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Abstract—We describe basic properties of Markov chains on
finite state spaces and their application to Green functions, partial
differential equations, and their (approximate) solution using
random walks on a graph. Attention is paid to the influence of
boundary conditions (Dirichlet/von Neumann). We apply these
ideas to the study of traffic propagation and distribution in ad
hoc networks.

I. INTRODUCTION

In ad hoc and sensor networks, determining traffic intensity
patterns is one of the most important issues. Indeed, one of the
performance measures of routing protocols is data transmis-
sion delay and throughput, which respectively depend on levels
of congestion in the network and collisions occurring when
too many nodes try to access the transmission medium. In fact,
both congestion and collisions directly depend on the intensity
of the traffic that each node is expected to relay for a given
routing protocol. In general, when no congestion is present, the
shortest path routing protocol provides the best performance in
terms of delay, since the data travel from source to destination
using the shortest path through the network. However, this
protocol has been shown to lead to severe congestion and
collisions problems when the traffic generated by each node
is high [1], [2]. In this case, it is preferable to balance the
load of traffic between source and destination by splitting the
initial flow of data onto parallel paths. The design of such load
balance routing has to take into account the distribution of the
traffic as well as the performance in terms of delay. Moreover,
whether such load balancing is actually needed depends on the
level of congestion when shortest path routing is used. Hence,
a method for systematically analysing the traffic patterns in
the network is needed.

In their study of traffic distribution and routing in ad
hoc networks [1], [2], Pham and Perreau proved that the traffic
relayed by each node is proportional to the number of shortest
paths going through this node. Then they showed that for a
circular network with radius R, the number of such paths for
a node y(r) located at a distance r from the centre of the
network is

π

2
ρ2 β (R2 − r2)2 , (1)

where ρ denotes the (uniform) spatial density of nodes and

β is a (small) allowed deflection angle wrt. the shortest path
(see Fig. 1).
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Fig. 1. A circular lattice zone

While this expression is a reasonable approximation of the
traffic pattern, the deflection angle can only be determined
heuristically. Moreover, the methodology does not extend to
load balancing routing protocols, so that their performance is
difficult to predict with accuracy.

In this paper, we generalize the results of [1], [2] using the
formalism of Green functions. (Further details can be found
in [3].) In sections II and III, we recall how to find approximate
solutions to PDEs using diffusion walks on discrete graphs
(lattices) for various boundary and source conditions, and note
that the solutions known as discrete Green functions count
the number of paths between two nodes under these diffusion
processes. In section IV, we follow a parallel continuous
analysis, and thereby reproduce the result of [1], [2] in this
more general setting.

II. DISCRETIZATION OF A CLASS OF LINEAR (ELLIPTIC)
PDES

We consider a finite state space E with cardinality N ,
typically a (regular) subset of ZZd, and the vector space
E = IR|E| of real bounded functions mapping E to IR:

x 7→ f(x)

whose canonical basis vectors are functions ey(x) = 1lx=y .
Following [4], [5], we search for f ∈ E such that:

γ (A− I) f = φ , φ ∈ E , A ∈ L(E)

(eventually) subject to

f(xs) = b(xs) known ∀xs ∈ B ⊂ E

(2)



Here γ is a constant, and B represents the boundary of domain
E viewed as a d-dimensional discrete lattice.

A. Basic example: 2D Laplace and Poisson equations

E is now a discrete regular sublattice of ZZ2 with lattice step
h. It is endowed with an undirected, connected graph structure,
where the neighbourhood relationship is denoted xt ∼ xs, e.g.
4-connectivity. The Laplace-Beltrami operator, defined as

∆f(xs) = (
∂2f

∂x2
+
∂2f

∂y2
)(xs)

has the following discrete approximation:

∆f(xs) ≈

[
∑

xt∼xs

f(xt)]− 4f(xs)

h2
.

Thus ∆f ≈ γ(A − I)f with γ =
4
h2

and (Af)(xs) =
1
4
[
∑

xt∼xs

f(xt)], ∀xs ∈ E . In other words, A is an averaging

operator. It is important to note that the associated matrix,

whose elements are Axs xt =
1
4
1lxs∼xt is a stochastic matrix

(on E).

B. Boundary conditions: a linear algebra point of view

Splitting E into boundaries and non-boundaries, the follow-
ing decomposition holds:

E = Ẽ ∪ B (state space)
E = Ẽ ⊕B (functional vector space)
f = f̃ + b (functions) .

The problem (2) can thus be written:

γ (A− I) f̃ = φ+ γ (I −A) b with A ∈ L(E) .

Let us denote by P̃ the linear projector on Ẽ with kernel B.
One has then: f̃ = P̃ f = P̃ f̃ and P̃ b = 0. Left-application
of P̃ to previous equation yields:

γ (Ã− I) f̃ = ψ = P̃ φ− γ P̃A b (3)

with Ã = P̃A ∈ L(Ẽ). Also note that P̃AP̃ = ÃP̃ and
P̃ φ are the restrictions of A (resp. φ) to Ẽ. For the Laplace-
Beltrami operator, one obtains:

γ P̃A b(xs) =
∑

xt∼xs

xt∈B

b(xt) ∀xs ∈ Ẽ .

In the sequel, A will often be a stochastic matrix (cf. the
Poisson-Laplace case) so that 1 is an eigenfunction of A with
eigenvalue λ1 = 1. For a connected lattice [6] the multiplicity
of λ1 is 1 and all other eigenvalues verify |λi| < 1.

If the operator I−A (resp. I− Ã) were invertible (assump-
tion (a)), then

f̃ = − 1
γ

(I− Ã)−1 ψ , (4)

meaning that the the ‘discrete’ Green function Gx y i.e. the

solution of (2) for φ(x) =
1lx=y

h2
=

ey

h2
, would have the

following closed form for null boundary conditions b = 0:1

Gx y = − 1
4

[(I− Ã)−1ey ](x) = − 1
4

[(I− Ã)−1]x y (5)

By the previous argument (|λi| < 1), this expression could
then be expanded:

Gx y = −1
4

(∑
M≥0

(Ã M )x y

)
x, y ∈ Ẽ . (6)

If, moreover, A (resp. Ã) were stochastic (assumption (b)),
then one could write:

γ f̃ = −
+∞∑
M=0

(Ã)M ψ = −
+∞∑
M=0

IE [ψ(XM ) ] , (7)

where the expectation should be taken wrt. the Markov chain
with transition matrix A (or Ã), i.e. the ‘isotropic’ 2D discrete
random walk in the plane (Fig. 2)2 This was known as early
as [7], [8]. However, assumptions (a) and (b) do not always
hold. Conditions for the convergence of the series (6) will be
given in the sequel, based on a Markov Random Field (MRF)
analysis.
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Fig. 2. Isotropic discrete random walk in the plane.

C. Laplacian on graphs and Gaussian Markov Random Fields

The (quadratic) energy functional associated to the Laplace-
Beltrami operator is [6]:

U(f) =
∑

xs∼xt

as,t(f(xs)− f(xt))2 ,

where the positive weights as,t are denoted by a comma
to emphasize that they are symmetric (most often they are
equal to 1 in our case of interest, e.g. Laplace-Poisson). This
corresponds of course to a Gaussian Markov Random Field.

1) Dirichlet boundary conditions: Let us minimize U(f)
subject to f(xs) = b(xs) ∀xs ∈ B. This corresponds to
solving problem (3) with φ = 0, and one thus finds:

(1− Ã)f̃ = P̃ A b and

Ãst =
as,t∑

xt∼xs

as,t

⇒ A is a Laplace-like operator. .

1We divide unit function ey by unit cell size h2 since it yields a ‘discrete
approximation’ of the δ distribution. This can be seen for instance by the
fact that:

∑
y∈E

ey

h2
h2 = 1. Notice also that h disappears in following discrete

linear equations due to the particular case of a 2nd degree PDE in 2D.
2Recall that ψ = P̃ φ− γ P̃A b (see (3)).



The boundary conditions of this Laplace-like problem cor-
respond to absorption (see subsection III). In this case the
matrix Ã is both symmetric and semi-stochastic:∑

t

|Ãst| < 1 when ∃ xt ∼ xs s.t. xt ∈ Bi.e. near boundaries,

and has also no stable subspace. Under these conditions, a
theorem by [9] shows that I− Ã is invertible and thus that the
series expansions (6) and (7) do converge.

2) Von Neumann boundary conditions: To each node xs ∈
B, we associate a new node x0

s connected to s only (Fig. (3)).
We denote the related set of sites (states) by: B̃ = {x0

s}xs∈B.

xs x0
s

B B̃

Fig. 3. Von Neumann boundary conditions.

The energy function on the extended lattice is now defined
as:

U(f) =
∑

xs∼xt

as,t(f(xs)−f(xt))2 + ε
∑
s∈B

(f(xs)−f(x0
s))

2 ,

with ε > 0. Minimizing wrt. x0
s yields:

f(x0
s) = f(xs) , (8)

which is the discrete analogue of the Von Neumann condition:

(
∂f

∂~n
)xs

= 0. The positive coefficient ε is chosen such that
ε � min

xs∼xt

as,t, in order not to perturb the optimal value at
sites xs ∈ B, and thus:

f(xs) =

∑
xt∼xs

as,tf(xt) + εf(x0
s)∑

xt∼xs

as,t + ε
. (9)

In this case the matrix A is positive stochastic and non-
symmetric. Indeed from (8) one has:

Ax0
sxs

= 1 and Axsx0
s

=
ε∑

xt∼xs

as,t + ε
� 1 ∀xs ∈ B .

Under these conditions, a theorem by [10] based on Markov
chain convergence proves that if problem (3) has a solution,
then the series expansion:

∑
M≥0

(AM ) ψ converges to it (al-

though the matrix series itself may not converge).

III. INTERPRETATION IN TERMS OF MARKOV CHAINS

We saw in previous sections that in many cases the matrix A
is stochastic and hence the generic term in the series (AM )x y

can be interpreted as a transition probability for the Markov
chain with transition matrix A. Since we need to consider
ÃM , as well as introduce absorbing states (see afterwards:
Dirichlet conditions), it might be dangerous to modify Ã in
order to tailor it to a given application. The best procedure
is described by [5] and [4]: design a specific Markov chain3

with initial probability P0 adapted to the solution, and whose
stochastic transition matrix Q is as close as possible to Ã.

For instance consider the problem (3). The solution being
f , and given a measure µ on E , we want to evaluate:

µ(f) =
∑
x0∈E

µ(x0) f(x0) .

We consider for this purpose a Markov chain on E ∪ {a},
where a is a new, absorbing state. This chain being specified
by (P0, Q), we consider the random variable

Z ′ =
µ(x0)
P0(x0)

 ∏
XM+1 6=a

ÃXM XM+1

QXM XM+1

 ψ(Xτ )
QXτ a

. (10)

It must be understood here that τ + 1 is the hitting time to
absorbing state a starting from x0 i.e.

XM+1 6= Xτ+1 = a ∀M < τ .

The theory states that whatever the Markov chain considered,

−µ(f) = IE [Z ′ ] w.r.t. the chosen Markov chain,

where the sign arises from (6). This expression can be ap-
proximated by averaging the empirical values of Z ′ over Ns

simulations of the Markov chain prescribed by (P0, Q):

−µ(f) =

(
Ns∑
i=1

Z ′(i)

)
/ Ns .

In practice one chooses
P0(x0) = µx0

Qxs xt
= Ãxs xt

xs, xt ∈ Ẽ
Qy a = 1

.

The only difference is that a is an absorbing state for this
Markov chain, e.g. linked to a Dirichlet boundary value or to
a data node, so that finally (recall that ψ is defined in (3)):

Z ′ = ψ(Xτ ) s.t. Xτ+1 = a .

The solution is thus estimated by the empirical average of
values at nodes (states) connected to the absorbing state a. 4

3This is one of the first instances of sequential importance sampling [11].
4It is important to note the backward aspect of these equations: for

instance, y is treated as a sink here whereas it is obviously a ‘source’.
This relates to backward Kolmogorov-Chapman vs. Fokker-Planck forward
equations.
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Fig. 4. Stochastic paths for various boundary conditions. Left: Dirichlet;
right: von Neumann.

IV. APPLICATION TO PATH ROUTING IN ad hoc NETWORKS

We show in this section that the previous results are related
to modelling the number of paths arriving at a given point in
a regular ad hoc network. During the course of this work we
were not aware of the excellent work of [12]–[14]. Interesting
developments on ad hoc networks are also found in [15], [16].
An application to Internet page finding is found in [17].
In [18]–[20] the authors define a load density vector field
and minimize its total quadratic (L2) dispersion subject to a
divergence conservation law by analogy with electrostatics. A
recent survey of related works is detailed in [21].

A. Two main applications of the discrete Poisson problem

We consider two applications of preceding results.
1) Markov Chain simulation of Gx0 y : This corresponds

to choosing µ(x) = 1lx=x0 , and thus to the following:
• P0(x) = µ(x) = 1lx=x0

• The ‘sink’ node y is assigned to the absorbing state a
• The boundary conditions:

– von Neumann: since the optimal solution should
satisfy f(x0

s) = f(xs) ∀xs ∈ B, we assign

Qx0
s,xs

= 1 ∀xs ∈ B (reflection)

– Dirichlet (null / non null): we assign the absorbing
state a to each xs ∈ B (absorption).

From (10), one finds that Z ′ = 1lXM=y | X0=x0 , so that
the discrete Green function (4) for null Dirichlet boundary
conditions satisfies:

−4 Gx0 y =
∑
M≥0

IE [ 1lXM=y | X0=x0 ]

= IE [ 1lexists M≥0 s.t. XM=y | X0=x0 ]

= Pr (∃ path: x0  y) !!

The last expression can be approximated by its empirical
value:

Pr (∃ path: x0  y) ≈ Nx0,y

Nx0

,

where Nx0,y counts, among the Nx0 simulated random paths
with origin x0, the number of paths that arrive at y.

Hence the discrete approximation of the Green function for
the continuous Poisson problem

∆xG(x, y) = δ(x, y)

with null Dirichlet absorbing boundary conditions counts, up
to factor and sign, the number of paths from x to y.5

2) Markov Chain simulation of µ0(G): Another application
consists of assigning P0 = µ0, i.e. the starting point of the
Markov chain is chosen at random uniformly in E . Since the
solution of the Poisson problem is f(x0) = Gx0 y ∀x0 ∈ E ,
this yields:

µ0(f) = −

∑
x0∈E

Gx0 y

( N = |E| )
=

1
4
Pr (∃ path  y) ≈ 1

4
Ny

Ns
,

where Ny counts the number of paths arriving at the (absorb-
ing) state y out of the Ns simulated paths starting uniformly
at random in E .

B. A continuous formalism to find the number of paths passing
through some point inside a disk D

We shall compute this number using the continuous frame-
work, starting from the third Green-Ostrogradsky formula in
a compact domain D ⊂ IR2 (with bold notation x,y ∈ D):∫ ∫

D

(F (x) ∆G(x)−G(x) ∆F (x)) dx

=
∫

∂D

(
F (x) ~∇G(x)−G(x) ~∇F (x)

)
. ~n ds(x) . (11)

Now the Green function of the Laplace operator, defined as:

∆xG(x, y) = δ(x, y) ∀x, y ∈ D , (12)

with the ‘distribution’ δ( , ) meaning that∫ ∫
D

F (x) ∆xG(x, y) dx = F (y) ∀y ∈ D ∀F ∈ F

(where F is some function space) is such that any solution
F (.) of the Poisson problem with null boundary conditions:

∆F = u with F (x) = 0 ∀x ∈ ∂D (Dirichlet) (13)

i.e., G(x, y) = 0 ∀x ∈ ∂D,∀y ∈ D

satisfies the following:

F (y) =
∫ ∫

D

∆F (x) G(x, y) dx

=
∫ ∫

D

u(x) G(x, y) dx . (14)

The ‘propagator’ aspect of Green functions can be seen here
in the sense that they convey ‘information’ from point x to
point y via the factor G(x, y).

Let us now use this to prove Perreau and Pham’s formula
above (1), by computing the number of paths passing through
a node y in a disk D with uniform density of mobiles ρ. This
number is:

Ny =
∫ ∫

D

Nxy dx×
∫ ∫

D

Nyz dz ,

5Notice that the first terms M < ||x0 − y||1 (the L1 norm) are null since
no transitions occur from x0 to y in less than ||x0 − y||1 steps.



where Nxy (resp. Nyz) are the number of paths with origin x
and destination y (resp. origin y and destination z .) Suppose,
following the previous discrete analysis, that this number is
given by

Ny =
∫ ∫

D

ρ G(x, y) dx×
∫ ∫

D

ρ G(y, z) dz .

Then

Ny = ρ2

(∫ ∫
D

G(x, y) dx
)2

,

(the Green function is symmetric). Now consider the quantity

χ(y) =
∫ ∫

D

G(x, y) dx .

From (14), χ(.) is the solution of the Poisson equation

∆χ(y) = 1 with χ(y) = 0 ∀y ∈ ∂D .

The solution is

χ(y) =
1
4

(
|y|2 −R2

)
,

since ∆(x2 + y2) = 4. Thus

Ny = (ρ χ(y))2 =
1
16

ρ2
(
|y|2 −R2

)2

.

Up to a multiplicative constant, this is the same as (1) from [1],
[2].

V. CONCLUSION

We have presented an application of Markov chains and
diffusion processes on graphs and lattices to the calculation of
traffic density in ad hoc networks, generalizing the expression
computed in [1], [2] to Brownian paths. While it is not
surprising that any first-order Markov chain would possess
the same behaviour in the continuum limit, it is perhaps more
surprising that the same behaviour arises in this case as in [1],
[2], since the paths allowed there are a singular case of a
second-order chain. The next steps are:
• to look at von Neumann boundary conditions, since it is

more likely that the traffic is reflected at boundaries;
• to establish a ‘flow equation’ that more realistically

represents the traffic routing mechanism between two
points in a given network, and to derive the ‘ensemble’
equations associated to all pairs of such nodes;

• to study loop-erasing walks [22], since admissible traffic
routing paths should contain no loops.
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