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Abstract

Checkpointing is a fault-tolerance mechanism commonly used in High Throughput Computing (HTC) en-
vironments to allow the execution of long-running computational tasks on compute resources subject to
hardware or software failures as well as interruptions from resource owners and more important tasks. Un-
til recently many researchers have focused on the performance gains achieved through checkpointing, but
now with growing scrutiny of the energy consumption of IT infrastructures it is increasingly important to
understand the energy impact of checkpointing within an HTC environment. In this paper we demonstrate
through trace-driven simulation of real-world datasets that existing checkpointing strategies are inade-
quate at maintaining an acceptable level of energy consumption whilst maintaing the performance gains
expected with checkpointing. Furthermore, we identify factors important in deciding whether to exploit
checkpointing within an HTC environment, and propose novel strategies to curtail the energy consumption
of checkpointing approaches whist maintaining the performance benefits.
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1 Introduction

The issue of performance and reliability in cluster computing have been studied

extensively over many years [18], resulting in techniques to improve these prop-

erties. The issue of cluster ‘performability’ is relatively well understood, though

until recently little consideration has been given to the energy impact of cluster

performability.

High-throughput cycle stealing distributed systems such as HTCondor [23] and

BOINC [1] allow organisations to leverage spare capacity on existing infrastructure

to undertake valuable computation. These High Throughput Computing (HTC)

systems are frequently used to execute large numbers of long-running computational

tasks, so are susceptible to interruption due to hardware and software failures.

Furthermore, like many organisations we leverage institutional ‘multi-use’ clusters

comprised of student and staff machines, where jobs may also be interrupted when

an interactive user starts to use a machine. Such interruptions lead to the tasks

being evicted from the resource, increasing task makespan and wasted energy.

The execution time of these long-running tasks often exceeds the mean time

to failure (MTTF) of the resources on which they execute. Furthermore, running

thousands of jobs increases dramatically the chances of one of the computers failing

during the run. Consequently, failures of resources lead to significant wasted com-

putation and energy consumption. Furthermore, these overheads lead to increased

makespan (also referred in the literature as sojourn time) of tasks in the system.

Checkpointing is a fault-tolerance mechanism commonly used to increase reli-

ability and predictability by periodically storing snapshots of application state to

stable storage. These snapshots may then be used to resume execution in the event

of a failure, reducing wasted execution time to that performed since the last check-

point. Checkpointing has previously been employed on HTC clusters with little

consideration of the energy consumption incurred by checkpointing overheads.

In recent years attention has turned to the energy consumption of IT infrastruc-

tures within organisations. Aggressive power management policies are often em-

ployed to reduce the energy impact of institutional clusters, but in doing so these

policies severely restrict the computational resources available for high-throughput

systems. These policies are often configured to quickly transition servers and end-

user cluster machines into low power states after only short idle periods, further

compounding the issue of reliability and lowering the availability perceived by ap-

plications running in the system.

In this work we provide insights into the energy impact of checkpointing within

high-throughput computing environments, making the following key contributions:

• Evaluate the energy impact of the two checkpoint schemes previously proposed

in the literature [38] [31] for a real workload.

• Propose novel checkpoint policies for high-throughput computing environments

and evaluate their performance for a real workload in terms of average task

makespan and energy consumption.
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• Develop a trace-driven simulation environment as a basis for research into energy-

efficient fault tolerance approaches for HTC systems.

The rest of the paper is organised as follows. We outline related work in Section 2

and introduce our experimental approach and trace-driven simulation of checkpoint-

ing in a high-throughput computing environment using real-world datasets in Sec-

tion 3. Section 4 describes a number of existing checkpointing strategies, and we

propose novel energy- and failure-aware checkpoint strategies. In Section 5 we

demonstrate the detrimental effects of the proposed checkpointing policies on en-

ergy consumption, motivating the need for an increased understanding of the impact

of checkpointing strategies within HTC clusters. Finally we discuss key consider-

ations when adopting checkpointing in HTC clusters in Section 6 and conclude in

Section 7.

2 Related Work

2.1 Checkpointing in real-time systems

Previous works in energy-aware checkpointing have primarily focused on real-time

systems [41,37,29] subject to strict energy and deadline constraints.

Zhang et al. [41] propose an adaptive checkpointing scheme to maximise the

probability of satisfying a task’s deadline in the presence of k faults, specified by a

pre-defined fault tolerance requirement. Energy consumption is then introduced as

a secondary optimisation criteria, with Dynamic Voltage Scaling (DVS) employed to

maintain a processor in low power state, transitioning to higher frequency operating

modes when required to satisfy a task’s deadline.

Melhem et al. [29] propose a similar approach, employing DVS in the absence of

failures to leverage ‘slack’ time between a task’s deadline and expected completion

time, transitioning a processor into a less performant but more energy efficient

operating state.

Unsal et al. [37] evaluate the energy characteristics of an Application-Level Fault

Tolerance (ALFT) scheme, where redundancy and recovery logic is incorporated at

the application level, rather than being provided at the system or hardware level

and propose a task scheduling heuristic reducing energy consumption by up to 40%.

In contrast, our scenario of a high-throughput computing environment is not

subject to the same budgetary constraints as real-time systems. HTC systems tend

to place an emphasis on overall system throughput rather than the completion time

for individual tasks, instead adopting a best effort policy to execution completion,

and often do not consider deadline constraints in during resource allocation. How-

ever, these approaches may be considered complementary to our own.

2.2 Checkpointing in HPC

More recently, research has sought to understand the overheads and energy im-

plications of fault tolerance mechanisms, including checkpointing, in anticipation

of exascale High-Performance Computing (HPC). Bouguerra et al. [6] investigate
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the impact of combined proactive and preventative checkpointing schemes in HPC

systems, achieving up to a 30% increase in computational efficiency with negligible

increase in overheads, but without consideration for its impact on energy consump-

tion.

At exascale, increased frequency of faults are anticipated and energy consump-

tion is a key issue [10]. To this end, Diouri et al. explore the energy consumption

impact of uncoordinated and coordinated checkpointing protocols on an MPI HPC

workload [14], while Mills et al. demonstrate energy savings by applying Dynamic

Voltage and Frequency Scaling (DVFS) during checkpointing [30].

Further works focus on energy and scalability issues relating to persisting check-

point images to stable storage. Saito et al. [36] consider energy saving when per-

sisting checkpoint images, employing profile-based I/O optimisation to reduce the

energy consumption of checkpointing to NAND flash memory by ∼40-67%.

We consider the application of DVS [41,37] and DVFS [30] to reduce the energy

consumption of checkpoint operations to be complementary to our approaches.

2.3 Checkpointing in HTC systems

The application of checkpointing in High-Throughput Computing environments

and Fine-Grained Cycle Sharing (FGCS) systems is explored extensively in [34,7],

though without consideration for its implications for energy consumption.

Aupy et al. [2] investigate energy-aware checkpointing strategies in the context

of arbitrarily divisible tasks. While divisible tasks encompasses a number of com-

mon applications including BLAST sequencing and parallel video processing [40],

such tasks represents only a proportion of our workload, and HTC systems do not

typically have control over the division of batched tasks.

2.4 Simulation

A number of Grid and Cluster level simulators exist including SimGrid [20], Grid-

Sim [8], and OptorSim [4] though these focus more at the resource selection process

both within clusters and between clusters and lack the modelling of energy. More

recently Cloud simulators have been proposed which are capable of modelling the

tradeoff between not only cost and Quality of Service, but also energy consumption.

These include CloudSim [9], GreenCloud [19], and MDCSim [22]. However, these

do not allow modelling of multi-use clusters with interactive user workloads, nor do

they support checkpointing.

Zhou et al. [42] propose an extension to the CloudSim [9] framework to sup-

port simulation of fault tolerance mechanisms but its codebase has not been made

publicly available.

Vieira et al. [39] propose ChkSim, a Java-based simulation environment for

the evaluation of checkpointing algorithms. The tool focuses on checkpointing ap-

proaches for workloads comprising groups of dependent processes communicating

with one another across the network, equivalent to an MPI HPC workload. Chk-

Sim focuses on the number of unused checkpoints as its key metric of checkpoint
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performance; however it does not assess the impact of checkpointing schemes on

energy consumption and may not easily be adapted to model a high-throughput

environment and interactive user workloads.

3 Simulation

In this paper, we evaluate the efficacy of existing checkpointing schemes using trace-

driven simulation on a real dataset collected during 2010 at Newcastle Univer-

sity [26], comprising details of all job submissions to Newcastle University’s HT-

Condor [23] cluster and interactive user activity for the twelve month period.

3.1 Datasets

In 2010, the Newcastle University HTCondor cluster comprised 1,359 machines

from 35 computer clusters. The opening hours of these clusters varied, with some

respecting office hours, and others available for use 24 hours a day. Clusters may

belong to a particular department within the University and serve a particular

subset of users, or may be part of a common area such as the University Library

or Students’ Union building. Computers within the clusters are replaced on a five-

year rolling programme with computers falling into one of three broad categories

as outlined in Table 1. Energy consumption values are ‘nameplate’ values obtained

from manufacturer documentation for the machines provisioned in 2010.

The University has a policy to minimise energy consumption on all computa-

tional infrastructure which has been in place for a number of years, governing the

provisioning of hardware. Hence the ‘Normal’ computers have been chosen to be

energy efficient. ‘High End’ computers are provisioned for courses requiring large

computational and/or rendering requirements such as CAD or video editing, as

such they have higher energy requirements. ‘Legacy’ computers pre-date the policy

of purchasing energy efficient computers and are also the oldest equipment within

the cluster. All computers within a cluster are provisioned at the same time and

will contain equivalent computing resources. Thus there is a wide variance between

clusters within the University but no significant variance within clusters.

Figure 1 shows all HTCondor job submissions for 2010. Our workload comprises

primarily batch task submission, with a mean submission rate of 1,454 job submis-

Type Cores Speed Power Consumption

Active Idle Sleep

Normal 2 ∼3Ghz 57W 40W 2W

High End 4 ∼3Ghz 114W 67W 3W

Legacy 2 ∼2Ghz 100-180W 50-80W 4W

Table 1
Computer Types
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sions per day. However, the workload exhibits significant variations, with half of

the days in the year observing fewer than 65 job submissions, and a number of peri-

ods of extremely large batch submission, for example 3rd June 2010 which featured

∼93,000 job submissions. Figure 2 shows the seasonal nature of interactive user ac-

tivity within these clusters, demonstrating clear differences between weekends and

weekdays, as well as term-time and holiday usage.
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Fig. 2. Interactive user arrivals

3.2 Simulation system

In this work, we extend our trace driven simulation model of a shared resource High

Throughput Computing system, based around the HTCondor software [27,25,24].

This Java-based simulation software offers a number of benefits over a measurement

approach, allowing us to rapidly evaluate new policy ideas and scheduling decisions

in a controlled and repeatable manner, without the need for a costly testing environ-

ment, and with isolation from variability introduced by evaluations based on a live
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HTCondor environment. As the traffic observed in our environment is highly sea-

sonal, a trace driven simulation approach also allows us to compare policies across

various workload and interactive user requirements. The simulation environment

is designed in such a way that policies evaluated by simulation may then be easily

deployed into a real HTCondor environment [28].

The behaviour of the simulation software is informed by three files, the first

describing the policy configuration to use for the simulation, the second a trace log

of user access to the computers and the third file a trace log of HTCondor workload.

The user trace data indicates login and logout time for the user, and the specific

computer that the user occupied. In this paper we do not simulate alterations to

this usage pattern. The high-throughput trace data, by contrast, contains only the

time that the jobs were submitted, their duration and their memory footprint at

time of completion. By interplaying these trace datasets we are able to accurately

model the operation of the Newcastle University HTCondor system and computer

clusters.

We extend our simulation environment to model the checkpoint model intro-

duced in Section 3.3, and evaluate the impact of enacting various checkpointing

policies outlined in Section 4 within the system. While in this work we primarily

consider energy consumption and average task makespan, our simulation records

numerous additional performance measures, enabling us to evaluate the impact of

policies on all areas of the system.

In previous work [27] we investigated the impact of resource allocation strategies

on the energy efficiency of high-throughput systems, allocating jobs to resources

based on energy efficiency and estimated likelihood of interruption. Throughout this

work we consider a random resource allocation strategy as most representative of

default policies in many HTC systems. We provide results averaged across multiple

simulation runs and report the variability introduced into results as a consequence

of this non-deterministic resource allocation.

The introduction of checkpoint and migration strategies to HTC systems exac-

erbates the issue of wasted execution through the repeated allocation of ‘bad’ tasks,

those tasks which due to unfulfilled task requirements or faulty operation will never

complete [24]. In order to curtail such executions and isolate the impact of check-

pointing strategies on the operation of the system, throughout our experiments we

bound execution time to a total of 24 hours, which is equivalent to the maximum

availability period observed in our HTCondor cluster due to nightly cluster reboots.

Though our simulation environment is designed based on the HTCondor system,

our representation of HTC workloads and computational resources are generic, so we

believe our results to be easily generalisable to similar high-throughput computing

environments.

3.3 Checkpointing and Failure Model

Choi et al. [11] present a classification of two types of failures encountered on desktop

grid environments: volatility failures including machine crashes and unavailability

due to network issues, and interference failures arising from the volunteer nature
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Fig. 3. Job state transition diagram

of the resources. It is these interference failures which we consider throughout this

work. Furthermore, we consider resource volatility in the form of scheduled nightly

reboots for maintenance.

Figure 3 shows the state transition diagram for the execution of a single job in

our system in the presence of these failures. Jobs are submitted by users and join a

queue prior to being allocated on a resource. Once running, jobs are susceptible to

interruption due to interactive users arriving on the resource. Jobs may be evicted

immediately, or suspended for a period of time, after which jobs are evicted if the

interactive user has not departed. Furthermore, jobs may be manually removed by

their owner or a system administrator while in any non-final state.

Jobs may also periodically checkpoint, during which time their execution is

paused while a snapshot of application state is taken. While High-Performance

Computing (HPC) workloads such as MPI-based parallel applications rely on low-

latency interconnects and significant bandwdith between nodes, HTC jobs typically

have minimal network requirements so we expect the impact of checkpointing on

the resident job to be negligible. Therefore, we assume the transfer of a checkpoint

image may occur once the execution of a checkpointed job resumes.

Our checkpoint model differs from those presented in the literature as we assume

interruptions may occur during checkpointing operations and subsequent recoveries.

3.4 Power model

The energy consumption of server and commodity hardware has been studied ex-

tensively in the literature. Early works leveraged low-level metrics such as per-

formance counters [5] when developing predictive models of energy consumption.

These models tend to require significant architecture knowledge and typically were

not generalisable to other hardware, nor scalable to entire computer systems. A
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strong linear correlation exists between energy consumption and CPU utilisation

with works using this as a predictor of energy consumption [15], while others derive

linear regression models based on utilisation of CPU, memory and storage subsys-

tems [13,35]. The literature provides models both for single servers [13,35], groups

of systems [33,16,15] and virtualised environments [12]

In this work we lack resource utilisation information for the HTC worker nodes,

so adopt a power model employing easily obtained ‘nameplate’ power consumption

values where a machine may belong to one of three operating states as defined in

the Advanced Configuration and Power Interface (ACPI) specification [17]; active

and idle (S0), or sleep (S3). Table 1 shows the three classes of machines considered

in our simulation, and the associated power values in each state.

In this work we assume checkpoints are stored on the stable storage of the

existing servers provisioned to act as the central manager and submit nodes for

HTCondor, so are able to discount their energy consumption. Consequently we

model the energy cost of a checkpoint operation as the energy consumption of the

resource during the checkpoint operation.

When devising checkpointing strategies we ensure they rely only upon readily

available system information and avoid expensive computation, such that they may

be easily implemented in a real HTC system. The policies outlined below make use

of system information exposed through the HTCondor ClassAd mechanism [32] and

other HTC systems, so we consider each of these policies to be realistic.

4 Policies

In this section we introduce the checkpointing policies investigated throughout this

work. We divide these into policies to determine the interval between checkpoint

evaluation events and policies determining whether a checkpoint operation should

take place for a given evaluation event. Furthermore, we propose a class of migration

policies which proactively checkpoint in anticipation of failure events, and migrate

tasks to resources less susceptible to failure.

4.1 Baseline policies

The following checkpointing policies are proposed to form a baseline against which

the competitiveness of our proposed policies may be assessed.

None: This represents the policy enacted during 2010 in the Newcastle Univer-

sity HTCondor pool, where no jobs were checkpointed.

Opt: An optimal checkpointing strategy for best case comparison, whereby jobs

are checkpointed immediately prior to eviction. The results of this policy represent

the greatest possible reduction in energy consumption and makespan achievable

using checkpointing mechanisms, assuming perfect knowledge of future events. In

order to provide a realistic optimal policy against which we base our comparisons,

under the Opt scheme checkpoints are only performed where current execution

time of the job is greater than or equal to the duration of the checkpoint operation.

Otherwise, a checkpoint is not taken, resulting in some loss of computation.
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4.2 Checkpoint Interval

Here we present a number of policies determining the interval between checkpoint

operations for a job.

C(n): Each job is checkpointed every n minutes. Hourly checkpointing (C(60 ))

is frequently considered in the literature and the HTCondor default strategy equates

to C(180 ) [38].

Multi(nopen, nclosed, t): This policy leverages easily obtained system knowledge,

considering computer cluster open/closed state to be analogous to high and low rates

of user arrivals respectively. We define the time to the next checkpoint interval for

a job in cluster j at time τ as:

Ij,τ =

⎧
⎨
⎩

nopen if ∃si,j , fi,j : si,j − cj ≤ τ ≤ fi,j − cj

nclosed otherwise
(1)

where si,j is the ordered set of all start of open periods in cluster j, fi,j is the

corresponding ordered set of all closed periods in cluster j and cj is a time interval

to mitigate the effect of checkpoints intervals selected close to a boundary being

allocated a bad checkpoint interval with respect to the next interval.

MinuteInHour(m, t): In our analysis of our institutional workload, we ob-

serve a large proportion of interruptions from interactive users occur close to hour

boundaries during office hours. This occurs due to the interactive users of the sys-

tem mostly comprising of taught students, with students arriving to and departing

from computers ahead of scheduled practical sessions and lectures. In this pol-

icy we leverage this observation, setting checkpoint intervals such that checkpoint

operations are enacted prior to this period of increased interruptions

The next checkpointing interval i is derived using the following equation:

i =

⎧
⎨
⎩

m− jmin +R if jmin < (m− t)

60 + (m− jmin +R) otherwise
(2)

where jmin(0 ≤ jmin ≤ 59) is the number of minutes past the hour at which we

are computing the next checkpoint interval, threshold value t represents a minimum

job runtime before a job may be checkpointed and m is the number of minutes past

the hour at which we wish to perform a checkpoint.

In situations where large batches of jobs are submitted to the system at the

same time, this may result in many checkpoints being taken simultaneously. In a

real system this could impose significant load on the network and storage nodes.

In order to mitigate these potential effects, we introduce a random component in

the checkpoint interval R, where R is a random variable uniformly distributed on

[−r, r], measured in minutes. As the value of r increases the system will become less

susceptible to large numbers of simultaneous checkpoints caused by batch arrivals,

but limit the ability of the policy to leverage the minute-in-hour period behaviour

in checkpoint scheduling.

Ratio(p): In this policy we place an upper bound on the proportion of execution
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time consumed through checkpointing operations. The checkpoint interval i for a

given job j is calculated as ij =
dj
p where dj is the estimated checkpoint duration

for job j, and p the maximum proportion of execution time to be occupied by

checkpointing.

StartDelay(n, d): Through preliminary investigation we observe a significant

proportion of wasted checkpoints occurred as a result of checkpointing of short-

running jobs. While execution time of tasks is not known a priori and user estimates

have been shown to be inaccurate [3], this policy aims to curtail this waste, applying

a start delay d before which a newly allocated task may not be checkpointed, after

which tasks are checkpointed every n minutes.

GeometricProgression(a,r): Here we propose a generalised backoff policy

based on a geometric progression, where the duration of the nth checkpoint interval

for job j is given by:

inj =

⎧
⎨
⎩

a if n = 0

arn−1 if n ≥ 1
(3)

where a represents the initial checkpoint interval, r ( r ≥ 0 ) represents the

‘common ratio’ for the sequence. The ‘Exponential backoff’ policy proposed by

Oliner et al. [31] is equivalent to the geometric progression policy where r = 2.

4.3 Skip checkpoint policies

At each checkpoint interval, a decision must be made whether to proceed with

carrying out a checkpoint operation, or defer to the next checkpoint interval. These

decisions may be static, or may be informed by the state of the system or job.

ClosedCluster: A simple policy incorporating easily obtained information

about the institutional computer clusters, checkpoint operations are skipped when

the cluster running the job is closed to use by interactive users.

Interarrival(w, m, l, d): A policy requiring a greater insight into the global

state of the HTC system, in this policy we observe the number of interactive user

arrivals in a sliding window of w minutes. The feasibility of a checkpoint operation

is evaluated every m minutes, with a checkpoint operation enacted if the number

of arrivals in the period ei from event set E is greater than threshold l and the job

has not previously been checkpointed in the last d minutes. This policy may be

expressed as follows:

⎧
⎨
⎩
(t− cj) ≤ d if

∣∣∣
{
ei

∣∣∣ei ∈ E ∧ t− w ≤ T (ei) ≤ t
}∣∣∣ ≥ l

skip otherwise
(4)

where current time is t, T (e) is the arrival time for interactive user event e, cj
represents the time job j was last checkpointed (or 0 for jobs who have not previously

been checkpointed).

We consider two variations of this policy, one considering the number of arrivals

in the cluster of machines local to the job, and another considering the number of
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interactive user arrivals to the whole system.

4.4 Proactive migration

In addition to enabling recovery from failures, checkpointing mechanisms may also

be used to support proactive migration of computational tasks to reduce makespan

and energy consumption.

Scheduled: Tasks are migrated to avoid scheduled interruptions, e.g. all cam-

pus computers at Newcastle University reboot daily between 3am and 5am to per-

form routine maintenance and apply updates.

ClusterOpening: An, event driven checkpointing policy, where checkpoint

operations are scheduled immediately prior to a cluster transitioning from being

closed to open for use by interactive users.

5 Results

The impact on average task overhead and energy consumption for None and Opt

policies on average task makespan and energy consumption is shown in Figures

4 and 5 respectively. All results presented are mean values obtained from fifty

simulation runs, with error bars signifying 95% confidence interval values.
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Fig. 4. Average Task Overheads

The HTCondor workload from 2010 with no checkpointing mechanism applied

results in an average task overhead of 12.94 minutes and energy consumption of

112 MWh. In this scenario, task overheads result from time spent by newly arrived

or evicted jobs awaiting resources to become available. Under our optimal policy,

which assumes perfect knowledge of failures, overheads are reduced to 3.48 minutes,

with resulting energy consumption of 54.6 MWh. Here the time taken to generate
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Fig. 5. Energy Consumption

checkpoints is shown to have little impact on the efficacy of checkpointing in the

presence of optimal checkpoint interval selection.

5.1 Policy Results

We assess the impact of the proposed policies as the proportion of maximal benefit

from checkpoint approaches. We define our benefit function as follows:

Benefit = 1−
( vx − vopt
vnone − vopt

)
(5)

where vx may refer to either average task makespan, energy consumption or check-

point utilisation for a given policy x, and vnone and vopt refer to the these values for

the None and Opt baseline policies respectively. We define checkpoint utilisation as

the proportion of completed checkpoint operations which are subsequently used for

recovery, indicating a given policy’s ability to identify situations where a checkpoint

is required.

Figures 6a, 6b, and 6c show the impact of the policy on makespan, energy con-

sumption and checkpoint utilisation for our Fixed (periodic) checkpointing policy.

Results are shown for checkpoint generation durations ranging from one to four

minutes. We observe this policy has the potential to achieve energy and makespan

savings which are as much as 60% of optimal when the policy is correctly parame-

terised. The optimal checkpoint interval is shown to be dependent on the checkpoint

duration for the workload, with the optimal interval for one- and four-minute jobs

centred around 30 and 55 minutes respectively. In all cases, where a checkpoint in-

terval shorter than 30 minutes are selected performance degrades significantly, with

the cost of checkpoint operations exceeding the possible savings, leading to wors-

ening overall performance and energy consumption. As the length of checkpoint

intervals increase, the benefits of checkpointing tends towards zero, representing no
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checkpointing of jobs. We observe only a small proportion of successfully generated

checkpoints are utilised under the Fixed policy, with the time taken to generate

checkpoints having negligible impact. Though utilisation rises to approximately

15% for a checkpoint interval of 180 minutes, the benefit of a job resuming from

a checkpoint generated that far in the past would be limited. When considering

the checkpoint strategies previously considered in the literature, hourly checkpoint-

ing (C(60 )) delivers good performance dependent on the time required to generate

checkpoints for jobs, but we show the HTCondor default of C(180 ) [38] to have

little benefit for our workload.

In Figures 7a, 7b and 7c we compare our Fixed periodic scheme with our Sched-

uled proactive migration policy, both in isolation (SR) and in combination with

our ClosedCluster skip policy (CCSR). To aid readability we provide results for

each policy for checkpoint durations of one and four minutes. When considering

the ClosedCluster policy with Scheduled reboot proactive migration, we observe

significant improvements in average task overhead and energy consumption, with

the policy outperforming the Fixed periodic checkpointing scheme for all lengths of

checkpoint interval. Though the greatest proportional makespan and energy saving

is only found to rise from 0.6 for the Fixed periodic scheme to 0.7 for the CCSR

scheme, this improvement is observed across a much wider range of checkpoint in-

tervals, making these policies much less susceptible to poor performance due to

sub-optimal checkpoint interval selection. Furthermore, we observe a significant

increase in the utilisation of checkpoints generated in all cases.

In Figures 8a, 8b, and 8c we present the results of our Geometric policy. Results

are shown for a 30 minute checkpoint interval, and varying common ratio parameter

r. We find this policy to provide benefits to energy and makespan for all values

of r. The best selection of parameter r is dependent on checkpoint duration, as

r ≈ 1 for 1 minute checkpoints, and r ≈ 2 for 4 minute checkpoints. Furthermore,

the selection of this common ratio is dependent on the composition of the HTC

workload, with a greater proportion of shorter or longer jobs impacting on the best

value to select. An interesting extension of this policy would be to explore the

selection of r based on the expected execution time of the workload.

Results of our MinuteInHour policy are shown in Figures 9a, 9b, and 9c. Using

knowledge of interactive user activity to inform the placement of checkpoint oper-

ations is found to result in an ≈ 20% improvement in energy and makespan saving

where m = 55 compared to the checkpoints carried out on the hour boundary. We

introduce the random component r to prevent large numbers of checkpoints sched-

uled at the same time, leading to network congestion and increased transfer delays.

To exemplify the potential impact of such an adjustment, we show the results for

a deliberately conservative value of r = 5 minutes. Under this policy, energy and

makespan savings are lessened, particularly for the case of four minute checkpoints

due to checkpoint operations being deferred towards the hour boundary, increasing

their likelihood of interruption. Utilisation remains largely unaffected by the choice

of parameter m. In a real system we anticipate a much smaller value of r to be

adequate.
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(a) The impact of the fixed checkpoint policy on energy consumption.
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(b) The impact of the fixed checkpoint policy on average task overhead.
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(c) The impact of the fixed checkpoint policy on checkpoint utilisation.

Fig. 6. Fixed checkpoint policy
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(a) The impact of the ClosedCluster policy and Scheduled proactive migration on energy con-
sumption.
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(b) The impact of the ClosedCluster policy and Scheduled proactive migration on average task
overhead.
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Fig. 7. ClosedCluster policy and Scheduled proactive migration

M. Forshaw et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 65–9080



1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Common ratio (r)

P
ro

p
o
rt

io
n
 E

n
e
rg

y
 s

a
v
in

g

 

 

1 min

2 min

3 min

4 min

(a) The impact of the Geometric policy on energy consumption.
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(b) The impact of the Geometric policy on average task overhead.
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(c) The impact of the Geometric policy on checkpoint utilisation.

Fig. 8. Geometric policy
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(a) The impact of the MinuteInHour policy on energy consumption.
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(b) The impact of the MinuteInHour policy on average task overhead.
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(c) The impact of the MinuteInHour policy on checkpoint utilisation.

Fig. 9. MinuteInHour policy

Figures 10a, 10b and 10c show the results for the Ratio policy. This policy

makes use of estimates of the time required to generate a checkpoint for a given job,

and here we demonstrate the policy’s ability to deliver equivalent benefits to jobs,

irrespective of checkpoint generation duration. We observe the greatest benefit for

our workload where checkpointing is configured to take ∼ 4% of execution time.

Beyond this point, benefits begin to curtail and at ∼ 15%, the cost of checkpoint
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operations exceeds that of lost execution due to interruptions. When considering

checkpoint utilisation under the Ratio policy, utilisation falls as the proportion of

execution time spent checkpointing (and thus the number of checkpoint operations)

increases.
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(a) The impact of the Ratio policy on energy consumption.
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(b) The impact of the Ratio policy on average task overhead.
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(c) The impact of the Ratio policy on checkpoint utilisation.

Fig. 10. Ratio policy

Figures 11a, 11b and 11c show the results for our policy placing a delay on

the start of checkpointing for a job. With the exception of C(60 ) for one minute
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checkpoints, we observe a modest benefit to delaying the start of checkpointing

during the first hour of a task’s execution. Due to the relatively short execution

time of the jobs comprising our workload, results begin to decrease beyond a start

delay of ∼ 90 minutes, due to the start delay being longer than the execution

time of the task. The observable drop in the checkpoint utilisation graph centred at

approximately 120 mins is also an artefact of this interaction between task execution

time and start delay.

In Figures 12a, 12b and 12c we show results for our Interarrival policy determin-

ing the conditions under which a scheduled checkpointing operation should proceed.

Each of these results are shown for one minute checkpoint duration, and for slid-

ing windows of length one, ten and twenty minutes. We present results for two

variations of the policy, one which enacts checkpoints for a job based on the inter-

active user arrivals at the cluster where the job is executing, and the other based on

interactive user arrivals throughout the entire system. The System-level checkpoint-

ing strategy is shown to provide greater improvements to energy consumption and

overhead when compared to the Cluster-based approach, despite significantly lower

checkpoint utilisation. The results for policies using a one minute sliding window

are shown to be more sensitive to selection of interactive user arrival threshold (l)

than those with longer window lengths. In both cases the benefits are greatest for

small values of l, but we do not find user arrivals in such low quantities to be a

sufficiently good predictor of task preemption for our workload.

5.2 Summary

From the results of our preliminary investigation, we note that for periodic check-

pointing schemes, checkpoint generation duration is often as important as the check-

pointing interval chosen. This highlights the importance of a combined approach

between checkpoint scheduling policies and the efficiency of the checkpointing mech-

anisms themselves.

Though we find checkpointing results in significant improvements to task over-

heads, for many policies including periodic checkpointing, the benefits rely on cor-

rect parameterisation of policies. The exploration of approaches to adaptive check-

pointing policies with the ability to adapt parameters to the observed interactive

user and HTC workloads shall form the basis of ongoing work in this area.

Furthermore, a significant contributing factor in the significant potential for

checkpointing to reduce average makespan is the relatively low load observed in

the Newcastle University HTCondor cluster (approximately 12% for 2010). Con-

sequently, evicted jobs are reallocated quickly, incurring only a short delay while

waiting for resource to become available. We anticipate these makespan savings to

be more modest for more heavily utilised pools.

A key finding of this work relates to the effectiveness of load-based measures to

govern the operation of a checkpointing scheme. While we found policies leverag-

ing knowledge of scheduled interruptions and periods where clusters will be closed

to interactive users, our threshold-based user interarrival policy was not found to

offer significant benefits. In a real world system where the collection of such de-
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tailed knowledge is non-trivial, simple measures such as cluster opening times and

the knowledge of scheduled interruptions seem sufficient in achieving the greatest

results.

Finally, many of the policies outlined in this paper are not mutually exclusive,

and we anticipate a combination of these approaches will yield best results.
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(c) The impact of the Start Delay policy on checkpoint utilisation.

Fig. 11. Start Delay policy
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(a) The impact of the Interarrival policy on energy consumption.
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(b) The impact of the Interarrival policy on average task overhead.
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(c) The impact of the Interarrival policy on checkpoint utilisation.

Fig. 12. Interarrival policy

6 Discussion

In this section, we outline the considerations the administrator of an HTC cluster

should make when deciding whether to employ a checkpointing mechanism within

their environment. Furthermore, we highlight a number of areas of research interest,
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both with respect to energy-efficient checkpointing generally, and also issues specific

to the application of these approaches in the context of multi-use clusters.

Operating policies: FGCS systems are typically configured to operate conserva-

tively, with the interactive user of a machine given priority over the HTC workload

running on the machine. Historically there was significant potential of interference

from an HTC job, degrading performance and responsiveness for interactive users

of a system. However, now in multi-core systems, and with the additional sep-

aration afforded by virtualisation technologies, the impact of HTC workloads on

interactive users has been shown to be negligible [21]. Relaxing operational con-

strains preventing HTC jobs from running on resources with interactive users not

only increases the capacity and throughput of the system, but also offers significant

reduction in energy consumption. Our preliminary results demonstrate the energy

and performance benefits made possible when leveraging knowledge of scheduled

interruptions and user activity, highlighting the benefit of communication between

cluster and HTC system administrators. Furthermore, we demonstrate the poten-

tial for checkpointing informing the management decisions made at the cluster level.

For example, nightly reboots may be staggered to reduce the interference caused by

many jobs checkpointing simultaneously, or reboots may be scheduled for shortly

after clusters close to interactive users, increasing resource availability.

Workload: The efficacy of checkpointing is largely dependent on cluster work-

load. Checkpointing is most useful when the execution time of a large proportion

of the workload exceeds typical resource mean time to failure (MTTF) or user

inter-arrival durations, increasing the likelihood of interruption. Checkpointing in

other situations is likely to have a detrimental effect on energy consumption and

makespan. Furthermore, some jobs do not support checkpointing, or are unsuitable

for checkpointing e.g. those with particularly large application states.

User base: The Newcastle University HTC cluster supports a diverse user

base, from experienced system administrators and Computer Scientists interacting

directly with the system, to scientists leveraging its capabilities through user inter-

faces or submission mechanisms provided to them. Consequently there is a need for

checkpointing mechanisms to be transparent and not require in-depth understand-

ing of HTC or programming ability for users to benefit. Furthermore it is essential

that such checkpointing mechanisms are capable of achieving energy savings in the

absence of user knowledge.

Resource composition: Modern HTC clusters commonly comprise both volun-

teer and dedicated resources, and increasingly leverage Cloud resources to handle

peak loads and offer runtime environments not supported locally. The composition

of a cluster is an important factor in determining whether checkpoint mechanisms

should be employed. In clusters solely relying on volunteer resources, checkpointing

offers an attractive means to deliver favourable makespan and reduced energy con-

sumption in the presence of interruptions. As the proportion of dedicated resources

increase, similar benefits may be sought by steering longer-running jobs to these

more reliable resources. The implications of checkpointing on workloads running

on Cloud resources has not previously been investigated in the literature, but data
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transfer/storage and instance costs will exacerbate the impact of any checkpoint

overheads.

7 Conclusion

In this paper we have shown existing checkpointing mechanisms to be inadequate

in reducing makespan while maintaining acceptable levels of energy consumption in

multi-use clusters with interactive user interruptions. Our experimentation demon-

strates that the naive application of checkpointing approaches has the potential

to negatively impact energy consumption. We go on to propose and evaluate novel

energy- and load-aware checkpointing strategies to curtail the energy consumption of

checkpointing approaches whist maintaining the performance benefits. We highlight

key considerations when adopting checkpointing in an HTC cluster and motivate a

number of areas of future research interest in energy-efficient checkpointing.
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