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Abstract. If a graph has no induced subgraph isomorphic to any graph
in a finite family {H1, . . . , Hp}, it is said to be (H1, . . . , Hp)-free. The
class of H-free graphs has bounded clique-width if and only if H is an
induced subgraph of the 4-vertex path P4. We study the (un)boundedness
of the clique-width of graph classes defined by two forbidden induced
subgraphs H1 and H2. Prior to our study it was not known whether the
number of open cases was finite. We provide a positive answer to this
question. To reduce the number of open cases we determine new graph
classes of bounded clique-width and new graph classes of unbounded
clique-width. For obtaining the latter results we first present a new,
generic construction for graph classes of unbounded clique-width. Our
results settle the boundedness or unboundedness of the clique-width of
the class of (H1, H2)-free graphs
(i) for all pairs (H1, H2), both of which are connected, except two non-

equivalent cases, and
(ii) for all pairs (H1, H2), at least one of which is not connected, except 11

non-equivalent cases.
We also consider classes characterized by forbidding a finite family of
graphs {H1, . . . , Hp} as subgraphs, minors and topological minors, re-
spectively, and completely determine which of these classes have bounded
clique-width. Finally, we show algorithmic consequences of our results for
the graph colouring problem restricted to (H1, H2)-free graphs.
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1 Introduction

Clique-width is a well-known graph parameter studied both in a structural and in
an algorithmic context; we refer to the surveys of Gurski [24] and Kamiński, Lozin
and Milanič [27] for an in-depth study of the properties of clique-width. We are
interested in determining whether the clique-width of some given class of graphs
is bounded, that is, is there a constant c such that every graph from the class has
? The research in this paper was supported by EPSRC (EP/G043434/1 and
EP/K025090/1) and ANR (TODO ANR-09-EMER-010).



clique-width at most c. For this purpose we study classes of graphs in which one
or more specified graphs are forbidden as a “pattern”. In particular, we consider
classes of graphs that contain no graph from some specified family {H1, . . . ,Hp}
as an induced subgraph; such classes are said to be (H1, . . . ,Hp)-free. Our research
is well embedded in the literature, as there are many papers that determine the
clique-width of graph classes characterized by one or more forbidden induced
subgraphs; see e.g. [1,2,3,4,5,6,7,8,9,10,14,15,16,17,23,31,32,33,34].

As we show later, it is not difficult to verify that the class of H-free graphs
has bounded clique-width if and only if H is an induced subgraph of the 4-vertex
path P4. Hence, it is natural to consider the following problem:

For which pairs (H1, H2) does the class of (H1, H2)-free graphs have bounded
clique-width?

In this paper we address this question by narrowing the gap between the known
and open cases significantly; in particular we show that the number of open cases
is finite. We emphasise that the underlying research question is: what kind of
properties of a graph class ensure that its clique-width is bounded? Our paper is
to be interpreted as a further step towards this direction, and in our research
project (see also [3,15,17]) we aim to develop general techniques for attacking a
number of the open cases simultaneously.

Algorithmic Motivation. For problems that are NP-complete in general, one
naturally seeks to find subclasses of graphs on which they are tractable, and
graph classes of bounded clique-width have been studied extensively for this
purpose, as we discuss below.

Courcelle, Makowsky and Rotics [13] showed that all MSO1 graph problems,
which are problems definable in Monadic Second Order Logic using quantifiers
on vertices but not on edges, can be solved in linear time on graphs with clique-
width at most c, provided that a c-expression of the input graph is given. Later,
Espelage, Gurski and Wanke [19], Kobler and Rotics [28] and Rao [43] proved
the same result for many non-MSO1 graph problems. Although computing the
clique-width of a given graph is NP-hard, as shown by Fellows, Rosamond, Rotics
and Szeider [20], it is possible to find an (8c − 1)-expression for any n-vertex
graph with clique-width at most c in cubic time. This is a result of Oum [38]
after a similar result (with a worse bound and running time) had already been
shown by Oum and Seymour [39]. Hence, the NP-complete problems considered
in the aforementioned papers [13,19,28,43] are all polynomial-time solvable on
any graph class of bounded clique-width even if no c-expression of the input
graph is given.

As a consequence of the above, when solving an NP-complete problem on
some graph class G, it is natural to try to determine first whether the clique-
width of G is bounded. In particular this is the case if we aim to determine
the computational complexity of some NP-complete problem when restricted to
graph classes characterized by some common type of property. This property
may be the absence of a family of forbidden induced subgraphs H1, . . . ,Hp and
we may want to classify for which families of graphs H1, . . . ,Hp the problem is
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still NP-hard and for which ones it becomes polynomial-time solvable (in order
to increase our understanding of the hardness of the problem in general). We
give examples later.

Our Results. In Section 2 we state a number of basic results on clique-width
and two results on H-free bipartite graphs that we showed in a very recent
paper [17]; we need these results for proving our new results. We then identify a
number of new classes of (H1, H2)-free graphs of bounded clique-width (Section 3)
and unbounded clique-width (Section 4). In particular, the new unbounded cases
are obtained from a new, general construction for graph classes of unbounded
clique-width. In Section 5, we first observe for which graphs H1 the class of
H1-free graphs has bounded clique-width. We then present our main theorem
that gives a summary of our current knowledge of those pairs (H1, H2) for which
the class of (H1, H2)-free graphs has bounded clique-width and unbounded clique-
width, respectively.1 In this way we are able to narrow the gap to 13 open cases
(up to some equivalence relation, which we explain later); when we only consider
pairs (H1, H2) of connected graphs the number of non-equivalent open cases is
only two. In order to present our summary, we will need several results from the
papers listed above. We also consider graph classes characterized by forbidding a
finite family of graphs {H1, . . . ,Hp} as subgraphs, minors and topological minors,
respectively. For these containment relations we are able to completely determine
which of these classes have bounded clique-width.

Algorithmic Consequences. Our results are of interest for any NP-complete
problem that is solvable in polynomial time on graph classes of bounded clique-
width. In Section 6 we give a concrete application of our results by considering
the well-known Colouring problem, which is that of testing whether a graph
can be coloured with at most k colours for some given integer k and which is
solvable in polynomial time on any graph class of bounded clique-width [28].
The complexity of Colouring has been studied extensively for (H1, H2)-free
graphs [14,16,22,29,35,44], but a full classification is still far from being settled.
Many of the polynomial-time results follow directly from bounding the clique-
width in such classes. As such this forms a direct motivation for our research.

Related Work. We finish this section by briefly discussing one related result. A
graph class G has power-bounded clique-width if there is a constant r so that the
class consisting of all r-th powers of all graphs from G has bounded clique-width.
Recently, Bonomo, Grippo, Milanič and Safe [2] determined all pairs of connected
graphs H1, H2 for which the class of (H1, H2)-free graphs has power-bounded
clique-width. If a graph class has bounded clique-width, it has power-bounded
clique-width. However, the reverse implication does not hold in general. The latter
can be seen as follows. Bonomo et al. [2] showed that the class of H-free graphs

1 Before finding the combinatorial proof of our main theorem we first obtained a
computer-assisted proof using Sage [46] and the Information System on Graph Classes
and their Inclusions [18] (which keeps a record of classes for which boundedness
or unboundedness of clique-width is known). In particular, we would like to thank
Nathann Cohen and Ernst de Ridder for their help.
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has power-bounded clique-width if and only if H is a linear forest (recall that
such a class has bounded clique-width if and only if H is an induced subgraph
of P4). Their classification for connected graphs H1, H2 is the following. Let S1,i,j

be the graph obtained from a 4-vertex star by subdividing one leg i− 1 times
and another leg j − 1 times. Let T1,i,j be the line graph of S1,i,j . Then the class
of (H1, H2)-free graphs has power-bounded clique-width if and only if one of the
following two cases applies: (i) one of H1, H2 is a path or (ii) one of H1, H2 is
isomorphic to S1,i,j for some i, j ≥ 1 and the other one is isomorphic to T1,i′,j′
for some i′, j′ ≥ 1. In particular, the classes of power-unbounded clique-width
were already known to have unbounded clique-width.

2 Preliminaries

Below we define the graph terminology used throughout our paper. Let G be
a graph. The set N(u) = {v ∈ V (G) | uv ∈ E(G)} is the (open) neighbourhood
of u ∈ V (G) and N [u] = N(u) ∪ {u} is the closed neighbourhood of u ∈ V (G).
The degree of a vertex in a graph is the size of its neighbourhood. The maximum
degree of a graph is the maximum vertex degree. For a subset S ⊆ V (G), we
let G[S] denote the subgraph of G induced by S, which has vertex set S and edge
set {uv | u, v ∈ S, uv ∈ E(G)}. If S = {s1, . . . , sr} then, to simplify notation, we
may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. Let H be another graph.
We write H ⊆i G to indicate that H is an induced subgraph of G.

Let {H1, . . . ,Hp} be a set of graphs. We say that a graph G is (H1, . . . ,Hp)-
free if G has no induced subgraph isomorphic to a graph in {H1, . . . ,Hp}. If
p = 1, we may write H1-free instead of (H1)-free. The disjoint union G+H of
two vertex-disjoint graphs G and H is the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪E(H). We denote the disjoint union of r copies of G by rG.

For positive integers s and t, the Ramsey number R(s, t) is the smallest
number n such that all graphs on n vertices contain an independent set of size s
or a clique of size t. Ramsey’s Theorem [40] states that such a number exists for
all positive integers s and t.

The clique-width of a graph G, denoted cw(G), is the minimum number of
labels needed to construct G by using the following four operations:

1. creating a new graph consisting of a single vertex v with label i (denoted
by i(v));

2. taking the disjoint union of two labelled graphs G1 and G2 (denoted by
G1 ⊕G2);

3. joining each vertex with label i to each vertex with label j (i 6= j, denoted
by ηi,j);

4. renaming label i to j (denoted by ρi→j).

An algebraic term that represents such a construction of G and uses at most k
labels is said to be a k-expression of G (i.e. the clique-width of G is the minimum k
for which G has a k-expression). For instance, an induced path on four consecutive
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vertices a, b, c, d has clique-width equal to 3, and the following 3-expression can
be used to construct it:

η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))).

Alternatively, any k-expression for a graph G can be represented by a rooted tree,
where the leaves correspond to the operations of vertex creation and the internal
nodes correspond to the other three operations. The rooted tree representing
the above k-expression is depicted in Fig. 1. A class of graphs G has bounded
clique-width if there is a constant c such that the clique-width of every graph
in G is at most c; otherwise the clique-width of G is unbounded.

⊕

3(d)

ρ3→2 ρ2→1 η3,2 ⊕

3(c)

η2,1 ⊕

2(b)

1(a)η3,2

Fig. 1: The rooted tree representing a 3-expression for P4.

Let G be a graph. The complement of G, denoted by G, has vertex set
V (G) = V (G) and an edge between two distinct vertices if and only if these
vertices are not adjacent in G.

Let G be a graph. We define the following five operations. The contraction
of an edge uv removes u and v from G, and replaces them by a new vertex
made adjacent to precisely those vertices that were adjacent to u or v in G. By
definition, edge contractions create neither self-loops nor multiple edges. The
subdivision of an edge uv replaces uv by a new vertex w with edges uw and vw.
Let u ∈ V (G) be a vertex that has exactly two neighbours v, w, and moreover
let v and w be non-adjacent. The vertex dissolution of u removes u and adds
the edge vw. For an induced subgraph G′ ⊆i G, the subgraph complementation
operation (acting on G with respect to G′) replaces every edge present in G′ by
a non-edge, and vice versa. Similarly, for two disjoint vertex subsets X and Y
in G, the bipartite complementation operation with respect to X and Y acts on G
by replacing every edge with one end-vertex in X and the other one in Y by a
non-edge and vice versa.

We now state some useful facts for dealing with clique-width. We will use
these facts throughout the paper. Let k ≥ 0 be a constant and let γ be some
graph operation. We say that a graph class G′ is (k, γ)-obtained from a graph
class G if the following two conditions hold:

(i) every graph in G′ is obtained from a graph in G by performing γ at most k
times, and

(ii) for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.
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If we do not impose a finite upper bound k on the number of applications of γ
then we write that G′ is (∞, γ)-obtained from G.

We say that γ preserves boundedness of clique-width if for any finite constant k
and any graph class G, any graph class G′ that is (k, γ)-obtained from G has
bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [31].
Fact 2. Subgraph complementation preserves boundedness of clique-width [27].
Fact 3. Bipartite complementation preserves boundedness of clique-width [27].
Fact 4. For a class of graphs G of bounded maximum degree, let G′ be a class of

graphs that is (∞, es)-obtained from G, where es is the edge subdivision
operation. Then G has bounded clique-width if and only if G′ has bounded
clique-width [27].

For r ≥ 1, the graphs Cr, Kr, Pr denote the cycle, complete graph and path
on r vertices, respectively, and the graph K1,r denotes the star on r + 1 vertices.
The graph K1,3 is also called the claw. For 1 ≤ h ≤ i ≤ j, let Si,j,k denote the
tree that has only one vertex x of degree 3 and that has exactly three leaves,
which are of distance i, j and k from x, respectively. Observe that S1,1,1 = K1,3.
A graph Si,j,k is said to be a subdivided claw. We let S be the class of graphs
each connected component of which is either a subdivided claw or a path.

The following lemma is well known.

Lemma 1 ([32]). Let {H1, . . . ,Hp} be a finite set of graphs. If Hi /∈ S for
i = 1, . . . , p then the class of (H1, . . . ,Hp)-free graphs has unbounded clique-
width.

We say that G is bipartite if its vertex set can be partitioned into two (possibly
empty) independent sets B and W . We say that (B,W ) is a bipartition of G.
Lozin and Volz [33] characterized all bipartite graphs H for which the class
of strongly H-free bipartite graphs has bounded clique-width (see [17] for the
definition of strongly). Recently, we proved a similar characterization for H-free
bipartite graphs; we will use this result in Section 5.

Lemma 2 ([17]). Let H be a graph. The class of H-free bipartite graphs has
bounded clique-width if and only if one of the following cases holds: H = sP1 for
some s ≥ 1, H ⊆i K1,3 +3P1, H ⊆i K1,3 +P2, H ⊆i P1 +S1,1,3, or H ⊆i S1,2,3.

From the same paper we will also need the following lemma.

Lemma 3 ([17]). Let H ∈ S. Then H is (2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2,
2P3)-free if and only if H = sP1 for some integer s ≥ 1 or H is an induced
subgraph of one of the graphs in {K1,3 + 3P1,K1,3 + P2, P1 + S1,1,3, S1,2,3}.

We say that a graph G is complete multipartite if V (G) can be partitioned
into k independent sets V1, . . . , Vk for some integer k, such that two vertices are
adjacent if and only if they belong to two different sets Vi and Vj . The next result
is due to Olariu [37] (the graph P1 + P3 is also called the paw).
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Lemma 4 ([37]). Every connected (P1 + P3)-free graph is either complete mul-
tipartite or K3-free.

Every complete multipartite graph has clique-width at most 2. Also, the
definition of clique-width directly implies that the clique-width of any graph is
equal to the maximum clique-width of its connected components. Hence, Lemma 4
immediately implies the following (well-known) result.

Lemma 5. For any graph H, the class of (P1 + P3, H)-free graphs has bounded
clique-width if and only if the class of (K3, H)-free graphs has bounded clique-
width.

Kratsch and Schweitzer [30] proved that the Graph Isomorphism problem
is graph-isomorphism-complete for the class of (K4, P1 + P4)-free graphs. It
is a straightforward exercise to simplify their construction and use analogous
arguments to prove that the class of (K4, P1 + P4)-free graphs has unbounded
clique-width. Very recently, Schweitzer [45] showed that any graph class that
allows a so-called simple path encoding has unbounded clique-width, implying
this result as a direct consequence.

Lemma 6 ([45]). The class of (K4, P1 + P4)-free graphs has unbounded clique-
width.

3 New Classes of Bounded Clique-width

In this section we identify two new graph classes that have bounded clique-width,
namely the classes of (P1 + P3, P1+S1,1,2)-free graphs and (P1 + P3,K1,3+3P1)-
free graphs. We omit the proofs of both these results. The proof of the first result
uses a similar approach to that used by Dabrowski, Lozin, Raman and Ries [16]
to prove that the classes of (K3, S1,1,3)-free and (K3,K1,3 +P2)-free graphs have
bounded clique-width.

Theorem 1. The class of (P1 + P3, P1 + S1,1,2)-free graphs has bounded clique-
width.

Theorem 2. The class of (P1 + P3,K1,3 + 3P1)-free graphs has bounded clique-
width.

4 New Classes of Unbounded Clique-width

In order to prove our results, we first present a general construction for obtaining
graph classes of unbounded clique-width. We then use our construction to obtain
two new classes of unbounded clique-width. Our construction generalizes the
constructions used by Golumbic and Rotics [23],2 Brandstädt et al. [4] and Lozin
2 The class of (square) grids was first shown to have unbounded clique-width by
Makowsky and Rotics [34]. The construction of [23] determines the exact clique-width
of square grids and narrows the clique-width of non-square grids to two values.
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and Volz [33] to prove that the classes of square grids, K4-free co-chordal graphs
and 2P3-free graphs, respectively, have unbounded clique-width.

Theorem 3. For m ≥ 0 and n > m + 1 the clique-width of a graph G is at
least b n−1m+1c+ 1 if V (G) has a partition into sets Vi,j(i, j ∈ {0, . . . , n}) with the
following properties:

1. |Vi,0| ≤ 1 for all i ≥ 1.
2. |V0,j | ≤ 1 for all j ≥ 1.
3. |Vi,j | ≥ 1 for all i, j ≥ 1.
4. G[∪nj=0Vi,j ] is connected for all i ≥ 1.
5. G[∪ni=0Vi,j ] is connected for all j ≥ 1.
6. For i, j, k ≥ 1, if a vertex of Vk,0 is adjacent to a vertex of Vi,j then i ≤ k.
7. For i, j, k ≥ 1, if a vertex of V0,k is adjacent to a vertex of Vi,j then j ≤ k.
8. For i, j, k, ` ≥ 1, if a vertex of Vi,j is adjacent to a vertex of Vk,` then
|k − i| ≤ m and |`− j| ≤ m.

Proof. Fix integers n,m with m ≥ 0 and n > m+ 1, and let G be a graph with
a partition as described above. For i > 0 we let Ri = ∪nj=0Vi,j be a row of G
and for j > 0 we let Cj = ∪ni=0Vi,j be a column of G. Note that G[Ri] and G[Cj ]
are non-empty by Property 3. They are connected graphs by Properties 4 and 5,
respectively.

Consider a k-expression for G. We will show that k ≥ b n−1m+1c+ 1. As stated
in Section 2, this k-expression can be represented by a rooted tree T , whose
leaves correspond to the operations of vertex creation and whose internal nodes
correspond to the other three operations (see Fig. 1 for an example). We denote
the subgraph of G that corresponds to the subtree of T rooted at node x by G(x).
Note that G(x) may not be an induced subgraph of G as missing edges can be
added by operations corresponding to ηi,j nodes higher up in T .

Let x be a deepest (i.e. furthest from the root) ⊕ node in T such that G(x)
contains an entire row or an entire column of G (the node x may not be unique).
Let y and z be the children of x in T . Colour all vertices in G(y) blue and all
vertices in G(z) red. Colour all remaining vertices of G yellow. Note that a vertex
of G appears in G(x) if and only if it is coloured either red or blue and that
there is no edge in G(x) between a red and a blue vertex. Due to our choice of x,
G contains a row or a column none of whose vertices are yellow, but no row or
column of G is entirely blue or entirely red. Without loss of generality, assume
that G contains a non-yellow column.

Because G contains a non-yellow column, each row of G contains a non-yellow
vertex, by Property 3. Since no row is entirely red or entirely blue, every row
of G is therefore coloured with at least two colours. Let Ri be an arbitrary row.
Since G[Ri] is connected, there must be two adjacent vertices vi, wi ∈ Ri in G,
such that vi is either red or blue and wi has a different colour than vi. Note
that vi and wi are therefore not adjacent in G(x) (recall that if wi is yellow then
it is not even present as a vertex of G(x)).
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Now consider indices i, k ≥ 1 with k > i + m. By Properties 6 and 8, no
vertex of Ri is adjacent to a vertex of Rk \ Vk,0 in G. Therefore, since |Vk,0| ≤ 1
by Property 1, we conclude that either vi and wi are not adjacent to vk in G,
or vi and wi are not adjacent to wk in G. In particular, this implies that wi is not
adjacent to vk in G or that wk is not adjacent to vi in G. Recall that vi and wi are
adjacent inG but not inG(x), and the same holds for vk and wk. Hence, a ηi,j node
higher up in the tree, makes wi adjacent to vi but not to vk, or makes wk adjacent
to vk but not to vi. This means that vi and vk must have different labels in G(x).
We conclude that v1, v(m+1)+1, v2(m+1)+1, v3(m+1)+1, . . . , v(b n−1

m+1c)(m+1)+1 must
all have different labels in G(x). Hence, the k-expression of G uses at least
b n−1m+1c+ 1 labels. ut

We now use Theorem 3 to determine two new graph classes that have un-
bounded clique-width. We omit the proofs.

Theorem 4. The class of (P6, 2P1 + P2)-free graphs has unbounded clique-width.

Theorem 5. The class of (3P2, P2 +P4, P6, P1 + P4)-free graphs has unbounded
clique-width.

5 Classifying Classes of (H1,H2)-Free Graphs

In this section we study the boundedness of clique-width of classes of graphs
defined by two forbidden induced subgraphs. Recall that this study is partially
motivated by the fact that it is easy to obtain a full classification for the bounded-
ness of clique-width of graph classes defined by one forbidden induced subgraph,
as shown in the next theorem (we omit the proof). This classification does not
seem to have previously been explicitly stated in the literature.

Theorem 6. Let H be a graph. The class of H-free graphs has bounded clique-
width if and only if H is an induced subgraph of P4.

We are now ready to study classes of graphs defined by two forbidden induced
subgraphs. Given four graphs H1, H2, H3, H4, we say that the class of (H1, H2)-
free graphs and the class of (H3, H4)-free graphs are equivalent if the unordered
pair H3, H4 can be obtained from the unordered pair H1, H2 by some combination
of the following operations:

1. complementing both graphs in the pair;
2. if one of the graphs in the pair is K3, replacing it with P1 + P3 or vice versa.

By Fact 2 and Lemma 5, if two classes are equivalent then one has bounded
clique-width if and only if the other one does. Given this definition, we can
now classify all classes defined by two forbidden induced subgraphs for which
it is known whether or not the clique-width is bounded. This includes both
the already-known results and our new results. We will later show that (up to
equivalence) this leaves only 13 open cases.
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Theorem 7. Let G be a class of graphs defined by two forbidden induced sub-
graphs. Then:

(i) G has bounded clique-width if it is equivalent to a class of (H1, H2)-free
graphs such that one of the following holds:
1. H1 or H2 ⊆i P4;
2. H1 = sP1 and H2 = Kt for some s, t;
3. H1 ⊆i P1 + P3 and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + S1,1,2, P6 or

S1,1,3;
4. H1 ⊆i 2P1 + P2 and H2 ⊆i 2P1 + P3, 3P1 + P2 or P2 + P3;
5. H1 ⊆i P1 + P4 and H2 ⊆i P1 + P4 or P5;
6. H1 ⊆i 4P1 and H2 ⊆i 2P1 + P3;
7. H1, H2 ⊆i K1,3.

(ii) G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free
graphs such that one of the following holds:
1. H1 6∈ S and H2 6∈ S;
2. H1 /∈ S and H2 6∈ S;
3. H1 ⊇i K1,3 or 2P2 and H2 ⊇i 4P1 or 2P2;
4. H1 ⊇i P1 + P4 and H2 ⊇i P2 + P4;
5. H1 ⊇i 2P1 + P2 and H2 ⊇i K1,3, 5P1, P2 + P4 or P6;
6. H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3;
7. H1 ⊇i 4P1 and H2 ⊇i P1 + P4 or 3P1 + P2.

Proof. We first consider the bounded cases. Statement (i).1 follows from The-
orem 6. To prove Statement (i).2 note that if H1 = sP1 and H2 = Kt for
some s, t then by Ramsey’s Theorem, all graphs in the class of (H1, H2)-free
graphs have a bounded number of vertices and therefore the clique-width of
graphs in this class is bounded. By the definition of equivalence, when proving
Statement (i).3, we may assume that H1 = K3. Then Statement (i).3 follows
from Fact 2 combined with the fact that (K3, H)-free graphs have bounded
clique-width if H is K1,3 + 3P1 (Theorem 2), K1,3 + P2 [16], P1 + S1,1,2 (Theo-
rem 1), P6 [5] or S1,1,3 [16]. Statement (i).4 follows from Fact 2 and the fact that
(2P1 + P2, 2P1 + P3)-free, (2P1 + P2, 3P1 + P2)-free and (2P1 + P2, P2 + P3)-free
graphs have bounded clique-width [15]. Statement (i).5 follows from Fact 2 and the
fact that both (P1+P4, P1 + P4)-free graphs [7] and (P5, P1 + P4)-free graphs [8]
have bounded clique-width. Statement (i).6 follows from Fact 2 and the fact that
(2P1 +P3,K4)-free graphs have bounded clique-width [3]. Statement (i).7 follows
from the fact that (K1,3,K1,3)-free graphs have bounded clique-width [1,9].

We now consider the unbounded cases. Statements (ii).1 and (ii).2 follow from
Lemma 1 and Fact 2. Statement (ii).3 follows from the fact that the classes of
(C4,K1,3,K4, 2P1 + P2)-free [4], (K4, 2P2)-free [4] and (C4, C5, 2P2)-free graphs
(or equivalently, split graphs) [34] have unbounded clique-width. Statement (ii).4
follows from Fact 2 and the fact that the class of (P2 + P4, 3P2, P6, P1 + P4)-
free (Theorem 5) graphs have unbounded clique-width. Statement (ii).5 follows
from Fact 2 and the fact that (C4,K1,3,K4, 2P1 + P2)-free [4], (5P1, 2P1 + P2)-
free [14], (2P1 + P2, P2 + P4)-free (see arXiv version of [15]) and (P6, 2P1 + P2)-
free (Theorem 4) graphs have unbounded clique-width. To prove Statement (ii).6,
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suppose H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3. Then
H1 6∈ S, so H2 ∈ S, otherwise we are done by Statement (ii).2. By Lemma 3, H2 is
not an induced subgraph of any graph in {K1,3+3P1,K1,3+P2, P1+S1,1,3, S1,2,3}.
The class of (H1, H2)-free graphs contains the class of complements of H2-free
bipartite graphs. By Fact 2 and Lemma 2, this latter class has unbounded clique-
width. Statement (ii).7 follows from the Fact 2 and the fact that the classes of
(K4, P1 + P4)-free graphs (Lemma 6) and (4P1, 3P1 + P2)-free graphs [14] have
unbounded clique-width. ut

As we will prove in Theorem 8, the above classification leaves exactly 13 open
cases (up to equivalence).

Open Problem 1 Does the class of (H1, H2)-free graphs have bounded clique-
width when:

1. H1 = 3P1, H2 ∈ {P1 +P2 +P3, P1 +2P2, P1 +P5, P1 + S1,1,3, P2 +P4, S1,2,2,
S1,2,3};

2. H1 = 2P1 + P2, H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5};
3. H1 = P1 + P4, H2 ∈ {P1 + 2P2, P2 + P3} or
4. H1 = H2 = 2P1 + P3.

Note that the two pairs (3P1, S1,1,2) and (3P1, S1,2,3), or equivalently, the two
pairs (K3, S1,2,2) and (K3, S1,2,3) are the only pairs that correspond to open
cases in which both H1 and H2 are connected. We also observe the following. Let
H2 ∈ {P1+P2+P3, P1+2P2, P1+P5, P1+S1,1,3, P2+P4, S1,2,2, S1,2,3}. Lemma 2
shows that all bipartite H2-free graphs have bounded clique-width. Moreover, the
graph P1 + 2P2 is an induced subgraph of H2. Hence, for investigating whether
the boundedness of the clique-width of bipartite H2-free graphs can be extended
to (K3, H2)-free graphs, the H2 = P1 + 2P2 case is the starting case.

Theorem 8. Let G be a class of graphs defined by two forbidden induced sub-
graphs. Then G is not equivalent to any of the classes listed in Theorem 7 if and
only if it is equivalent to one of the 13 cases listed in Open Problem 1.

A graph G is (H1, . . . ,Hp)-subgraph-free if G has no subgraph isomorphic to
a graph in {H1, . . . ,Hp}. Let G and H be graphs. Then G contains H as a minor
or topological minor if G can be modified into H by a sequence that consists
of edge contractions, edge deletions and vertex deletions, or by a sequence that
consists of vertex dissolutions, edge deletions and vertex deletions, respectively.
If G does not contain any of the graphs H1, . . . ,Hp as a (topological) minor, we
say that G is (H1, . . . ,Hp)-(topological-)minor-free. We omit the proof of the
following result, which completely characterizes which of these graph classes have
bounded clique-width.

Theorem 9. Let {H1, . . . ,Hp} be a finite set of graphs. Then the following
statements hold:

(i) The class of (H1, . . . ,Hp)-subgraph-free graphs has bounded clique-width if
and only if Hi ∈ S for some 1 ≤ i ≤ p.
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(ii) The class of (H1, . . . ,Hp)-minor-free graphs has bounded clique-width if and
only if Hi is planar for some 1 ≤ i ≤ p.

(iii) The class of (H1, . . . ,Hp)-topological-minor-free graphs has bounded clique-
width if and only if Hi is planar and has maximum degree at most 3 for
some 1 ≤ i ≤ p.

6 Consequences for Colouring

One of the motivations of our research was to further the study of the computa-
tional complexity of the Colouring problem for (H1, H2)-free graphs. Recall
that Colouring is polynomial-time solvable on any graph class of bounded
clique-width by combining results of Kobler and Rotics [28] and Oum [38]. By
combining a number of known results [11,12,16,22,29,35,41,42,44] with new re-
sults, Dabrowski, Golovach and Paulusma [14] presented a summary of known
results for Colouring restricted to (H1, H2)-free graphs. Combining Theorem 7
with the results of Kobler and Rotics [28] and Oum [38] and incorporating a
number of recent results [25,26,36] leads to an updated summary. This updated
summary (and a proof of it) can be found in the recent survey paper of Golovach,
Johnson, Paulusma and Song [21].

From this summary we note that not only the case when H1 = P4 or H2 = P4

but thirteen other maximal classes of (H1, H2)-free graphs for which Colouring
is known to be polynomial-time solvable can be obtained by combining Theorem 7
with the results of Kobler and Rotics [28] and Oum [38] (see also [21]). One
of these thirteen classes is one that we obtained in this paper (Theorem 2),
namely the class of (K1,3 + 3P1, P1 + P3)-free graphs, for which Colouring
was not previously known to be polynomial-time solvable. Note that Dabrowski,
Lozin, Raman and Ries [16] already showed that Colouring is polynomial-time
solvable for (P1 + P3, P1 +S1,1,2)-free graphs, but in Theorem 1 we strengthened
their result by showing that the clique-width of this class is also bounded.

Theorem 8 shows that there are 13 classes of (H1, H2)-free graphs (up to
equivalence) for which we do not know whether their clique-width is bounded.
These classes correspond to 28+6+4+1=39 distinct classes of (H1, H2)-free
graphs. The complexity of Colouring is unknown for only 15 of these classes.
We list these cases below:

1. H1 ∈ {3P1, P1 + P3} and H2 ∈ {P1 + S1,1,3, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5};
3. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5};
4. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
5. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
6. H1 = H2 = 2P1 + P3.

Note that Case 1 above reduces to two subcases by Lemma 4. All classes of
(H1, H2)-free graphs, for which the complexity of Colouring is still open and
which are not listed above have unbounded clique-width. Hence, new techniques
will need to be developed to deal with these classes.
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