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Abstract—An H∞ design for dynamic pricing in the smart
grid is proposed. This design jointly considers the operation of
a distribution network operator and a market operator. In the
design, a ratio of the regulated output energy to the disturbance
energy is minimized to address the worst-case scenario. Linear
matrix inequality approaches are used to formulate the design
problem as a convex problem. Fuzzy interpolation techniques
are integrated into the design procedure so that nonlinear grid
dynamics can be addressed. In contrast with existing designs, the
proposed design can yield a more reliable and practical pricing
scheme as shown via simulations.

Index Terms—Dynamic pricing, fuzzy systems, LMI ap-
proaches, smart grid.

I. INTRODUCTION

The concept of the smart grid has been proposed to address

a variety of challenges in the modern power grid, which

include efficient energy use, reduction of CO2, intelligent

diagnosis of grid problems, self-healing mechanisms, high

penetration of renewable energy sources (RESs) into conven-

tional girds, and dynamic management of the power supply

and demand [1]. To some extent, these challenges are related

to the underlying energy management systems (EMSs) of the

smart grid and, therefore, a large number of studies have

been focusing on various methods that can realize smart

energy management. Among them, dynamic pricing has been

intensively investigated because of the possibility that a power

market mechanism can effectively control the power supply

and demand between power grids and microgrids with the help

of a cost-effective EMS [2]–[4].

Dynamic pricing is basically a mechanism that dynamically

adjusts the power price based on, for example, the overall

network load, the profits of the supplier, and the social welfare.

Ideally, the power users reduce/increase their power consump-

tion at a high/low price [4]–[7] so that a well-designed pricing

scheme can help balance the power supply and demand in the

grid network. Various pricing schemes have been investigated,
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e.g., an area control error (ACE) pricing scheme [8]–[10]

and a robust pricing scheme [11]. The ACE pricing scheme

is modeled by a differential equation in which the rate of

change of the price signal is designed to be proportional to the

quantity of the imbalanced energy. By employing additional

information on individual power demand at microgrids and the

total power generation at the power grid, the robust pricing

scheme further enhances the ACE scheme for better energy

management in the microgrid system. However, these existing

market mechanisms do not address how to distribute power

from a power grid to multiple microgrids.

To jointly consider power distribution and dynamic price

generation in the smart grid, we include a market operator

(MO) and a distribution network operator (DNO) [5] in a

network of microgrids, a power grid and locally connected

RESs. While the RESs contribute to the power supply, they

result in a time-varying network. To deal with the time-

varying behavior, we propose an adaptive scheme using a

gain scheduling technique: the system operation is partitioned

into several regions represented by different operating points.

The DNO is then designed at different operating points. The

equilibrium point of the overall dynamics is evaluated, and

auxiliary dynamical equations are introduced based on this

equilibrium point. The proposed DNO can distribute the power

according the dynamical equations.

Following the DNO design, we adopt an H∞ design for the

MO using fuzzy interpolation techniques. The price signal is

generated according to various fuzzy rules in which the con-

sequent parts containing system parameters, i.e., gains. These

gains are evaluated so that the H∞ criterion can be attained:

the ratio of imbalanced energy over system disturbances is

kept below a prescribed H∞ attenuation level. These gains

can be determined by solving a set of linear matrix inequalities

(LMIs), which is convex.

The main contributions of this paper are summarized as

follows. Firstly, a gain scheduling approach is proposed to deal

with the time-varying behavior of the network of microgrids.

Secondly, this paper considers a joint design of the DNO and

MO that allows each microgrid to achieve a certain desired

level of energy storage. Finally, we propose a new design

for the MO, resulting in a more practical and reliable pricing

scheme than the design proposed in [11], as shown in our

simulations.

The rest of this paper is organized as follows. Section II

describes the system model. Our designs for the DNO and MO

are proposed in Section III. Simulation results are presented

in Section IV. Finally, Section V concludes this paper.



II. SYSTEM MODEL

For clarity, this section is divided into three subsections:

Sections II-A, II-B and II-C discuss the functionality of micro-

grids, the power grid, and the MO and the DNO, respectively.

A. Microgrids

Microgrids (distributed resource island systems) [12] are

defined as “subset self sustainable and autonomus of a power

system area that is able to operate independently or connected

to the network, and other institutions” (WG IEEE1547-4).

The definition of microgrid conceives that a microgrid can

operate in both connected and island mode, implying that a

microgrid possesses storage capabilities. In this study, each

microgrid is assumed to have a local energy storage system

with the stored energy state sn(t), n = 1, 2, ..., N . To maintain

emergency operation, sn(t) needs to be kept at a positive

working level s̃n > 0. The individual imbalanced energy en(t)
can be defined as

en(t) = sn(t)− s̃n. (1)

Microgrid n receives power vn(t) > 0 and pgn(t) > 0
from a locally connected RES and the DNO, respectively. The

dynamics of the energy storage system can be expressed as

ṡn(t) = ėn(t) = pgn(t) + vn(t)− pdn
(t) (2)

where pdn
(t) > 0 represents the power demand. In general, the

value of vn(t) relies on the time-varying weather conditions

since RESs, such as solar panels or wind turbines, are often

employed.

We consider shiftable loads [3], [13] so that the power

demand pdn
(t) in (2) can be adjusted according to the price

signal λ(t). The power demand dynamics of microgrid n can

be expressed as [8], [11]

ṗdn
(t) =

1

τdn

× {fdn
(pdn

(t))− λ(t)} (3)

where τdn
> 0 is a scale factor and fdn

(pdn
(t)) represents the

marginal benefit for consuming power pdn
(t). For an affine

benefit function, we consider

fdn
(pdn

(t)) = bdn
+ cdn

pdn
(t) (4)

where bdn
> 0 and cdn

< 0 denote the initial consumer’s

benefit and the consumer’s demand elasticity, respectively.

B. Power Grid

Besides the power inputs vn(t), n = 1, 2, ..., N, provided by

RESs, the conventional power grid can deliver power to meet

the power demand of microgrids in the network. According to

the price signal λ(t), the dynamics of power generation can

be modeled by

ṗg(t) =
1

τg
× {λ(t)− fg(pg(t))− τk

N
∑

n=1

en(t)} (5)

where en(t) is defined in (1), fg(pg(t)) represents the marginal

cost for generating power pg(t), and τg > 0 is a scale factor.

The term τk
∑N

n=1 en(t) with τk > 0, interpreted as the

additional cost for the excess power generation, is included

to ensure stability. For an affine marginal cost function, we

consider

fg(pg(t)) = bg + cgpg(t) (6)

with bg, cg > 0.

C. DNO and MO

The DNO distributes the power pg(t) generated from the

power grid to the connected microgrids. Let pgn(t) denote the

power distributed to microgrid n and hence, we have

pg(t) =

N
∑

n=1

pgn(t). (7)

For a one-supplier one-consumer model [11], all generated

power is directly distributed to the microgrid and thus there is

no need to consider the DNO. However, if more than one con-

sumer is involved and the individual imbalanced energy en(t)
needs to be minimized, the DNO is needed, as considered in

this study.

The MO tries to balance the energy in the network by

generating a price signal λ(t) > 0. The price signal λ(t) from

the MO is passed to microgrids and the power grid so that the

rates of change of power demand and power generation can

be adjusted according to (3) and (5), respectively. Meanwhile,

information on the distributed power pgn(t), power demand

pdn
(t), and imbalanced energy en(t) is transmitted from the

DNO and microgrids to the MO, which helps the MO decide

the value of λ(t).

The overall network dynamics can be expressed by (2), (3),

and (5) subjected to (7). The goal is to design the price signal

λ(t) at the MO and the power pgn(t) distributed by the DNO

such that the value of |en(t)| can be as small as possible for

n = 1, 2, ..., N , or equivalently, the stored energy sn(t) can

achieve the desired energy level s̃n > 0 as close as possible.

The next section presents the proposed design.

III. PROPOSED DNO AND MO DESIGNS

Section III-A presents the proposed DNO, which is further

divided into two components, a gain scheduler and a power

distribution operator. The MO is designed in Section III-B.

Fig. 1 presents the block diagram of the proposed designs.

A. Proposed DNO Design

1) Gain Scheduler: The network dynamics described

by (2), (3), and (5) are time-varying because of the power

inputs vn(t), n = 1, 2, ..., N , provided by RESs. To facilitate

our DNO design, a gain scheduling approach is used [14].

Define v(t) = [v1(t) v2(t) ... vN (t)]T . The idea we introduce

here is to construct a finite set

V = {v(1),v(2), ...,v(L)} (8)

in which each vector can represent v(t) at a certain operating

point. From a statistical perspective, these vectors in (8) can

be chosen via a long-term observation.
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Fig. 1. Block diagram for the proposed DNO and MO.

The set V is then stored in the DNO, deciding which vector

is closest to v(t) = [v1(t) v2(t) ... vN (t)]T by

ℓ = argj min
v(j)∈V

||v(t) − v(j)|| (9)

where || · || denotes the Euclidean norm. In (9), ℓ is a function

of time as its value changes according to v(t), and the error

||v(t)−v(ℓ)|| can be reduced by adopting a large L. In control

theory, ℓ is referred to as an operating point, and thus we

have L operating points according to (8). The gain scheduler

performs the operation in (9) so that the MO can use the

correct gains k
(ℓ)
m .

2) Power Distribution Operator: The following theorem

derived from using N auxiliary dynamical equations provides

a basis for distributing the generated power pg(t) to the N

microgrids.

Theorem 1: Let pgn(t) be assigned according to

ṗgn(t) =
−cg

τg
pgn(t)−

τk

τg
en(t)− hn +

1

τgN
λ(t) (10)

for n = 1, 2, ..., N . Define ep(t) = pg(t)−
∑N

n=1 pgn(t). For
the affine marginal cost function defined in (6), if

N
∑

n=1

hn =
bg

τg
(11)

then ep(t) converges to zero. In particular, (7) is satisfied for
all t ≥ 0 if ep(0) = 0, i.e.,

N
∑

n=1

pgn(0) = pg(0). (12)

Based on Theorem 1, we can use (10) as the rule of

power distribution. The overall network dynamics can then

be expressed as

ṗgn(t) =
−cg

τg
pgn(t)−

τk

τg
en(t)− h(ℓ)

n +
1

τgN
λ(t)

ṗdn
(t) =

bdn

τdn

+
cdn

τdn

pdn
(t)−

1

τdn

λ(t)

ėn(t) = pgn(t) + [v(ℓ)]n − pdn
(t) + [ev

(ℓ)(t)]n

(13)

where v(ℓ) ∈ V in (8) and [ev
(ℓ)(t)]n = vn(t) − [v(ℓ)]n

for n = 1, 2, ..., N . In (13), the superscript “(ℓ)” is used to

indicate that the power distribution operator is functioning at

operating point ℓ. In Fig. 1, the power distribution operator

uses different h(ℓ) = [h
(ℓ)
1 h

(ℓ)
2 , ..., h

(ℓ)
N ]T scheduled by the

gain scheduler (9) according to the power input v(t) provided

by RESs.

Let [(pg
(ℓ))T (pd

(ℓ))T (e(ℓ))T ]T denote the equilibrium

point of (13) with ev
(ℓ)(t) = 0N×1. In light of Theorem 1,

h(ℓ) can be chosen such that
[

(pg
(ℓ))T (pd

(ℓ))T (e(ℓ))T
]T

=
[

(pg
(ℓ))T (pd

(ℓ))T (0N×1)
T

]T
∈ R

3N×1
(14)

because it is desirable to have en = 0 for all n. By combining

(13) with (11) and (14), h(ℓ) can be obtained by solving








−
cg
τg
IN 0N×N −IN

1
τgN

1N×1

0N×N diag(cd
τd
) 0N×N −1N×1

τd

IN −IN 0N×N 0N×1

01×N 01×N 11×N 0

















pg
(ℓ)

pd
(ℓ)

h(ℓ)

λ(ℓ)









=
[

(0N×1)
T (−bd

τd
)T (−v(ℓ))T

bg
τg

]T

∈ R
3N+1.

(15)

In summary, the gain scheduler is operated according to

(9), and the power distribution operator performs the power

distribution according to (10) with hn = h
(ℓ)
n obtained by

solving (15). The next subsection presents our MO design

based on the established DNO.

B. Proposed MO Design

The purpose of the MO is to generate the price signal λ(t) so

that the imbalanced energy en(t) at microgrids can be driven to

zero. Therefore, designing the MO is equivalent to designing

the generation of the price signal λ(t). To that end, we let

λ(t) be the control law and minimize the energy of an output

vector that consists of en(t), n = 1, 2, ..., N as entries.

For convenience, we define

pg(t) =
[

pg1(t) pg2(t) ... pgN (t)
]T

pd(t) =
[

pd1(t) pd2(t) ... pdN
(t)

]T

e(t) =
[

e1(t) e2(t) ... eN (t)
]T

x(t) =
[

pg(t)
T pd(t)

T e(t)T
]T

.

(16)

At operating point ℓ, λ(t) is designed so that the energy of

the output vector

z(t) =
[

e(t)T ε(λ(t) − λ(ℓ))
]T

:= Cx(t) + ηλ̃(t)
(17)

is minimized, where

C =

[

0N×N 0N×N IN
01×N 01×N 01×N

]

, η =

[

0N×1

ε

]

, and

λ̃(t) = λ(t)− λ(ℓ).

(18)

In (17), λ̃(t) is multiplied by ε, a control parameter that



controls the tradeoff between the energy management perfor-

mance and the price signal deviation. Because the difference

between λ̃(t) and λ(t) is only the constant term λ(ℓ), we will

also call λ̃(t) the price signal. Once λ̃(t) has been generated,

λ(t) can be immediately recovered by λ(t) = λ(ℓ) + λ̃(t).

Using the DNO proposed in the previous subsection along

with the notation defined in (16), the overall network dynamics

in (13) can be compactly described as

ẋ(t) = Ax(t) + b(ℓ) + τλ(ℓ) + τλ̃(t) + ẽ(ℓ)v (t) (19)

in which

A =





−
cg

τg
IN 0N×N −

τk
τg
IN

0N×N diag( cd
τd

) 0N×N

IN −IN 0N×N



 ,

b
(ℓ) =





−h(ℓ)

bd

τd

v(ℓ)



 , τ =





1
τgN

1N×1

−
1N×1

τd
0N×1



 , and

ẽ
(ℓ)
v (t) =

[

0N×1
0N×1

ev
(ℓ)(t)

]

.

(20)

To design λ(t) or, equivalently, λ̃(t), we propose to use

fuzzy interpolation techniques to interpolate (19). The price

signal at the MO can then be designed as

λ(t) = λ(ℓ) + λ̃(t) = λ(ℓ) +
M
∑

m=1

α(ℓ)
m (t)(k(ℓ)

m )Tx(t) (21)

where α
(ℓ)
m (t),m = 1, 2, ...,M, represent fuzzy bases at

operating point ℓ, and k
(ℓ)
m ,m = 1, 2, ...,M, are design param-

eters that must be determined. By using the LMI approaches

introduced in [15], it can be shown that the parameters can

be evaluated by solving the LMI constraints described in the

following theorem.

Theorem 2: If there exist Y(ℓ) ∈ R
3N×3N , X

(ℓ)
m ∈

R
3N×3N , and q

(ℓ)
m ∈ R

3N×1 such that (22) at the top of the
next page is satisfied, then the H∞ condition

∫

z(t)T z(t)dt < (γ(ℓ))2
∫

w(t)Tw(t)dt (23)

can be satisfied for the output vector z(t) in (17) and some dis-

turbance vector w(t)1. The gain vectors k
(ℓ)
m can be recovered

by k
(ℓ)
m = (Y(ℓ))−1q

(ℓ)
m .

IV. NUMERICAL RESULTS

In this section, we describe numerical simulations that have

been performed to illustrate our proposed design for the MO

and DNO. A network consisting of N = 3 microgrids is

considered, and Table I lists the parameters used. Suppose

that a large L was used, and the set V defined in (8)

was constructed through long-term observation of v(t). The

network dynamics were simulated according to the scenario

in which three different operating regions were identified by

1For a matrix Z, Z ≻ 0 means Z is symmetric and positive definite. If
Z ≺ 0, then it is understood that −Z ≻ 0. In (22), the mark “⋆” is used
to denote the terms that can be induced by symmetry. In (23), γ(ℓ) > 0
represents the H∞ attenuation level.
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Fig. 2. Price signal λ(t) generated at the MO according to different schemes:
(a) ACE scheme with λ(t) ∈ [7.35, 7.65], (b) standard scheme with λ(t) ∈
[−1500, 1000], and (c) proposed scheme with λ(t) ∈ [1.5, 16].

TABLE I
NETWORK PARAMETERS

Microgrids (N=3)

τd1 = 0.32, τd2 = 0.27, τd3 = 0.19 in (3)

bd1 = 9.11, bd2 = 10.19, bd3 = 11.83 in (4)

cd1 = −0.37, cd2 = −0.34, cd3 = −0.65 in (4)

Power Grid

τg = 0.2, τk = 0.1 in (5)

bg = 2, cg = 0.4 in (6)

using (9) during the simulation period:

v(t) ≈







v(1), if t ∈ [0, 5],

v(2), if t ∈ (5, 10]
v(3), if t ∈ (10, 15]

where

v(1) =

[

0.09
2.92
0.21

]

,v(2) =

[

3.05
0.93
2.39

]

and v(3) =

[

1.24
1.06
1.51

]

.

(24)

At the DNO with v(ℓ) in (24), the corresponding h(ℓ) and

λ(ℓ) were obtained by solving (15), yielding

h
(1) =

[

5.48
3.97
0.55

]

,h
(2) =

[

9.13
−2.48
3.36

]

,h
(3) =

[

7.35
−0.21
2.86

]

λ
(1) = 7.7037, λ(2) = 7.3787, λ(3) = 7.6440.

Referring to (12) in Theorem 1, the initial conditions

pg1(0) = pg2(0) = ... = pgN (0) =
pg(0)

N

were chosen, where pg(0) is the initial condition at the power

grid.

Our proposed scheme was compared to the ACE [8] and

robust pricing schemes [11] with slight modifications. The

robust pricing scheme will be termed the standard scheme as

it was derived from a standard LMI design. We examine the

numerical results from various perspectives as follows.

A. λ(t) at MO

As discussed in [11], the vibration of price plays an impor-

tant role in managing the imbalanced energy at microgrids. In

Fig. 2, the standard and proposed schemes result in prominent

price vibration and, therefore, these schemes are expected to











(−A
(ℓ)
m (Y(ℓ))T − τ (q

(ℓ)
m )T , ⋆) −I3N X

(ℓ)
m + (Y(ℓ))T −Y(ℓ)(A

(ℓ)
m )T − q

(ℓ)
m τT Y(ℓ)CT + q

(ℓ)
m ηT

⋆ −(γ(ℓ))2I3N −I3N 03N×(N+1)

⋆ ⋆ (Y(ℓ))T +Y(ℓ) 03N×(N+1)

⋆ ⋆ ⋆ −IN+1









≺ 0,

X
(ℓ)
m ≻ 0,m = 1, 2, ...,M.

(22)

have better performance of energy management than the ACE

scheme. In Fig. 2(b), the standard scheme can produce negative

λ(t) from time to time. When λ(t) is used as an actual market

price that must be positive in all instances, such a pricing

scheme becomes unrealistic. Furthermore, the standard scheme

tends to have a price signal with larger and more intensive

vibration than the proposed scheme. By comparing Figs. 2(b)

to (c), we conclude that the proposed scheme can adjust λ(t)
more flexibly than the standard scheme.

B. pgn(t), pdn
(t) and vn(t)

Because the price signal affects the power distribution and

power demand, pgn(t) and pdn
(t) are expected to change more

smoothly in the ACE and proposed schemes than the standard

scheme. Fig. 3 provides an overall view on the relation

between pgn(t), pdn
(t) and vn(t). The standard scheme yields

highly vibration in pgn(t) and pdn
(t) as compared to the other

schemes. Furthermore, pgn(t) and pdn
(t) may assume negative

values during the simulation period. For the ACE scheme, the

power demand pdn
(t) seems to be insensitive to the changes

of pgn(t) and vn(t) in comparison with the proposed and

standard schemes. In contrast, the proposed scheme presents

an excellent pricing scheme as shown in Figs. 3(g)–(i): pgn(t)
increases upon decreasing vn(t), and decreases when vn(t)
increases; and pdn

(t) responses to the changes of pgn(t) and

vn(t) to facilitate the process of balancing the energy.

C. pg(t) at Power Grid and en(t) at Microgrids

Fig. 4 shows the power pg(t) generated at the power grid.

Unlike the ACE and proposed schemes, the standard scheme

produces both positive and negative values of pg(t). Although

we may interpret a negative value of pg(t) as power flow from

the microgrid back to the power grid, the power flow back and

forth between them could be troublesome to the whole power

system [16]2.

Finally, the performance of pricing schemes is assessed by

the ability to minimize |en(t)|, which is the main goal of

the MO design. In Fig. 5, the proposed and standard pricing

schemes, resulting in almost identical performance, outper-

form the ACE pricing scheme. In summary, the proposed

scheme is more appealing among the others: it keeps pg(t)
positive and hence is more practical than the standard scheme;

and it achieves better performance of energy management than

the ACE scheme.

2An LED load was considered and a power factor greater than 0.9 was
desired so that most of the energy flows smoothly into the load.

V. CONCLUSION

A joint design of DNO and MO has been proposed

for energy management in microgrid systems. The DNO is

designed by introducing auxiliary dynamical equations that

mimic the dynamics of power generation at the power grid.

The MO is designed by using an H∞ design together with

fuzzy interpolation techniques. The resulting pricing scheme

is different from existing schemes: a new LIM formulation

for the design of price generation is obtained in comparison

with a standard LMI formulation, yielding the capability of

adjusting the power generation, power distribution and power

demand more smoothly than a standard design.
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Fig. 3. Relationships among the distributed power pgn (t), power demand pdn(t), and power input vn(t) provided by RESs. Three pricing schemes are
compared: (a)–(c) ACE scheme, (d)–(f) standard scheme, and (g)–(i) proposed scheme.

0 5 10 15
11.5

12

12.5

13

13.5

14

14.5

p g(t
)

Time (t)
0 5 10 15

−40

−20

0

20

40

60

p g(t
)

Time (t)
0 5 10 15

12

12.5

13

13.5

14

14.5

p g(t
)

Time (t)

(a) (b) (c)

Fig. 4. Power generation pg(t) =
∑N

n=1 pgn(t) at the power grid, where pg(t) is generated by (a) ACE scheme, (b) standard scheme, and (c) proposed
scheme. Unlike the standard scheme in (b), the ACE scheme in (a) and the proposed scheme in (c) can keep pg(t) > 0 for all t.
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Fig. 5. Absolute value of imbalanced energy, |en(t)|, at each microgrid. “ACE”, “Std” and “Pro” in the legends represent the ACE, standard and proposed
pricing schemes, respectively. A smaller value of |en(t)| resulting from a particular pricing scheme means better performance of the corresponding MO. (a),
(b) and (c) show the resulting |en(t)| at microgrids 1,2, and 3, respectively. The proposed and standard schemes yield almost identical performance for energy
management, and they outperform the ACE scheme.


