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Abstract

This article outlines a procedure for speeding up segmentation of images using active
mesh systems. Active meshes and other deformable models are very popular in image
segmentation due to their ability to capture weak or missing boundary information; how-
ever, where strong edges exist, computations are still done after mesh nodes have settled
on the boundary. This can lead to extra computational time whilst the system continues
to deform completed regions of the mesh. We propose a local termination procedure, re-
ducing these unnecessary computations and speeding up segmentation time with minimal
loss of quality.

1 Introduction
Deformable models [6] are a group of algorithms used to segment images, particularly im-
ages with weak or missing boundaries. Such deformable models, also known as active mod-
els and snakes, are used heavily in biomedical imaging segmentation where low contrast,
high noise or obscured edges make other segmentation techniques unsuitable. Deformable
models come in several forms and have been used for multiple modalities and scenarios
(see [5] for a comprehensive review). Here we introduce and briefly describe the field lim-
ited to active meshes, three-dimensional polygonal-faced meshes that can be deformed in a
discrete manner to segment objects of interest [7].

1.1 Active Meshes: a Quick Background
Active meshes are a subset of deformable models that commonly use a triangular-faced mesh
to segment an object of interest from an image with weak or missing boundaries (see [4] for
an early example). The use of a mesh with distinct nodes, or vertices, and a known connectiv-
ity, through face or edge information, allows computationally simple and speedy calculations
to be performed over the whole mesh. To find the segmentation shape the mesh is deformed
in one of several ways. The use of physics-based forces allows a new position to be calcu-
lated at each iteration by Euler-Lagrange mechanics [8]; however, there have been concerns
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that optimality of such systems is not guaranteed [1]. A more common system is to provide
each vertex with an energy and, for each iteration, identify some trial points for the vertex
to move to; one of these points is then accepted by some optimisation method, the simplest
of which is a greedy algorithm [10]. Many of these systems require a balloon force [3] or
another force (e.g. [11]) to attract the shape towards the edges from any initialisation. As
with many techniques each variant has its advantages and drawbacks and the optimal choice
for a particular case is dependent on the experiment and researcher.

1.2 Termination of Meshes
Deformable models tend to work on an iterative system with each iteration deforming the
model to minimise energies or balance forces, eventually the mesh reaches an optimal state
and the desired object is segmented. With many optimisation techniques there may be no
definite and/or optimal termination; as such, many systems are provided with an explicit
stopping criterion in order to terminate the process. One key feature of termination criteria
that are mentioned in the literature is that they focus on the overall mesh, i.e. they terminate
in a global fashion, e.g. the percentage of ’inactive’ vertices [8] or a maximum number of
iterations [9]. We have been unable to find any articles in the literature that use a system of
local vertex termination, that is to say, each vertex is deformed as part of the mesh until it
reaches some independent termination criteria. In this article we propose a heuristic system
for local vertex termination during deformation. We show that this method of termination
can speed up the overall process of segmentation by testing the algorithm on synthetic data
and also demonstrating the system on real 3D images.

2 Methods
For the purpose of this article we have used a simple balloon-driven, energy minimisation
mesh (based on [2]). The mesh is initiated as an icosahedron of user-defined size. For each it-
eration, every vertex is assigned a new ‘more optimal’ position selected, by a simple greedy
algorithm, from a 3D neighbourhood. A steepest gradient descent method is employed to
link the image gradient to the size of the steps available. After each iteration of deformation
the mesh undergoes local resampling, again based on [2]. During each iteration, all vertices
are checked to see if they should be terminated (described fully below). Deformation contin-
ues until a termination criterion is met; this criterion will be described for each experiment
in Results. All codes were written in MATLAB 2012b (The MathWorks, Inc., US) on a
Windows 7 64-bit PC running an Intel Core i5-2320 CPU (3.0 GHz) with 6GB RAM.

2.1 Local Termination of Vertices
In order to terminate vertices we identify, at the end of each deformation, a list of vertices
to be considered ‘terminated’. During the next iteration we only deform vertices that are not
terminated, decreasing computation time per iteration. Our system checks whether or not
a vertex should be considered terminated after every iteration; this prevents a vertex being
turned off due to, for example, a large noise signal, and being prevented from re-initiation as
the mesh around it deforms. We define whether or not a vertex should be terminated using
the following cost function,

Cv = αCI +βCG + γCT , (1)

where α,β and γ are user-defined parameters such that α + β + γ = 1. The first two
terms, CI and CG, are the value of the normalised image and gradient magnitude image,
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respectively, calculated through trilinear interpolation. Finally, CT is one if the vertex was
terminated during the last iteration and zero otherwise. We note that more advanced cost
functions could look at the history or neighbourhood of the vertex in more detail but we
have, so far, only looked at basic, faster cost functions. In order to make this cost-based
method more robust we use a combination of the cost at the vertex and the average cost of
its direct neighbourhood. So Tv, the choice to terminate a vertex or not, is given by,

Tv =

{
TRUE if µCv +(1−µ)

∑ j C j
Nv

> c,
FALSE otherwise;

(2)

here, Nv is the size of the neighbourhood around the vertex, v, C j is the cost at a neigh-
bour, j, and µ is a user-defined parameter. The user-defined cost-level, c, is a threshold
above which a point is terminated.

2.2 Measure of Quality
To determine segmentation ‘quality’, Q, of synthetic images we have used a simple metric
comparing the segmented mesh to the binary ‘ground truth’ image, G. The resultant mesh
is voxelised, B, and the measure of quality is calculated as Q = B∩G/B∪G. If the mesh
extends outside of the ground truth the denominator increases and if the mesh has not fully
extended to the ground truth boundaries then the numerator decreases. An ideal segmentation
will always have a quality of one. Any segmentation that over or under segments will have a
quality less than one; over segmentation and under segmentation in different regions cannot
balance out using this metric.

3 Results
In order to clearly show when and where local termination may be effective for active mesh
segmentation we have run experiments on five noise-free synthetic shapes. We also com-
pare the results of globally terminated and locally terminated segmentation on real data of
dehisced mature pollen grains.

3.1 Synthetic Data
We have chosen five synthetic shapes to represent various scenarios found in biological and
biomedical images: a sphere, a cube, a hollow, rectangular cuboid, a tube and a weeble (a
cone placed on top a hemisphere). We have chosen to demonstrate on noise-free data to
show the differing effect of local termination on different shape scenarios, where we feel
the difference is most significant. User-chosen parameters for local termination were used
for each shape. The origin for segmentation was user-chosen based on manual selection of
an approximate centroid. For all the control segmentations, i.e. segmentations using global
termination, we terminated the procedure based upon the Haussdorf distance before and
after each iteration. For each step the Haussdorf distance between the set of vertices before
deformation and resampling and after were compared. If the Haussdorf distance was below
a user-defined value then the shape was considered to be terminated.

Table 1 shows the time taken to segment and final segmentation quality for these shapes
under global and local termination procedures. As can be seen there is a dramatic decrease
in segmentation time with only a moderate loss of quality. We note that shapes that are
fairly round or with a surface fairly evenly distributed from the point of initiation, i.e. the
weeble and sphere, reap the smallest benefit in terms of time. The very slight increase in
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Shape (Vertices) Global Termination Local Termination Reduction
Time(s) Quality Time(s) Quality Mean Time Quality

Sphere (4,342) 186.1(0.1) 0.9564 70.0(0.4) 0.9595 62.4% -0.3%
Cube (4,281) 336.0(0.7) 0.9241 69.8(0.2) 0.8730 79.2% 5.5%
Weeble (6,606) 251.4(0.6) 0.9589 118.2(0.5) 0.9647 53.0% -0.6%
Tube (6,617) 265.5(0.7) 0.9580 40.2(0.07) 0.9287 84.9% 3.1%
Cuboid (3,694) 124.8(0.3) 0.9142 59.3(0.03) 0.8738 52.5% 4.4%

Table 1: Table showing reduction in time and quality of segmentation using local termination
procedures. Times are taken from an arithmetic mean of ten full segmentations; the number
in standard brackets is the standard error upon the mean to one significant figure. Number of
vertices, taken from global termination results, are shown in brackets after shape names.

quality seen in some shapes is caused by the ’wiggle’ of vertices across the surfaces due to
the multidirectional nature of our method: as the Haussdorf distance measures the minimum
distance between one vertex before deformation and its closest match after, it is conceivable
that, as the mesh settles on the surface of the shape, vertices ’wiggle’ in a Brownian motion-
like manner across the surface, leading to resampling of particular regions of the surface,
hence keeping the Haussdorf distance high. We should also note that we tracked the quality
of the segmentation for each iteration (data not shown) and found that the maximum quality
was not at the point of termination but a few iterations before termination due to the same
reason. Figure 1 shows distance maps from the segmentation mesh of the hollow cuboid.
The colouring at that area of the surface shows the average distance between that region of
the mesh and the true boundary of the synthetic shape.

3.2 Noisy Data
In order to test our local termination data on images more similar to those found in biological
and biomedical modalities we applied pseudo-random noise to our hollow cuboid image.
Under these noisy conditions the local termination method lead to a decrease of 50 (±10)%
in run time with only a 7.9 (±0.5)% decrease in quality compared to the global termination
method. The average peak signal to noise ratio for the global termination trials (n=10) was
73.1685 (±0.0002) and for the local termination trials (n=10) was 73.1688 (±0.0003); peak
signal to noise ratio was calculated as maximum(Is)/variance(N), where Is is the noise-
free image and N the noise applied to the image.

(a) (b)
Figure 1: Local Termination of Vertices Reduces Segmentation Time with a Small Reduc-
tion in Quality. (a) Distance difference map of segmentation using global termination. The
segmented mesh is compared to a ground truth image and the colours represent the distance
between the mesh and ground truth. (b) Distance difference map of local termination-based
segmentation. The scale bar applies to both subfigures. Units are in voxels.
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Local Termination... Time(s) Quality Reduction from Global
Mean Time Quality

with Random Benefit 54(2) 0.9737(0.008) 79.4% -1.6%
with Double Take 49.54(0.08) 0.9733 81.3% -1.6%

Table 2: Table showing the results of variations upon the basic cost-based local termination
method. Note that the Quality of Local Termination with Random Benefit segmentation is
stated as a mean (standard error) of ten repeats due to the use of a random value.

3.3 Improving Segmentation Quality
As shown above, local termination of active mesh segmentation can lead to a dramatic re-
duction in computing time; however, segmentation within biological and biomedical imaging
requires as high a precision as possible. Here we show two slight modifications of our local
termination scheme that help to improve the quality of segmentation. The results of these
methods are shown in Table 2 for the synthetic tube; we have chosen this shape as there was
the largest effect on reduction in time and a small decrease in quality. Tube-like structures
are also heavily prevalent in biomedical images.

The first variation subtracts a pseudo-random value between 0 and 0.1 from the termi-
nation cost before comparison to c; this causes some vertices that should be terminated this
iteration to be left on for at least one more iteration. As this is random it should lead to a
slightly improved segmentation quality at the end result. With this method there is, however,
a chance that no iteration will have all vertices terminated and, as such, a global termination
criterion must be employed; for consistency we have chosen the Haussdorf distance as used
above. In Table 2, this method is referred to as ’with Random Benefit’. The second method
ignores the first termination of a vertex, i.e. a vertex must be classified as terminated for two
iterations before it is actually terminated. The final termination criterion for this method is
that when all vertices are terminated the segmentation is considered completed. In Table 2,
this method is referred to as ’with Double Take’.

Table 2 shows that both variations keep the reduction in segmentation time low but im-
prove the segmentation quality; in fact, both methods improve the quality beyond the orig-
inal segmentation system. It is likely that this difference in quality is due to the particular
stopping criterion for global termination used throughout this paper. As noted above the
maximum quality for segmentation is often not the final quality when using the Haussdorf
distance.

3.4 Biological Data
The proposed approach has been tested and validated on 3D CLSM images of DAPI-stained
dehisced mature pollen grains obtained from wildtype Arabidopsis thaliana plants of the
Columbia (Col-0) ecotype (Figure 2). On average, the proposed local termination approach
has been able to speed up the overall process of pollen grains segmentation by 51%.

4 Conclusion
We have demonstrated the effect of local termination of vertices on the segmentation of
shapes using active mesh systems. We have shown how the segmentation of long thin shapes
is sped up dramatically by terminating those vertices that are ’complete’ and no longer de-
forming the mesh in that region. We have chosen to show a basic cost function with some
interesting improvements upon the basic idea; however, we are currently looking into more
advanced ways of deciding whether or not a vertex is completed and, in general, the idea
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(a) (b) (c)
Figure 2: Mature pollen grain: (a) 3D volume rendering. (b) 2D contour and (c) 3D mesh
representation of the segmentation results. Scale bar corresponds to 10µm.

of a cost function can be easily extrapolated for many imaging scenarios. Scenarios where
this system will have the greatest effect are the segmentation of long, tubular structures,
e.g. blood vessels, nerves or pathways such as the branchial network of the lungs, and by
combining local termination with a topologically adaptive active mesh we could segment
complicated tubular systems in a fraction of the time of the traditional methods. We are
currently expanding application of the algorithm on biological and medical datasets.
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