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Abstract
We investigate the problem of modifying a graph into a connected graph in which the degree
of each vertex satisfies a prescribed parity constraint. Let ea, ed and vd denote the operations
edge addition, edge deletion and vertex deletion respectively. For any S ⊆ {ea, ed, vd}, we define
Connected Degree Parity Editing(S) (CDPE(S)) to be the problem that takes as input a
graph G, an integer k and a function δ : V (G)→ {0, 1}, and asks whether G can be modified into
a connected graph H with dH(v) ≡ δ(v) (mod 2) for each v ∈ V (H), using at most k operations
from S. We prove that

if S = {ea} or S = {ea, ed}, then CDPE(S) can be solved in polynomial time;
if {vd} ⊆ S ⊆ {ea, ed, vd}, then CDPE(S) is NP-complete and W[1]-hard when parameterized
by k, even if δ ≡ 0.

Together with known results by Cai and Yang and by Cygan, Marx, Pilipczuk, Pilipczuk and
Schlotter, our results completely classify the classical and parameterized complexity of the
CDPE(S) problem for all S ⊆ {ea, ed, vd}. We obtain the same classification for a natural
variant of the CDPE(S) problem on directed graphs, where the target is a weakly connected
digraph in which the difference between the in- and out-degree of every vertex equals a prescribed
value.

As an important implication of our results, we obtain polynomial-time algorithms for Eu-
lerian Editing problem and its directed variant. To the best of our knowledge, the only other
natural non-trivial graph class H for which the H-Editing problem is known to be polynomial-
time solvable is the class of split graphs.
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1 Introduction

Graph modification problems play a central role in algorithmic graph theory, partly due to
the fact that they naturally arise in numerous practical applications. A graph modification
problem takes as input a graph G and an integer k, and asks whether G can be modified
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into a graph belonging to a prescribed graph class H, using at most k operations of a
certain type. The most common operations that are considered in this context are edge
additions (H-Completion), edge deletions (H-Edge Deletion), vertex deletions (H-
Vertex Deletion), and a combination of edge additions and edge deletions (H-Editing).
The intensive study of graph modification problems has produced a plethora of classical and
parameterized complexity results (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 19, 20]).

An undirected graph is Eulerian if it is connected and every vertex has even degree,
while a directed graph is Eulerian if it is strongly connected1 and balanced, i.e. the in-
degree of every vertex equals its out-degree. Eulerian graphs form a well-known graph
class both within algorithmic and structural graph theory. Several groups of authors have
investigated the problem of deciding whether a given graph can be made Eulerian using a
small number of operations. Boesch et al. [1] presented a polynomial-time algorithm for
Eulerian Completion, and Cai and Yang [4] showed that the problems Eulerian Vertex
Deletion and Eulerian Edge Deletion are NP-complete [4]. When parameterized by k,
it is known that Eulerian Vertex Deletion is W[1]-hard [4], while Eulerian Edge
Deletion is fixed-parameter tractable [7]. Cygan et al. [7] showed that the classical and
parameterized complexity results for Eulerian Vertex Deletion and Eulerian Edge
Deletion also hold for the directed variants of these problems.

Our Contribution. We generalize, extend and complement known results on graph modi-
fication problems dealing with Eulerian graphs and digraphs. The main contribution of
this paper consists of two non-trivial polynomial-time algorithms: one for solving the Eu-
lerian Editing problem, and one for solving the directed variant of this problem. Given
the aforementioned NP-completeness result for Eulerian Edge Deletion and the fact
that H-Editing is NP-complete for almost all natural graph classes H [2, 20], we find it
particularly interesting that Eulerian Editing turns out to be polynomial-time solvable.
To the best of our knowledge, the only other natural non-trivial graph class H for which
H-Editing is known to be polynomial-time solvable is the class of split graphs [13].

In fact, our polynomial-time algorithms are implications of two more general results. In
order to formally state these results, we need to introduce some terminology. Let ea, ed
and vd denote the operations edge addition, edge deletion and vertex deletion, respectively.
For any set S ⊆ {ea, ed, vd} and non-negative integer k, we say that a graph G can be
(S, k)-modified into a graph H if H can be obtained from G by using at most k operations
from S. We define the following problem for every S ⊆ {ea, ed, vd}:

CDPE(S): Connected Degree Parity Editing(S)
Instance: A graph G, an integer k and a function δ : V (G)→ {0, 1}.
Question: Can G be (S, k)-modified into a connected graph H with

dH(v) ≡ δ(v) (mod 2) for each v ∈ V (H)?

Inspired by the work of Cygan et al. [7] on directed Eulerian graphs, we also study a
natural directed variant of the CDBE(S) problem. Denoting the in- and out-degree of a
vertex v in a digraph G by d−G(v) and d+

G(v), respectively, we define the following problem
for every S ⊆ {ea, ed, vd}:

1 Replacing “strongly connected” by “weakly connected” yields an equivalent definition of Eulerian
digraphs, as it is well-known that a balanced digraph is strongly connected if and only it is weakly
connected (see e.g. [7]).
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Table 1 A summary of the results for CDPE(S) and CDBE(S). All results are new except
those for which a reference is given. The number of allowed operations k is the parameter in the
parameterized results, and if a parameterized result is stated, then the corresponding problem is
NP-complete.

S CDPE(S) CDBE(S)
ea, ed P P
ea P P
ed FPT [7] FPT [7]
vd W[1]-hard [4] W[1]-hard [7]
ea, vd W[1]-hard W[1]-hard
ed, vd W[1]-hard W[1]-hard
ea, ed, vd W[1]-hard W[1]-hard

CDBE(S): Connected Degree Balance Editing(S)
Instance: A digraph G, an integer k and a function δ : V (G)→ Z.
Question: Can G be (S, k)-modified into a weakly connected digraph H with

d+
H(v)− d−

H(v) = δ(v) for each v ∈ V (H)?

In Section 3, we prove that CDPE(S) can be solved in polynomial time when S = {ea}
and when S = {ea, ed}. The first of these two results extends the aforementioned polynomial-
time result by Boesch et al. [1] on Eulerian Completion and the second yields the first
polynomial-time algorithm for Eulerian Editing, as these problems are equivalent to
CDPE({ea}) and CDPE({ea, ed}), respectively, when we set δ ≡ 0. The complexity of the
problem drastically changes when vertex deletion is allowed: we prove that for every subset
S ⊆ {ea, ed, vd} with vd ∈ S, the CDPE(S) problem is NP-complete and W[1]-hard with
parameter k, even when δ ≡ 0. This complements results by Cai and Yang [4] stating that
CDPE(S) is NP-complete and W[1]-hard with parameter k when S = {vd} and δ ≡ 0 or
δ ≡ 1. Our results, together with the aforementioned results due to Cygan et al. [7]2 and
Cai and Yang [4], yield a complete classification of both the classical and the parameterized
complexity of CDPE(S) for all S ⊆ {ea, ed, vd}; see the middle column of Table 1.

In Section 4, we use different and more involved arguments to classify the classical and
parameterized complexity of the CDBE(S) problem for all S ⊆ {ea, ed, vd}. Interestingly,
the classification we obtain for CDBE(S) turns out to be identical to the one we obtained
for CDPE(S). In particular, our proof of the fact that CDBE(S) is polynomial-time
solvable when S = {ea} and S = {ea, ed} implies that the directed variants of Eulerian
Completion and Eulerian Editing are not significantly harder than their undirected
counterparts. All results on CDBE(S) are summarized in the right column of Table 1.

We would like to emphasize that there are no obvious hardness reductions between
the different problem variants. The parameter k in the problem definitions represents the
budget for all operations in total; adding a new operation to S may completely change the
problem, as there is no way of forbidding its use. Hence, our polynomial-time algorithms for
CDPE({ea, ed}) and CDBE({ea, ed}) do not generalize the polynomial-time algorithms for
CDPE({ea}) and CDBE({ea}), and as such require significantly different arguments. In

2 The FPT-results by Cygan et al. [7] only cover CDPE({ed}) and CDBE({ed}) when δ ≡ 0, but it can
easily be seen that their results carry over to CDPE({ed}) and CDBE({ed}) for any function δ.
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particular, our main result, stating that Eulerian Editing is polynomial-time solvable, is
not a generalization of the fact that Eulerian Completion is polynomial-time solvable and
stands in no relation to the FPT-result by Cygan et al. [7] for Eulerian Edge Deletion.

We end this section by mentioning two similar graph modification frameworks in the
literature that formed a direct motivation for the framework defined in this paper. Mathieson
and Szeider [17] considered the Degree Constraint Editing(S) problem, which is that
of testing whether a graph G can be k-modified into a graph H in which the degree of every
vertex belongs to some list associated with that vertex. They classified the parameterized
complexity of this problem for all S ⊆ {ea, ed, vd}. Golovach [11] performed a similar study
where the resulting graph must in addition be connected.

2 Preliminaries

We consider finite graphs G = (V,E) that may be undirected or directed; in the latter
case we will always call them digraphs. All our undirected graphs will be without loops or
multiple edges; in particular, this is the case for both the input and the output graph in
every undirected problem we consider. Similarly, for every directed problem that we consider,
we do not allow the input or output digraph to contain multiple arcs. In our proofs we will
also make use of directed multigraphs, which are digraphs that are permitted to have multiple
arcs.

We denote an edge between two vertices u and v in a graph by uv. We denote an arc
between two vertices u and v by (u, v), where u is the tail of (u, v) and v is the head. The
disjoint union of two graphs G1 and G2 is denoted G1 +G2. The complete graph on n vertices
is denoted Kn and the complete bipartite graph with classes of size s and t is denoted Ks,t.

Let G = (V,E) be a graph or a digraph. Throughout the paper we assume that n = |V |
and m = |E|. For U ⊆ V , we let G[U ] be the graph (digraph) with vertex set U and an edge
(arc) between two vertices u and v if and only if this is the case in G; we say that G[U ] is
induced by U . We write G−U = G[V \U ]. For E′ ⊆ E, we let G(E′) be the graph (digraph)
with edge (arc) set E′ whose vertex set consists of the end-vertices of the edges in E′; we say
that G(E′) is edge-induced by E′. Let S be a set of (ordered) pairs of vertices of G. We let
G− S be the graph (digraph) obtained by deleting all edges (arcs) of S ∩E from G, and we
let G+ S be the graph (digraph) obtained by adding all edges (arcs) of S \E to G. We may
write G− e or G+ e if S = {e}.

Let G = (V,E) be a graph. A component of G is a maximal connected subgraph of G.
The complement of G is the graph G = (V,E) with vertex set V and an edge between two
distinct vertices u and v if and only if uv /∈ E. A matching M in G is a set of edges, in
which no edge has a common end-vertex with some other edge. For a vertex v ∈ V , we
let NG(v) = {u | uv ∈ E} denote its (open) neighbourhood. The degree of v is denoted
dG(v) = |NG(v)|. The graph G is even if all its vertices have even degree, and it is Eulerian
if it is even and connected. We say that a set D ⊆ E is an edge cut in G if G is connected
but G−D is not. An edge cut of size 1 is called a bridge in G.

Let G = (V,E) be a digraph. If (u, v) is an arc, then (v, u) is the reverse of this arc. For
a subset F ⊆ E, we let FR = {(u, v)|(v, u) ∈ F} denote the set of arcs whose reverse is in F .
The underlying graph of G is the undirected graph with vertex set V where two vertices
u, v ∈ V are adjacent if and only if (u, v) or (v, u) is an arc in G. We say that G is (weakly)
connected if its underlying graph is connected. A component of G is a connected component
of its underlying graph. An arc a ∈ E is a bridge in G if it is a bridge in the underlying
graph of G. A vertex u is an in-neighbour or out-neighbour of a vertex v if (u, v) ∈ E or
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(v, u) ∈ E, respectively. Let N−G (v) = {u | (u, v) ∈ E} and N+
G (v) = {u | (v, u) ∈ E}, where

we call d−G(v) = |N−G (v)| and d+
G(v) = |N+

G (v)| the in-degree and out-degree of v, respectively.
A vertex v ∈ V is balanced if d+

G(v) = d−G(v). Recall that G is Eulerian if it is connected and
balanced, that is, the out-degree of every vertex is equal to its in-degree.

Let G = (V,E) be a graph and let T ⊆ V . A subset J ⊆ E is a T -join if the set of
odd-degree vertices in G(J) is precisely T . If G is connected and |T | is even then G has at
least one T -join. In Section 3 we need to find a minimum T -join, that is, one of minimum
size. We use the following result of Edmonds and Johnson [9] to do so.

I Lemma 1 ([9]). Let G = (V,E) be a graph, and let T ⊆ V . Then a minimum T -join (if
one exists) can be found in O(n3) time.

Lemma 1 was used by Cygan et al. [7] to solve H-Edge Deletion in polynomial time
when H is the class of even graphs. It would immediately yield a polynomial-time algorithm
for CDPE({ed}) if we dropped the connectivity condition.

We need a variant of Lemma 1 for digraphs in Section 4. Let G = (V,E) be a directed
multigraph and let f : T → Z be a function for some T ⊆ V . A multiset E′ ⊆ E with
T ⊆ V (G(E′)) is a directed f-join in G if the following two conditions hold: d+

G(E′)(v) −
d−G(E′)(v) = f(v) for every v ∈ T and d+

G(E′)(v)− d−G(E′)(v) = 0 for every v ∈ V (G(E′)) \ T .
A directed f -join is minimum if it has minimum size. The next lemma was used by Cygan
et al. [7] to solve H-Edge Deletion in polynomial time when H is the class of balanced
digraphs; it would also yield a polynomial-time algorithm for CDBE({ed}) if we dropped
the connectivity condition.

I Lemma 2 ([7]). Let G = (V,E) be a directed multigraph and f : T → Z be a func-
tion for some T ⊆ V . A minimum directed f-join F (if one exists) can be found in
O(nm logn log logm) time. Moreover, F consists of mutually arc-disjoint directed paths from
vertices u with f(u) > 0 to vertices v with f(v) < 0.

3 Connected Degree Parity Editing

We will show that CDPE(S) is polynomial-time solvable if S = {ea} or S = {ea, ed} and
that it is NP-complete and W[1]-hard with parameter k if vd ∈ S.

First, let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ, k) be an instance of CDPE(S) with G = (V,E).
Let A be a set of edges not in G, and let D be a set of edges in G, with D = ∅ if S = {ea}.
We say that (A,D) is a solution for (G, δ, k) if its size |A| + |D| ≤ k, the congruence
dH(u) ≡ δ(u) (mod 2) holds for every vertex u and the graph H = G+A−D is connected;
if H is not connected then (A,D) is a semi-solution for (G, δ, k). If S = {ea} we may denote
the solution by A rather than (A,D) (since D = ∅). We consider the optimization version
for CDPE(S). The input is a pair (G, δ), and we aim to find the minimum k such that
(G, δ, k) has a solution (if one exists). We call such a solution optimal and denote its size by
optS(G, δ). We say that a (semi)-solution for (G, δ, k) is also a (semi)-solution for (G, δ). If
(G, δ, k) has no solution for any value of k, then (G, δ) is a no-instance of CDPE(S) and
optS(G, δ) = +∞.

Let T = {v ∈ V | dG(v) 6≡ δ(v) (mod 2)}. Define GS = Kn if S = {ea, ed} and GS = G

if S = {ea}. Note that if S = {ea} then GS contains no edges of G, so in this case any T -join
in GS can only contain edges in E(G). The following key lemma is an easy observation.

I Lemma 3. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of CDPE(S) and A ⊆ E(G),
D ⊆ E(G). Then (A,D) is a semi-solution of CDPE(S) if and only if A ∪D is a T -join
in GS.
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We extend the result of Boesch et al. [1] for δ ≡ 0 to arbitrary δ. Our proof is based
around similar ideas but we also had to do some further analysis. The main difference in the
two proofs is the following. If δ ≡ 0 then none of the added edges in a solution will be a
bridge in the modified graph (as the number of vertices of odd degree in a graph is always
even). However this is no longer true for arbitrary δ and extra arguments are needed. We
omit the proof of our result.

I Theorem 4. Let S = {ea}. Then CDPE(S) can be solved in O(n3) time.

We are now ready to present the main result of this section. Recall that proving this
result requires significantly different arguments than the ones used in the proof of Theorem 4.
Let S = {ea, ed} and let (G, δ) be an instance of CDPE(S). If F is a T -join in GS = Kn,
let D = F ∩ E(G) and A = F \D. Then by Lemma 3, (A,D) is a semi-solution. Note that
if F is a minimum T -join in GS then it is a matching in which every vertex of T is incident
to precisely one edge of F , so |F | = 1

2 |T |. We will show how this allows us to calculate
optS(G, δ) directly from the structure of G, without having to find a T -join. We will also
show that there are only trivial no-instances for this problem.

I Theorem 5. Let S = {ea, ed}. Then CDPE(S) can be solved in O(n+m) time and an
optimal solution (if one exists) can be found in O(n3) time.

Proof. Let S = {ea, ed} and let (G, δ) be an instance of CDPE(S). By Lemma 3, we may
assume that |T | is even, otherwise (G, δ) is a no-instance. If G = K2 and T = V (G), or
G = K1 +K1 and T = ∅, then (G, δ) is a no-instance. If G = K2 and T = ∅ then, trivially,
optS(G, δ) = 0, and if G = K1 + K1 and T = V (G) then optS(G, δ) = 1. To avoid these
trivial instances, we therefore assume that G contains at least three vertices. Under these
assumptions we will show that optS(G, δ) is always finite and give exact formulas for the
value of optS(G, δ). Let p be the number of components of G that do not contain any vertex
of T and let q be the number of components of G that contain at least one vertex of T . We
prove the following series of statements:

optS(G, δ) = 0 if p = 1, q = 0,
optS(G, δ) = max{3, p} if p ≥ 2, q = 0,
optS(G, δ) = 1

2 |T |+ 1 if p = 0, q = 1, G[T ] = K1,r, for some r ≥ 1, and each edge of G[T ]
is a bridge of G,
optS(G, δ) = max{p+ q − 1, p+ 1

2 |T |} in all other cases.

Note that if p = 1, q = 0, then the first statement applies and the trivial solution (A,D) =
(∅, ∅) is optimal. We now consider the remaining three cases separately.

Case 1: p ≥ 2 and q = 0.
Then T = ∅, so by Lemma 3 for any semi-solution (A,D), every vertex in GS(A ∪D) must
have even degree in GS(A ∪D). In other words, every vertex of G must be incident to an
even number of edges in A ∪D. Since p ≥ 2, the graph G is disconnected, so any solution
(A,D) is non-empty. This means that GS(A ∪D) must contain a cycle, so optS(G, δ) ≥ 3 if
a solution exits. Suppose p = 2. As G has at least three vertices, it contains a component
containing an edge xy. Let z be a vertex in its other component. We set A = {xz, yz}
and D = {xy} to obtain a solution for (G, δ). Since |A|+ |D| = 3, this solution is optimal.
Suppose p ≥ 3. Since G+A−D must be connected for any solution (A,D), every component
in G must contain at least one vertex incident to an edge of A. By Lemma 3, this vertex
must be incident to an even number of edges of A ∪D, meaning that it must be incident to
at least two such edges. Therefore optS(G, δ) ≥ p. Indeed, if we choose vertices v1, . . . , vp,
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one from each component of G, then setting A = {v1v2, v2v3, . . . , vp−1vp, vpv1} and D = ∅
gives a solution of size p, which is therefore optimal. This concludes Case 1.

Case 2: p = 0, q = 1, G[T ] = K1,r for some r ≥ 1 and each edge of G[T ] is a bridge of G.
Then G is connected. Let v0 be the central vertex of the star and let v1, . . . , vr be the
leaves. By Lemma 3, in any semi-solution (A,D), every vertex of T must be incident to
an odd number of edges in A ∪D, so optS(G, δ) ≥ 1

2 |T |. Suppose (A,D) is a semi-solution
of size |A| + |D| = 1

2 |T |. Then A ∪ D must be a matching with each edge joining a pair
of vertices of T . However, then v0vi ∈ A ∪ D for some i. Since v0vi ∈ E(G), we must
have v0vi ∈ D. However, since v0vi is a bridge of G, v0 and vi must then be in different
components of G + A − D, so G + A − D is not connected and (A,D) is not a solution.
Therefore optS(G, δ) ≥ 1

2 |T |+ 1.
Next we show how to find a solution of size 1

2 |T |+ 1. Since |T | is even, r must be odd.
First suppose that r = 1. Since G is connected and v0v1 is a bridge, G \ {v0v1} has exactly
two components. Since G contains at least three vertices, one of these components contains
another vertex x. Without loss of generality assume xv0 ∈ E(G), in which case xv1 /∈ E(G).
Then setting A = {xv1} andD = {xv0} gives a solution of size |A|+|D| = 2 = 1

2 |T |+1, so this
solution is optimal. Now suppose r ≥ 3. Let A = {v1v2, v2v3} ∪ {v2iv2i+1 | 2 ≤ i ≤ 1

2 (r− 1)}
and D = {v0v2}. Then (A,D) is a semi-solution and since v0, . . . , vr are all in the same
component ofG+A−D, we find that (A,D) is a solution. Since |A|+|D| = 2+ 1

2 (r−1)−1+1 =
1
2 |T |+ 1, this solution is optimal. This concludes Case 2.

Case 3: q ≥ 1 and Case 2 does not hold.
Then T 6= ∅. Let G1, . . . , Gp be the components of G without vertices of T and let G′ =
G− V (G1) ∪ · · · ∪ V (Gp). Note that G′ = G if p = 0 and that G′ is not the empty graph, as
q > 0. Choose vi ∈ V (Gi) for i ∈ {1, . . . , p}.

We first show that optS(G, δ) ≥ max{p+ q− 1, p+ 1
2 |T |}. Since G has p+ q components,

any solution (A,D) must contain at least p+ q − 1 edges in A to ensure that G+A−D is
connected, so optS(G, δ) ≥ p+ q − 1. If (A,D) is a solution then every component Gi must
contain a vertex incident to some edge in A. By Lemma 3, this vertex must be incident to an
even number of edges of A ∪D, meaning that it must be incident to at least two such edges.
By Lemma 3, every vertex of T must be incident to some edge in A ∪D. Therefore A ∪D
must contain at least p+ 1

2 |T | edges, so optS(G, δ) ≥ p+ 1
2 |T |.

We now show how to find a solution of size max{p+ q− 1, p+ 1
2 |T |}. We start by finding

a maximum matching M in G[T ]. Let U be the set of vertices in T that are not incident to
any edge in M . We divide the argument into two cases, depending on the size of U .

Case 3a: U = ∅.
In this case, by Lemma 3, setting A = M and D = ∅ gives a semi-solution. Now suppose
that uv, u′v′ ∈M , such that uv is not a bridge in G+M and the vertices u and u′ are in
different components of G + M . Let M ′ = M \ {uv, u′v′} ∪ {u′v, uv′}. Then M ′ is also a
maximum matching in G[T ]. However, G+M ′ has one component less than G+M . Indeed,
since uv is not a bridge in G+M , the vertices u, u′, v, v′ must all be in the same component
of G + M ′. Therefore, if such edges uv, u′v′ ∈ M exist, we replace M by M ′. We do this
exhaustively until no further such pairs of edges exist. At this point either every edge in M
is a bridge in G+M or every edge in M is in the same component of G+M . We consider
these possibilities separately.

First suppose that every edge in M is a bridge in G + M . Choose uv ∈ M and let
Q1, . . . , Qk be the components of G + M , with u, v ∈ V (Q1). Note that since every edge
in M is a bridge, k = p + q − |M |. Now let xi ∈ V (Qi) for i ∈ {2, . . . , k}. Let D = ∅
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and let A = M if k = 1 and A = M \ {uv} ∪ {ux2, x2x3, . . . , xk−1xk, xkv} otherwise. Now
every vertex in G + A − D has the same degree parity as in G + M , so (A,D) is a semi-
solution by Lemma 3. The graph G + A − D is connected, so (A,D) is a solution. As
|A|+ |D| = |M | − 1 + p+ q− |M |+ 0 = p+ q− 1, we find that (A,D) is an optimal solution.

Now suppose that every edge in M is in the same component of G + M . Note that
G1, . . . , Gp are the remaining components of G+M . Choose uv ∈ M . Let D = ∅ and let
A = M if p = 0 and A = M \ {uv} ∪ {uv1, v1v2, . . . , vp−1vp, vpv} otherwise. Then every
vertex in G+A−D has the same parity as in G+M and G+A−D is connected, so by
Lemma 3 (A,D) is a solution. Since |A|+ |D| = 1

2 |T | − 1 + p+ 1 = p+ 1
2 |T |, this solution is

optimal. This concludes Case 3a.

Case 3b: U 6= ∅.
Note that z = |U | must be even since |T | is even. Every pair of vertices in U must be
non-adjacent in G, as otherwise M would not be maximum. Therefore G[U ] is a clique. Let
U = {u1, . . . , uz}.

We claim that Q = G′ +M is connected. Clearly every vertex of the clique U must be in
the same component of Q = G′+M . Suppose for contradiction that Q1 is a component of Q
that does not contain U . Then Q1 must contain some edge w1w2 ∈M . However, in this case
M ′ = M \ {w1w2} ∪ {u1w1, u2w2} is a larger matching in G[T ] than M , which contradicts
the maximality of M . Therefore Q is connected.

Let M ′ = {u1u2, u3u4, . . . , uz−1uz}. If z ≥ 4 then since U is a clique, G′+M −M ′ is con-
nected. If p = 0 set A = M and D = M ′. If p > 0 set A = M ∪{u1v1, v1v2, . . . , vp−1vp, vpu2}
and D = M ′ \ {u1u2}. Then G+A−D is connected, so (A,D) is a solution by Lemma 3.
This solution has size |A|+ |D| = p+ 1

2 |T |, so it is optimal.
Now suppose that z ≤ 3. Then z = 2. If p > 0, let A = M∪{u1v1, v1v2, . . . , vp−1vp, vpu2}

and D = ∅. Then G+A−D is connected, so (A,D) is a solution by Lemma 3. This solution
has size |A|+ |D| = p+ 1

2 |T |, so it is optimal. Assume that p = 0, so G+M contains only
one component. If u1u2 is not a bridge in G+M , let A = M and D = {u1u2}. Then G+M

is connected, so (A,D) is a solution. This solution has size |A| + |D| = p + 1
2 |T |, so it is

optimal.
Now assume that u1u2 is a bridge in Q = G+M . Let Q1 and Q2 denote the components

of Q− {u1u2} with u1 ∈ V (Q1) and u2 ∈ V (Q2). Note that u1u2 is also a bridge in G. We
claim that the edges of M are either all in Q1 or all in Q2. Suppose for contradiction that
y1z1 ∈ E(Q1)∩M and y2z2 ∈ E(Q2)∩M . Then M ′ = M \ {y1z1, y2z2} ∪ {u1y2, u2y1, z1z2}
would be a larger matching in G[T ] than M , contradicting the maximality of M . Without
loss of generality, we may therefore assume that all edges of M are in Q1.

LetM = {x1y1, . . . , xryr}, where r = 1
2 |T |−1. We claim that u1 must be adjacent in G to

all vertices of T \{u1}. Suppose for contradiction that u1 is non-adjacent in G to some vertex
of T \ {u1}. Since u1u2 ∈ E(G), this vertex would have to be incident to some edge in M .
Without loss of generality, assume u1x1 /∈ E(G). Then M ′ = M \ {x1y1} ∪ {u1x1, u2y1}
would be a larger matching in G[T ] thanM , contradicting the maximality ofM . Therefore u1
is adjacent in G to every vertex of T \ {u1}. In particular, since p = 0, it follows that q = 1
and G is connected.

Suppose that every edge between u1 and T \ {u1} is a bridge in G. Then no two vertices
of T \ {u1} can be adjacent, and G[T ] = K1,r. However, then Case 2 applies, which we
assumed was not the case. Without loss of generality, we may therefore assume that u1x1
is not a bridge in G. Let A = M \ {x1y1} ∪ {y1u2} and D = {u1x1}. Then G + A −D is
connected, so (A,D) is a solution. Since |A|+ |D| = 1

2 |T | − 1− 1 + 1 + 1 = p+ 1
2 |T |, this

solution is optimal. This concludes Case 3b and therefore also concludes Case 3.
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It is clear that optS(G, δ) can be computed in O(n+m) time. We also observe that the above
proof is constructive, that is, we not only solve the decision variant of CDPE(ea, ed) but
we can also find an optimal solution. To do so, we must find a maximum matching in G[T ].
This takes O(n5/2) time [18]. However, the bottleneck is in Case 3a, where we are glueing
components by replacing two matching edges by two other matching edges, which takes
O(n2) time. As the total number of times we may need to do this is O(n), this procedure
may take O(n3) time in total. Hence, we can obtain an optimal solution in O(n3) time. J

The proof of the next result has been omitted.

I Theorem 6. Let {vd} ⊆ S ⊆ {vd, ed, ea}. Then CDPE(S) is NP-complete and W[1]-hard
when parameterized by k, even if δ ≡ 0.

4 Connected Degree Balance Editing

We will show that CDBE(S) is polynomial-time solvable if {ea} ⊆ S ⊆ {ea, ed} and that it
is NP-complete and W[1]-hard with parameter k if vd ∈ S.

Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ, k) be an instance of CDBE(S) with G = (V,E). Let A
be a set of arcs not in G, and let D be a set of arcs in G, with D = ∅ if S = {ea}. We say that
(A,D) is a solution for (G, δ, k) if its size |A|+ |D| ≤ k, the equation d+

H(u)− d−H(u) = δ(u)
holds for every vertex u and the graph H = G+A−D is connected; if H is not connected
then (A,D) is a semi-solution for (G, δ, k). Just as in Section 3 we consider the optimization
version for CDBE(S) and we use the same terminology.

Let (G, δ) be an instance of (the optimization version) of CDBE(S) where G = (V,E).
Let T = T(G,δ) be the set of vertices v such that d+

G(v) − d−G(v) 6= δ(v). Define a function
f(G,δ) : T → Z by f(v) = f(G,δ)(v) = δ(v)− d+

G(v) + d−G(v) for every v ∈ T .
We construct a directed multigraph GS with vertex set V and arc set determined as follows.

If {ea} ⊆ S ⊆ {ea, ed}, for each pair of distinct vertices u and v in G, if (u, v) /∈ E, add the
arc (u, v) to GS (these arcs are precisely those that can be added to G). If S = {ea, ed}, for
each pair of distinct vertices u and v, if (u, v) ∈ E, add the arc (v, u) to GS (these arcs are
precisely those whose reverse can be deleted from G). Note that adding a (missing) arc has
the same effect on the degree balance of the vertices in a digraph as deleting the reverse of
the arc (if it exists). Also observe that GS becomes a directed multigraph rather than a
digraph only if S = {ea, ed} and there are distinct vertices u and v such that (u, v) ∈ E and
(v, u) /∈ E applies. Moreover, GS contains at most two copies of any arc, and if there are two
copies of (u, v) then (v, u) is not in GS .

Let F be a minimum directed f -join in GS (if one exists). Note that F may contains two
copies of the same arc if GS is a directed multigraph. Also note that for any pair of vertices
u, v, either (u, v) /∈ F or (v, u) /∈ F , otherwise F ′ = F \ {(u, v), (v, u)} would be a smaller
f -join in GS , contradicting the minimality of F . We define two sets AF and DF which, as
we will show, correspond to a semi-solution (AF , DF ) of (G, δ). Initially set AF = DF = ∅.
Consider the arcs in F . If F contains (u, v) exactly once then add (u, v) to AF if (u, v) /∈ E
and add (v, u) to DF if (u, v) ∈ E (in this case (v, u) ∈ E holds). If F contains two copies
of (u, v) then add (u, v) to AF and (v, u) to DF ; note that by definition of F and GS , in
this case S = {ea, ed}, (u, v) /∈ E and (v, u) ∈ E. Observe that the sets AF and DF are not
multisets.

If X and Y are sets, then X ] Y is the multiset that consists of one copy of each element
that occurs in exactly one of X and Y and two copies of each element that occurs in both.
The next lemma provides the starting point for our algorithm. Its proof has been omitted.
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I Lemma 7. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of CDBE(S) where
G = (V,E). The following holds:
(i) If F is a minimum directed f-join in GS, then (AF , DF ) is a semi-solution for (G, δ)

of size |F |.
(ii) If (A,D) is a semi-solution for (G, δ), then A ]DR is a directed f-join in GS of size
|A|+ |D|.

Let (G, δ) be an instance of CDBE(S). Let p = p(G,δ) be the number of components
of G that contain no vertex of T . Let q = q(G,δ) be the number of components of G that
contain at least one vertex of T . Let t = t(G,δ) =

∑
u∈T |f(u)|.

We now state the following lemma. Its proof (based on Lemmas 2 and 7) has been
omitted.

I Lemma 8. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of CDBE(S) with q ≥ 1.
If F is a (given) minimum directed f -join in GS, then (G, δ) has a solution that has size at
most max{|F |, p+ q − 1, p+ 1

2 t}, which can be found in O(nm) time.

The next result is our first main result of this section. We prove it by showing that the
upper bound in Lemma 8 is also a lower bound for (almost) any instance of CDBE(S) with
{ea} ⊆ S ⊆ {ea, ed} that has a semi-solution.

I Theorem 9. For {ea} ⊆ S ⊆ {ea, ed}, CDBE(S) can be solved in time
O(n3 logn log logn).

Proof. Let {ea} ⊆ S ⊆ {ea, ed}, and let (G, δ) be an instance of CDBE(S). We first use
Lemma 2 to check whether GS has a directed f -join. Because GS has at most 2n2 arcs, this
takes O(n3 logn log logn) time. If GS has no directed f -join then (G, δ) has no semi-solution
by Lemma 7, and thus no solution either. Assume that GS has a directed f -join, and let F be
a minimum directed f -join that can be found in time O(n3 logn log logn) by Lemma 2. As
before, p denotes the number of components of G that do not contain any vertex of T , while q
is the number of components of G that contain at least one vertex of T , and t =

∑
u∈T |f(u)|.

We will prove the following series of statements:
optS(G, δ) = 0 if p ≤ 1, q = 0,
optS(G, δ) = p if p ≥ 2, q = 0,
optS(G, δ) = max(|F |, p+ q − 1, p+ 1

2 t) if q > 0.

If p ≤ 1 and q = 0 then A = D = ∅ is an optimal solution. If p ≥ 2 and q = 0,
to ensure connectivity and preserve degree balance, for every component of G there must
be at least one arc whose head is in this component and at least one arc whose tail is
in this component, thus any solution must contain at least p arcs. Let G1, . . . , Gp be
the components of G and arbitrarily choose vertices vi ∈ V (Gi) for i ∈ {1, . . . , p}. Let
A = {(v1, v2), (v2, v3), . . . , (vp−1, vp), (vp, v1)} and D = ∅. Then (A,D) is a solution which
has size p and is therefore optimal.

Suppose q ≥ 1. By Lemma 8 we find a solution (A,D) for (G, δ) of size at most max{|F |,
p+ q − 1, p+ 1

2 t} in O(nm) time. Hence, the total running time is O(n3 logn log logn), and
it remains to show that any solution has size at least max(|F |, p+ q − 1, p+ 1

2 t).
Let (A,D) be an arbitrary solution. Then (A,D) is also semi-solution. Every semi-solution

has size at least |F | by Lemma 7 2. Therefore (A,D) has size at least |F |.
Since there are p + q components in G, we must add at least p + q − 1 arcs to ensure

G+A−D is connected. Therefore (A,D) has size at least p+ q − 1.
Finally, for every vertex u with f(u) > 0 (resp. f(u) < 0) we find that (A,D) must be

such that at least |f(u)| arcs are either in A and have u as a tail (resp. head) or else are
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in D and have u as a head (resp. tail). For every component containing only vertices v with
f(v) = 0, there must be at least one arc in A whose head is in this component and at least
one arc in A whose tail is in this component (to ensure connectivity and to ensure that the
degree balance is not changed for any vertex in this component). Therefore we have that
(A,D) has size at least p+ 1

2 t. This completes the proof of Theorem 9. J

The proof of our second main result of this section has been omitted.

I Theorem 10. Let {vd} ⊆ S ⊆ {vd, ed, ea}. Then CDBE(S) is NP-complete and W[1]-hard
when parameterized by k, even if δ ≡ 0.

5 Conclusions

By extending previous work [1, 4, 7] we completely classified both the classical and para-
meterized complexity of CDPE(S) and CDBE(S), as summarized in Table 1. Our work
followed the framework used [11, 17] for (Connected) Degree Constraint Editing(S).
Our study was motivated by Eulerian graphs. As such, the variants DPE(S) and DBE(S)
of CDPE(S) and CDBE(S), respectively, in which the graph H is no longer required to be
connected, were beyond the scope of this paper. It follows from results of Cai and Yang [4]
and Cygan [7], respectively, that for S = {vd}, DPE(S) and DBE(S) are NP-complete
and, when parameterized by k, W[1]-hard, whereas they are polynomial-time solvable for
S = {ed} as a result of Lemmas 1 and 2, respectively. The problems DPE(S) and DBE(S)
are also polynomial-time solvable if {ea} ⊆ S ⊆ {ea, ed}; this is in fact proven by combining
Lemmas 1 and 3 for the undirected case, and Lemmas 2 and 7 for the directed case. We
expect the remaining (hardness) results of Table 1 to carry over as well.

Let ` be an integer. Here is a natural generalization of CDPE(S).

`-CDME(S): Connected Degree Modulo-`-Editing(S)
Instance: A graph G, integer k and a function δ : V (G)→ {0, . . . , `− 1}.
Question: Can G be (S, k)-modified into a connected graph H with

dH(v) ≡ δ(v) (mod `) for each v ∈ V (H)?

Note that 2-CDME(S) is CDPE(S). The following theorem shows that the complexity of
3-CDME(S) may differ from 2-CDME(S).

I Theorem 11. 3-CDME({ea, ed}) is NP-complete even if δ ≡ 2.

Proof. Reduce from the Hamiltonicity problem, which is NP-complete for connected cubic
graphs [10]. Let G be a connected cubic graph. Let δ(v) = 2 for every v ∈ V (G), and take
k = |E(G)|− |V (G)|. Then G has a Hamiltonian cycle if and only if G can be (S, k)-modified
into a connected graph H with dH(v) = 2 (mod 3) for all v ∈ V (H). J

It is natural to ask whether 3-CDME({ea, ed}) is fixed-parameter tractable with parameter k.
Finally, another direction for future research is to investigate how the complexity of

CDPE(S) and CDBE(S) changes if we permit other graph operations, such as edge con-
traction, to be in the set S.
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