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ABSTRACT

We consider the use of low-budget omnidirectional platforms for 3D

mapping and self-localisation. These robots specifically permit ro-

tational motion in the plane around a central axis, with negligible

displacement. In addition, low resolution and compressed imagery,

typical of the platform used, results in high level of image noise

(σ ∽ 10). We observe highly sparse image feature matches over

narrow inter-image baselines. This particular configuration poses a

challenge for epipolar geometry extraction and accurate 3D point

triangulation, upon which a standard structure from motion formu-

lation is based. We propose a novel technique for both feature filter-

ing and tracking that solves these problems, via a novel approach to

the management of feature bundles. Noisy matches are efficiently

trimmed, and the scarcity of the remaining image features is ad-

equately overcome, generating densely populated maps of highly

accurate and robust 3D image features. The effectiveness of the ap-

proach is demonstrated under a variety of scenarios in experiments

conducted with low-budget commercial robots.

Index Terms— structure from motion, mobile robot, omnidirec-

tional, noise, feature filtering

1. INTRODUCTION

Research on mobile navigation in complex environments has been

significantly boosted with the manoeuvrability of holonomic robots

[1, 2]. A holonomic robot platform has as many actuators as degrees

of freedom. In the case of a wheeled robot, which has three degrees

of freedom (two normal directions and rotation angle), a robot needs

three actuators to be holonomic. Specifically in our work this con-

figuration is achieved by three independently commanded wheels,

which are able to move almost friction-less along the perpendicular

direction to their axis of displacement. This paradigm is represented

by the omni wheels (Fig. 1a). The manoeuvrability offered by this

design allows an omnidirectional robot to turn on the spot and move

sideways or diagonally while keeping its orientation (Fig. 1b). Such

omnidirectional platform often offers key manoeuvrability charac-

teristics with a wide range of application domains [3, 4, 5].

Sequential Structure from Motion (SfM) techniques have been

applied to obtaining robust 3D mapping and self-localisation on mo-

bile robots [6, 7, 8]. When these methods are applied to low-cost

computing platforms, the scene map usually consists on a set of

sparse 3D scene features. Moreover, rapid changes in the camera

viewpoint due to the abrupt rotations that characterize omnidirec-

tional platforms (Fig. 1), the low camera resolution and the image

compression required for wireless video streaming reduce the quant-

ity and accuracy of 3D features that can be retrieved from the scene

using SfM techniques. The specific characteristics described also

tend to complicate the extraction of the epipolar geometry between

image pairs [9, 10, 11, 12], rendering the navigation task challen-

ging.

(a) (b)

Fig. 1: a) omnidirectional Rovio robot and omni-wheel detail; b)

possible motion directions for the omnidirectional robot platform.

This paper describes a sequential SfM system that addresses

these problems, using a specific point filtering strategy, and a novel

noise resilient feature tracking method based on the relationship cre-

ated between a 3D point and its bundle of image features detected at

the input views. By increasing the number and accuracy of the 3D

features in the map, the reconstruction process becomes more robust.

We efficiently manage the bundles and propose suitable filters

that optimise the addition of new features to a bundle, as well as the

merging between bundles via the matching of their features. Fur-

thermore, we develop specific methods to robustly cope with noise

levels which are typical of such holonomic platforms.

We evaluate these techniques, and obtain highly robust and ac-

curate reconstruction results on a low-budget omnidirectional robot

over a range of different environments, under noisy and sparse fea-

ture matching conditions and in presence of frequent narrow baseline

configurations which are typical in this platform genre. These results

outperform comparable techniques in the field for this configuration.

2. PRIOR WORK

There is a range of prior work considering monocular Structure from

Motion (SfM) on mobile robot platforms [13, 7, 8]. The motion of a

robot equipped with a single camera and moving on a planar environ-

ment was estimated with a SfM approach in [6] and [7]. Mouragnon

et al. [14] performed 3D reconstruction on a mobile robot via an

embedded system based matching process and a local bundle adjust-

ment technique, albeit within a known environment. By contrast, our

work is not specifically constrained to planar motions and is capable

of reconstructing unknown environments on an omnidirectional plat-

form in the presence of the ill-conditioned image baselines outlined.

The last decade has seen increasing research on omnidirectional



robots due to reduced production costs and design improvements [4,

5, 15]. However, the majority is devoted to motion modelling [15],

and little research has been done on visual navigation [16]. To the

best of our knowledge, no SfM system has previously addressed the

specific problems of this kind of robotic platform.

Using central panoramic cameras [9] achieves the reconstruction

with small baselines. The authors in [12] propose a robust algorithm

for extracting the epipolar geometry assuming planar motion with

small baselines. The present work extends these approaches to cope

with ill-configured conditions which are ever present in the motion

characteristics of an omnidirectional platform, by using non-linear

methods and an appropriate feature matching selection policy.

Central to the SfM problem is the concept of feature matching

and tracking [17, 13, 18]. Generally, prior work concentrates on vari-

ation and feature type, rather than the cross-image tracking method-

ology. In order to make the most of sparse matches provided by a

low resolution camera, we have developed a novel feature tracking

system which handles the inter-bundle relationships via robust and

light filters.

The feature tracking system developed in this work also deals

with the other key issues that we have encountered - noise. The ana-

lysis of Hartley et al. [19] shows the huge influence of noisy corres-

pondences in the 3D point triangulation, where the authors estimate

a noise level of σ = 0.2 in their real world images. Hebert [13]

deals with uncertainty in SfM with noise variance up to 1 pixel, be-

ing this variation the overall trend in the field [20]. By contrast,

our images present a noise level σ = 10.58 (estimated), due to

the JPEG-compression artefacts inherent in wireless communication

implemented on such low-cost omnidirectional platforms. Our novel

feature tracking system, along with other noise filters implemen-

ted throughout the pipeline, successfully discards outliers within the

overall feature matching process.

Furthermore, to date no work in the field has addressed the spe-

cific issues of ill-conditioned short baseline configurations within the

context of noisy, low quality imagery found on holomonic platforms.

Here we extend the state of the art with a noise-tolerant pipeline that

overcomes such issues, bringing SfM to such platforms for naviga-

tion, 3D mapping and self-localisation tasks.

3. HOLONOMIC STRUCTURE FROM MOTION

In sequential Structure From Motion (SfM) we consider, at any given

time, the most recent image In received by wireless transmission

from a low-quality onboard camera as it transits the scene. This im-

age In passes through a processing pipeline that recovers the global

robot pose and the scene map (structure). First the image is filtered,

and features are detected and matched against features detected in

previous frames. Subsequently a feature tracking method is used,

before the final recovery of the actual camera pose and the map up-

date.

3.1. Feature Detection and Matching

Firstly, bilateral filtering is applied as an efficient inexpensive

method to perform feature preserving noise reduction on each

image received [21]. Subsequent feature extraction is performed

using SURF [22] as an efficient trade-off between computational

efficiency and robustness. Here 64 dimensional SURF features are

extracted from image In. We then use k-d tree based lookup [23] on

the feature descriptors to perform pairwise image matching between

In and previous images In−i, with i increasing until the match

population found in the pair {In−i, In}, i = k, is below a given

threshold τm (empirically, τm = 20). We denote this recursive

matching by the expression {In−i, In}
i=k

i=1
, 1 ≤ k ≤ n, and the set

of feature matches created for each pair {In−i, In}, by Sin.

Our contribution at this stage is the careful selection of feature

matches by quality. We assess the quality of a match between two

features a and b by the L2 difference of their descriptors, denoted by

δab. Three match quality filters are deployed. Firstly, only unique

matches are considered. The uniqueness of a match is defined by

the ratio δab/δac, where b is the closest matching feature to a, and c
is the second closest matching feature [24], based on L2 difference

of the SURF descriptors. Ratios lower than a threshold τu do not

generate a match (we set τu = 0.4). Secondly, only the best matches

of Sin are selected. This selection is accomplished by taking certain

percentile rank, τκ of the score on δab population over Sin (we use

τκ = 0.8). Finally, we enforce one-to-one feature matching between

image pairs. This combination of filters counteracts the effect of

noise on the feature matching process but additionally results in a

significantly sparse set of feature matches S
′

in from which we then

have to perform SfM.

3.2. Relative Pose Estimation

Based on the identified set of filtered matches S ′

in, RANdom SAmple

Consensus (RANSAC) [25] is performed to find an inlier subset of

matches S
′′

in, using the epipolar equation x′TEx = 0 as paramet-

rising model. In the case of S ′′

1n, where the relative pose is required,

we subsequently recover the essential matrix E with the algebraic

error minimisation approach described in [26]. The extraction of

E leads to the estimation of the relative camera pose of In. Sub-

sequently Sin is examined and added to the structure population.

3.3. Feature Tracking

A key problem implicit in all SfM approaches is the feature regis-

tration problem, where multiple pair-wise feature correspondences

must be merged into a single multiple-view feature track, or bundle

of features for a given 3D point X .

Three main computational operations should be enabled when

efficiently feature tracking matches over a sequence:- 1) direct ac-

cess to X referenced from any feature in its bundle and vice versa, 2)

addition of new features to a bundle and 3) merging of two bundles.

In our tracking method, novelly we devise bundles as dynamic lists, a

structure which allows us to efficiently perform these tasks. Further-

more, when a new feature is added to the bundle of X , our specific

implementation of bundle will automatically link it to X and to the

rest of features of the bundle.

Given the sparsity of the 3D point cloud produced by our match-

ing filters (See Section 3.1), it is necessary to properly manage the

addition of features to a bundle and the merging between bundles, in

order to create sufficient duration feature tracks. This is handled by

two filter checks. The first filter f1 checks, when a feature ma from

image Ia is matched with a feature mb from image Ib, whether the

bundle associated to mb has already a feature from image Ia. The

analogue check is done with the bundle associated to ma. When this

is the case it compares the values of the coordinates of the features

involved to establish whether they are truly the same feature. This

ensures that a bundle is linked to one feature per image. The second

filter f2 compares whether two 3D points pi and pj are close enough

to be considered the same 3D point. For each axis ı ∈ {x, y, z}
we define δı = ‖pıi − pıj‖, and µı

= mean
{

pıi, p
ı
j

}

. The filter f2
checks that δı < k ·µı. In this case, they are assumed to be the same

point. Empirically we use k = 0.02.



For every feature match of S ′′

in three possible cases arise:- 1)

none of the features belong to any bundle, 2) one feature of the match

belongs to a bundle and 3) both features belong already to different

bundles. In the first case, a new 3D point {0, 0, 0} and its bundle is

initialised. The actual value of the corresponding 3D point will be

estimated in the triangulation step (Section 3.4). At this point the

bundle is composed of the two matching features. In the second case

the filter f1 is conducted. In case of success the bundle-less feature is

added to the bundle of the other feature. Otherwise, the new feature

is discarded. In the third case, additionally, the filter f2 is applied. If

the pair of bundles passes this last filter, they are merged.

The specific creation and management of the structure of

bundles, along with the filters associated to it, allows us to ob-

tain precise camera poses and a reliable point cloud out of sparse

matches populations (in our experiments, at this stage an average

image has 755 views, with 3.56 projections per 3D point, see Fig.

2).

3.4. Joint Pose and Structure estimation

The introduction of the sets {S ′′

in}
i=k

i=1
increases the structure pop-

ulation and widens the range of the bundles. With this new inform-

ation the scale of the camera pose of In is adjusted to be coherent

with the rest of the sequence. This refinement is performed via the

resection method proposed in [27].

Once the global camera poses have been calculated the trian-

gulation process over the updated point cloud takes place, where

the new 3D points are estimated and those whose bundles have in-

creased are recomputed. Subsequently, the structure undergoes fil-

tering based on reprojection error and cheirality [26] (i.e. those 3D

points behind the camera are deleted).

The last stage of the reconstruction involves the application of

Bundle Adjustment (BA), where camera poses and 3D points are

simultaneously optimised by minimising the reprojection error func-

tion cost. This work runs the implementation of [28] which effi-

ciently applies Levenberg-Marquardt minimization method by ex-

ploiting the sparseness of the SfM problem. We employ BA in two

scopes, locally and globally, as [14, 29] propose. The local BA is

conducted within the process pipeline, as a last refining step on the

new camera and 3D points. The global BA is executed parallel to the

sequential pipeline over the whole point cloud and the last n camera

poses (empirically, n=10).

3.5. Final Scene Recovery

The combination of limited camera resolution, image noise and

small baselines inherent within the use of an omnidirectional mobile

platform forces our core SfM method to be highly restrictive over

the quality of matches. This produces a sparse scene reconstruction

resulting in a sparse 3D point cloud of scene surfaces compared to

traditional SfM approaches [14]

In order to provide a dense surface reconstruction (e.g. as shown

in Fig. 4), a variant of the SfM pipeline is run as a data post-process.

This variant makes use of the estimated camera poses and the extrac-

ted features. Since the motion is fixed, there is no inherent risk in

now including noisy matches and thus we can relax the thresholds of

the match quality filters (from Section 3.1). Particularly, τu is more

benign (set to τu = 0.65) and there is no selection over the score on

δab. This arrangement produces a point cloud whose population is

increased up to 200% in terms of recovered 3D scene surface points

(see Fig. 2). Note that 4,303 features are extracted from an average

image, and the final point cloud has 1,675 views per image, which

gives 38.82% of features matched over the total features extracted

Fig. 2: Histogram of views per bundle for the laboratory sequence.

With the post-processing the number of views per bundle increases

drastically. The number of bundles containing 3 or more views is

raised from from 6.5K to 21.7K.

(a) Laboratory. (b) Industrial environment.

Fig. 3: Odometry and 3D points obtained for two of the sequences

used in the experiments.

per image. Fig. 2 compares the length of the tracks, or bundles,

obtained with the SfM reconstruction before and after applying this

post-process variant for 3D point improvement. The relaxation on

the matching filters produces a larger number of image projections,

that will be available for a posterior bundle adjustment. At this stage

the only filtering realised is commanded by the fixed camera poses

through filters on reprojection error.

The final point cloud is filtered by statistical techniques [30] over

which a smooth surface is estimated by Moving Least Squares sur-

face reconstruction [31] and using a Poisson method [32] (see Fig.

4).

4. RESULTS

In our experiments we used the low-budget mobile robot Rovio

(WowWee Rovio). This robot platform is controlled by three wheels

on a radial axis (Fig. 1a) which endows it with omnidirectional

movement. The Rovio platform is controlled by wireless communic-

ation based on an established API [33]. As a low-budget platform,

it is equipped with a 640 × 480 resolution camera which can be

craned within a height range of 10-30 cm, from the surface being

transited. We present two experiments in different environments and



Fig. 4: Top row: sample images in the laboratory sequence. Bottom

row: 3D surface representation obtained with our SfM system.

compare our system with two state of the art implementations: the

commercial package PhotoScan (version 1.1.0) from AgiSoft LLC,

used in other research works [34, 35] and VisualSfM [36, 37], an

interactive application for 3D reconstruction using SfM techniques.

In our experiments a bilateral filter is applied with the diameter

of 3 pixels and both colour and spatial filter sizes as σ = 50. Based

upon this pre-filtering, up to 5,000 features are extracted per im-

age, varying on inter-image overlap. Our proposed filtering method

identifies a maximum of 700 pair-wise feature matches in optimal

matching conditions.

In our first test scenario 55 images were taken over a distance

of 6 metres. Here the robot platform performed an approximately

straight translation. The 2 dimensional map derived from the estim-

ated camera poses is shown in Fig. 3a. Fig. 4 shows the reconstruc-

ted 3D scene. Fig. 4 shows two 3D representations of the laboratory

environment where, despite significant noise, the key scene features

remain apparent.

In the second experiment the platform performs specific omni-

directional movements along a sequence of 75 images. The path and

orientation of the robot estimated by our system can be seen in figure

3b. In this experiment SIFT [24] descriptors were used.

Tables 1 and 2 show a comparison in the results given by our

system, PhotoScan and VisualSfM. Our system clearly outperforms

the other two, providing more 3D structure points at lower reprojec-

tion error. The reprojection error is measured as the averaged root

mean square of the residuals.

3D Points Projections Reproj. Error

SfM with

feature tracking
24,393 100,753 1.53

PhotoScan 8,783 38,534 44.06

VisualSfM 4,288 35,789 4.51

Table 1: Comparison on the laboratory sequence with PhotoScan

and VisualSfM.

3D Points Projections Avg. Rep. Error

SfM with

feature tracking
40,128 157,004 1.22

PhotoScan 15,067 59,671 11,74

VisualSfM 4,401 31,498 2.31

Table 2: Comparison of reconstruction accuracy obtained on the in-

dustrial sequence with our system, PhotoScan, and VisualSfM. The

latter is only able to reconstruct 66 cameras out of 75.

Fig. 5 evaluates the accuracy in the estimation of the camera

poses of our system. Here the trajectories estimated by each system

and the ground-truth of the path followed by the platform on the in-

dustrial experiment are shown. VisualSfM is not in this comparison

since it only manages to reconstruct 66 cameras in this experiment.

Fig. 5 only shows the last stretch of the sequence as the difference of

the camera poses with the ground-truth in the first cameras is negli-

gible. Although both PhotoScan and our system perform similarly, it

is notable that the path described by our system consistently matches

the trajectory of the ground-truth.

Fig. 5: Comparison of ground-truth translation, and the odometry

estimated using our SfM system, and PhotoScan, for the industrial

environment data-set. The image shows the estimated camera loca-

tion for the last part of the tracking.

5. CONCLUSIONS

We have demonstrated that the proposed noise-tolerant feature

tracking method facilitates the effective implementation of Structure

From Motion on low-cost omnidirectional robots. These low-budget

holonomic platforms produce high levels of image noise (σ ∽ 10)

and narrow inter-image baselines, which, after the application of

strict noise filters result in sparse but reliable image feature matches.

The feature tracking system maximises the length of feature tracks

by an efficient management of the bundles created between a 3D

point and its views on the image sequence.

Our SfM reconstruction system, which includes this tracking

method, succeeds in producing reliable scene reconstruction with

low reprojection errors. We compared its performance with different

state of the art SfM systems, showing the advantages of our approach

in terms of quantity and quality of the resulting 3D scene reconstruc-

tion.
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