O(|W |) by a dou-
ble traversal of W according to the rules in Figure 7.
Hence in time O(|W |) we compute χ = m+n−|W |+
#(cycles) and determine if the Gauss surface S(W ) is
homeomorphic to a topological sphere S2.
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Figure 9: A path α through vertices of the non-hamiltonian maximum planar graph meets any edge at most once

5 Embedding a Graph in 3 Pages

The input of our algorithm for drawing an embed-
ding in 3 pages should be a knotted graph or its plane
diagram, which is usually represented on a computer
by a Gauss code. Even for knots an abstract Gauss
code may not represent a closed curve in 3-space.
That is why we first solved the planarity problem for
Gauss codes of knotted graphs in Theorem 9.

If we know that a given Gauss code represents a
plane diagram D of a knotted graph G, our next step
in Theorem 11 is to draw the diagram D in a 2-page
book as defined below. After that we upgrade this
topological 2-page embedding of D to a 3-page em-
bedding of G in linear time, see Theorem 12.

Definition 10. The k-page book consists of k half-
planes with a common boundary line α called the
spine of the book. An embedding of an undirected
graph G into the k-page book is topological if the in-
tersection of G with the spine α is finite and includes
all vertices of G. A bend of an edge e⊂G is any inte-
rior point p of e such that p ∈ α. If every edge of an
embedded graph G is contained in a single page, the
k-page book embedding of G is combinatorial.

A graph D is planar if D can be embedded in R2.
Any undirected planar graph has a combinatorial 4-
page embedding (Yannakakis, 1989). Figure 9 shows
a planar graph that can not be combinatorially em-
bedded into 2 pages (Bernhart and Kainen, 1979, sec-
tion 5). Any topological 2-page embedding of this
graph will have extra bends where edges intersect the
spine. The linear time algorithm below guarantees at
most one bend per edge for any planar graph.

Theorem 11. (Di Giacomo et al., 2005, Theorem 1)
Given a planar undirected graph D⊂R2 with |V | ver-
tices, an algorithm of linear time complexity O(|V |)
can draw a topological embedding of the graph D in
the 2-page book with at most one bend per edge.

Two more pictures in Figure 9 illustrate the key
idea how we can construct a non-self-intersecting
path α that passes through each vertex once and inter-
sects each edge at most once. By an isotopic deforma-
tion of R2, the path α can be converted into a straight

spine, which splits the plane into 2 pages. Since all
vertices and crossings of D are in the spine α, we get
a required topological 2-page embedding of D.

We are not going to minimize the number of bends
of edges in a 2-page embedding of a plane diagram
D, because we shall construct 3-page embeddings of
original knotted graphs with a linear number O(|W |)
of total bends in the length of a Gauss code W .

Theorem 12. Given an abstract Gauss code W, an
algorithm of time complexity O(|W |) determines if W
represents a plane diagram of a knotted graph G⊂R3

and then draws a topological 3-page embedding of a
graph H isotopic to G. Moreover, the graph H has at
most 8|W | intersections with the spine of the book.

Proof. We first apply the linear time algorithm from
Theorem 9 to determine if the code W represents a
plane diagram D of a knotted graph G. If yes, we
draw a 2-page embedding of the diagram D ⊂ R2 in
linear time using the algorithm from Theorem 11.

At every crossing in the diagram D, we mark a
short red arc that crosses over another arc in D. The
centers of all these marked arcs are all crossings of D,
which are already in the straight spine α of the 2-page
book. We may slightly deform the embedding of D
by pushing the marked red arcs into the spine α, see
typical cases in the first 5 pictures of Figure 10 where
a crossing of D leads to 3 intersections with α.

If the undercrossing arc was in only one page, we
first make an additional intersection so that the de-
formed undercrossing arc goes from one page to an-
other and back, see the last 5 pictures of Figure 10
where a crossing leads to 4 intersections with α.

Now we push all marked red arcs into the extra
3rd page attached along α above the diagram D. So
we have upgraded the 2-page embedding of D to a 3-
page embedding of a knotted graph H isotopic to the
original graph G, see Fig. 12, 13.

We need a constant time per crossing, so O(|W |)
in total, for a 3-page embedding of H. Since the
diagram D has |W | edges, the 2-page embedding of
D with at most one bend per edge has at most 2|W |
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Figure 10: Upgrading crossings to 3-page embeddings

points in the spine α. Each crossing of D is replaced
by at most 4 intersections with the spine α in a 3-page
embedding of H. The total number of points in the
intersection of H and the spine α is at most 8|W |.

We remind how to encode 3-page embeddings of
all knotted graphs by words in a simple alphabet.
Since edges with vertices of degree 1 can be easily un-
knotted by isotopy in 3-space, for simplicity we con-
sider below only graphs without degree 1 vertices.

To explain the 3-page encoding, let us deform any
3-page embedding so that all arcs are monotonically
projected to the spine α. Then the whole embedding
can be uniquely reconstructed by its thin neighbor-
hood around the spine α. Namely, if we know only
directions of arcs going from points in the spine, we
can uniquely join these arcs in each of 3 pages. Hence
we can encode any 3-page embedding by the list of
local embeddings at all intersections in the spine α.

Theorem 13. (Kurlin, 2007, Theorem 1.6a) Any 3-
page embedding of a knotted graph G with vertices up
to degree n can be encoded by a word in the alphabet
consisting of the letters ai,bi,ci,di and xk,i for each
degree k = 3, . . . ,n, where i = 0,1,2, see Fig. 11.

Fig. 11 shows 12 local embeddings ai,bi,ci,di, i∈

Z3 = {0,1,2}, that are sufficient for encoding any 3-
page embeddings of knots and links. The notation ai
emphasizes that the embeddings ai can be obtained
from each other by a rotation around the spine α.

For encoding graphs in Theorem 13, we can make
sure that at each vertex the spine separates one or
two arcs from others.Then only 3 local embeddings
are enough for each degree, see 3 neighborhoods x3,0,
x3,1, x3,2 of a degree 3 vertex in Fig. 11.

The 3-page embedding K5 ⊂ R3 in Fig. 3
can be represented by the code w = a1d1
(a1b1x4,1)

2(a1d1x4,1)d1(x4,1d1c1)(x4,1b1c1)d2c1c2.

6 DISCUSSION AND PROBLEMS

We now discuss our results in the light of a huge
gap between real-life experiments and pure mathe-
matics. Experimental data are usually given in the
form of unstructured and noisy clouds of points. If
we have only 2D images as in Figure 1, then we also
need to extract a knotted structure in a suitable form.

Pure mathematicians have developed deep theo-
ries how to classify complicated geometric objects in-
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Figure 11: Local 3-page embeddings for the generators of the semigroups from Theorem 14.

cluding knots. However, all mathematical algorithms
start from ideal models, say a closed curve given by
continuous functions or a polygonal curve given by a
sequence of points connected by straight edges.

Figure 12: Hopf link, its Gauss code, a 3-page embedding

The key open challenge is to convert any un-
structured experimental data into an ideal theoreti-
cal model that can be rigorously analyzed by exist-
ing mathematical methods. The first advance in this
direction is computing the fundamental group of a
knot complement from a point cloud in (Brendel et
al., 2015). We state open problems relating practice
and theory for knotted graphs. We are open to collab-
oration on these problems and related projects.

1. Algorithmically produce a Gauss diagram of a knot
given by a sequence of discrete points in 3-space R3.

2. Let a link of n components be given as an un-
ordered union of m ≥ 2n open arcs (or sequences of
points). How can we ‘correctly’ join corresponding
endpoints of the arcs to form n closed curves in R3?

3. When drawing pictures on a tablet, a few intersect-
ing curves can be represented by several sequences
of 2D points sampled along the curves. Under what
conditions on the curves and sample, can we quickly
reconstruct the curves using only the sample?

Figure 13: Trefoils, Gauss codes, 3-page embeddings

4. Design a fast algorithm to convert an unstructured
3D point cloud sampled around an unknown knotted
structure into a Gauss code W of a knotted graph.

5. Design a robust algorithm to convert a 2D image
of an unknown knotted graph into a Gauss code W .

Figure 14: Hopf graph, its Gauss code, a 3-page embedding

Our current work on visualizing Gauss codes is
an important step in the hard problems above. First
we may try to recognize small patches of vertices and
crossings in a 2D image of a knotted graph, but after
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that we should combine them in a Gauss codes whose
planarity can be quickly checked by Theorem 9.

Second if we need to visualize any noisy cloud
sampled from an unknown knot K⊂R3, we may draw
a knot isotopic to K using its Gauss code and Theo-
rem 12. Even more importantly we often wish to get
a simplified (minimal) version of a knot.

The state-of-the-art simplification algo-
rithm for recognizing trivial knots available at
http://www.javaview.de/services/knots is based on
3-page embeddings. We remind theoretical argu-
ments for extending this 3-page approach to graphs
in Appendix and state more problems below.

6. Design a simplification algorithm to untangle dia-
grams of 3D graphs isotopic to planar graphs.

7. Extend our algorithm for drawing graphs in 3 pages
to drawing 2-dimensional surfaces in a universal 3D
polyhedron from (Kearton and Kurlin, 2008).

8. Compute topological invariants of a knotted graph
G ⊂ R3 starting from its Gauss code, say the funda-
mental group of the graph complement R3−G.

9. Use the computed invariants to build a database
of isotopy classes of knotted graphs similarly to the
Knot Atlas at http://katlas.math.toronto.edu.

10. Define a kernel (Schölkopf and Smola, 2002)
on point clouds representing knotted graphs so that
one can use tools of machine learning for automatic
recognition of real-life knotted structures in 3D.

Algorithms from Theorems 9 and 12 will be available
on author’s webpage http://kurlin.org. We thank all
reviewers for their helpful suggestions and EPSRC for
funding the author’s secondment at Microsoft.
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APPENDIX: 3-PAGE SEMIGROUPS

The following result completely reduces the topo-
logical classification of spatial graphs up to isotopy in
3-space to a word problem in some semigroups.

Theorem 14. (Kurlin, 2007, Theorems 1.6 and 1.7)
There is a finitely presented semigroup whose all cen-
tral elements are in a 1-1 correspondence with all iso-
topy classes of knotted graphs with vertices of degree
up to n. There is a linear time algorithm to determine
if an element belongs to the center of the semigroup.

So two knotted graphs G,H ⊂ R3 are isotopic in
3-space if and only if their corresponding central ele-
ments wG,wH are equal in the semigroup. A stronger
result in (Kearton and Kurlin, 2008) says that all iso-
topies between 3-page embeddings are realizable in a
3-dimensional polyhedron (a hexabasic book).

More formally, there are two slightly different
semigroups: RSGn for rigid spatial graphs with ver-
tices up to degree n and NSGn for non-rigid graphs.
Both semigroups have 12 generators ai,bi,ci,di, i ∈
{0,1,2}, and 3(n− 2) generators for vertices up to
degree n, namely 3 generators for each degree from
3 to n, see Fig. 11. The empty word is the unit and
ai,ci,xk,i are not invertible. In the case of links for
n = 2, the semigroup has 48 relations (1)–(4) below,
where i ∈ Z3 = {0,1,2} is considered modulo 3.
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(1) d0d1d2 = 1 and bidi = 1 = dibi;

(2) ai = ai+1di−1, bi = ai−1ci+1,
ci = bi−1ci+1, di = ai+1ci−1;

(3) w(dici) = (dici)w for w ∈ { ci+1, bidi+1di };

(4) uv = vu, where u ∈ { aibi, bi−1didi−1bi }
and v ∈ { ai+1, bi+1, ci+1, bidi+1di }.

Figure 15: Relations (1) in the semigroup of Theorem 14.

One of the 7 relations in (1) is superfluous as it fol-
lows from the remaining 6. The generators ai,bi,ci,d2
can be expressed only in terms of d0,d1, but the result-
ing relations between d0,d1 will be longer. All defin-
ing relations of the semigroups represent elementary
isotopies between 3-page embeddings, see typical ex-
amples for relations (1)–(4) in Figures 15–18.

Figure 16: Relations (2) in the semigroup of Theorem 14.

For knotted graphs with vertices of only degree 3,
any non-rigid isotopy can be made rigid, because we
can keep 3 short arcs at any vertex in a moving plane.
Hence both semigroups for rigid and non-rigid iso-
topies from Theorem 14 are the same for n = 3. In
this case the extra relations in addition to (1)-(4) are
(5)–(9), see (Kurlin, 2001) and (Kurlin, 2007):

(5) x3,i−1 = di−1x3,idi+1;

(6) x3,ibi(d2
i d2

i+1d2
i−1) = (didi+1di−1)x3,ibi;

(7) x3,idi = ai(x3,idi)ci, bix3,ibi = ai(bix3,ibi)ci;

(8) ux3,i+1 = x3,i+1u for any word u from the set
{ aibi, dici, x3,ibi, bi−1didi−1bi };

(9) (x3,ibi)v = v(x3,ibi)v for any word v from the set
{ ai+1, bi+1, ci+1, bidi+1di }.

Knotted graphs that have only vertices of de-
gree 4 and are considered up to rigid isotopy are often
called singular knots. Each singular point remains a
transversal intersection of two arcs during a rigid iso-
topy, so the cyclic order of all arcs at any degree 4
vertex is invariant. The semigroup of Theorem 14 for
singular knots has 15 generators ai,bi,ci,di,x4,i, rela-
tions (1)–(4) above and relations (10)–(14) below, see
(Kurlin and Vershinin, 2004) and (Kurlin, 2007):

(10) x4,i−1 = bi+1x4,idi+1;

(11) (dix4,ibi)(d2
i d2

i+1d2
i−1) = (d2

i d2
i+1d2

i−1)(dix4,ibi);

(12) dix4,idi = ai(dix4,idi)ci, bix4,ibi = ai(bix4,ibi)ci;

(13) wx4,i+1 = x4,i+1w for any word w from the set
{ aibi, dici, dix4,ibi, bi−1didi−1bi };

(14) (dix4,ibi)v = v(dix4,ibi)v for any word v from the
set { ai+1, bi+1, ci+1, bidi+1di }.

The hard part of Theorem 14 says that any isotopy
between graphs decomposes into finitely many ele-
mentary isotopies involving a small part of a 3-page
code. This is the main advantage of the 3-page en-
coding over plane diagrams and Gauss codes. Indeed,
Reidemeister moves on plane diagrams in Fig. 4 and
their analogues on Gauss codes are not local.

Figure 17: Relations (3) in the semigroup of Theorem 14.

The linear time algorithm for detecting a central
element w checks if the arcs corresponding to all let-
ters of w properly meet each other in every page to
form an embedding of a graph without hanging edges.
For example, the letter a2 doesn’t encode any knotted
graph, but a2c2 does, because the arcs of a2 and c2
meet and form a closed curve in pages 0 and 1.

The 3-page code of a knotted graph commutes
with any other element w in the semigroups from The-
orem 14. For instance, a trivial knot has the code a2c2
and can be isotopically moved in R3 to another side
of the 3-page embedding represented by the word w.
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Figure 18: Relations (4) in the semigroup of Theorem 14.

Figure 19: Relations (5)-(6) in the semigroup of Theorem 14.

Figure 20: Relations (7) in the semigroup of Theorem 14.

Figure 21: Relations (8) in the semigroup of Theorem 14.

Figure 22: Relations (9) in the semigroup of Theorem 14.

Figure 23: Relations (10)-(11) in the semigroup of Theorem 14.

11



Figure 24: Relations (12) in the semigroup of Theorem 14.

Figure 25: Relations (13) in the semigroup of Theorem 14.

Figure 26: Relations (14) in the semigroup of Theorem 14.
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