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Abstract

Given a graph G = (V,E) and a proper vertex colouring of G, a Kempe chain is a
subset of V that induces a maximal connected subgraph of G in which every vertex
has one of two colours. To make a Kempe change is to obtain one colouring from
another by exchanging the colours of vertices in a Kempe chain. Two colourings
are Kempe equivalent if each can be obtained from the other by a series of Kempe
changes. A conjecture of Mohar asserts that, for k ≥ 3, all k-colourings of connected
k-regular graphs that are not complete are Kempe equivalent. We address the case
k = 3 by showing that all 3-colourings of a connected cubic graph G are Kempe
equivalent unless G is the complete graph K4 or the triangular prism.
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1 Introduction

Let G = (V,E) denote a simple undirected graph and let k be a positive
integer. A k-colouring of G is a mapping φ : V → {1, . . . , k} such that
φ(u) 6= φ(v) if uv ∈ E. The chromatic number of G, denoted by χ(G), is the
smallest k such that G has a k-colouring.

If a and b are distinct colours, then G(a, b) denotes the subgraph of G
induced by vertices with colour a or b. An (a, b)-component of G is a connected
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component of G(a, b) and is known as a Kempe chain. A Kempe change is
the operation of interchanging the colours of some (a, b)-component of G. Let
Ck(G) be the set of all k-colourings of G. Two colourings α, β ∈ Ck(G) are
Kempe equivalent, denoted by α ∼k β, if each can be obtained from the other
by a series of Kempe changes. The equivalence classes Ck(G)/ ∼k are called
Kempe classes.

Kempe changes were first introduced by Kempe in his well-known failed
attempt at proving the Four-Colour Theorem. The Kempe change method
has proved to be a powerful tool with applications to several areas such as
timetables [16], theoretical physics [20,21], and Markov chains [19]. The reader
is referred to [15,17] for further details. From a theoretical viewpoint, Kempe
equivalence was first addressed by Fisk [10] who proved that all 4-colourings
of an Eulerian triangulation of the plane are Kempe equivalent. This result
was later extended by Meyniel [13] who showed that all 5-colourings of a
planar graph are Kempe equivalent, and by Mohar [15] who proved that all k-
colourings, k > χ(G), of a planar graph G are Kempe equivalent. Las Vergnas
and Meyniel [18] extended Meyniel’s result by proving that all 5-colourings of
a K5-minor free graph are Kempe equivalent. Bertschi [2] also showed that
all k-colourings of a perfectly contractile graph are Kempe equivalent, thus
answering a conjecture of Meyniel [14]. We note that Kempe equivalence with
respect to edge-colourings has also been investigated [1, 12,15].

Here we are concerned with a conjecture of Mohar [15] on connected k-
regular graphs, that is, graphs in which every vertex has degree k for some
k ≥ 0. Note that, for every connected 2-regular graph G that is not an odd
cycle, it holds that C2(G) is a Kempe class. Mohar conjectured the following
(where Kk+1 is the complete graph on k + 1 vertices).

Conjecture 1.1 ([15]) Let k ≥ 3. If G is a connected k-regular graph that
is not Kk+1 then Ck(G) is a Kempe class.

Excluding the complete graph Kk+1 in Conjecture 1.1 is a necessary condition
as χ(Kk+1) = k+ 1. In all other cases, it follows by Brooks’ Theorem [6] that
every connected k-regular graph that is not complete nor an odd cycle has a
k-colouring. We address Conjecture 1.1 for the case k = 3. For this case the
conjecture is known to be false. A counterexample is the 3-prism displayed
in Figure 1 (along with a claw that will appear later). The fact that some
3-colourings of the 3-prism are not Kempe equivalent was already observed by
van den Heuvel [11]. Our contribution is that the 3-prism is the only counter-
example for the case k = 3; that is, we completely settle the case k = 3 by
proving the following result for 3-regular graphs also known as cubic graphs.



Fig. 1. A claw and a 3-prism.

Theorem 1.2 If G is a connected cubic graph that is neither K4 nor the
3-prism then C3(G) is a Kempe class.

We sketch the proof of our result in the next section. Besides exploiting the
3-regularity, our proof also takes into account the fact that one additional for-
bidden graph, namely the 3-prism, is forbidden. We did not find any counter-
examples for k ≥ 4 and believe Conjecture 1.1 may well hold for k ≥ 4. As
such, new techniques are necessary to tackle the remaining cases.

Our result is an example of a type of result that has received much recent
attention: that of determining the structure of a reconfiguration graph. A
reconfiguration graph has as vertex set all solutions to a search problem and
an edge relation that describes a transformation of one solution into another.
Thus Theorem 1.2 is concerned with the reconfiguration graph of 3-colourings
of cubic graph with edge relation ∼k and shows that it is connected except
in two cases. To date the stucture of reconfiguration graphs of colourings has
focused [3–5,7–9] on the case where vertices are joined by an edge only when
they differ on just one colour (that is, when one colouring can be transformed
into another by a Kempe change of a Kempe chain that contains only one
vertex). For a survey of recent results on reconfiguration graphs, see [11].

2 The Proof of Theorem 1.2

We first give some further definitions and terminology. Let G = (V,E) be a
graph. Then G is H-free for some graph H if G does not contain an induced
subgraph isomorphic to H. A separator of G is a set S ⊂ V such that G− S
has more components than G. We say that G is p-connected for some integer p
if |V | ≥ p+ 1 and every separator of G has size at least p. Some small graphs
that we will refer to are defined by their illustrations in Figure 1.

Besides three new lemmas, we will need the aforementioned result of van
den Heuvel, which follows from the fact that for the 3-prism T , the subgraphs
T (1, 2), T (2, 3) and T (1, 3) are connected so that the number of Kempe classes
is equal to the number of different 3-colourings of T up to colour permutation,
which is two.



Lemma 2.1 ([11]) If G is the 3-prism then C3(G) consists of two Kempe
classes.

Lemma 2.2 If G is a connected cubic graph that is not 3-connected then
C3(G) is a Kempe class.

Lemma 2.3 If G is a 3-connected cubic graph that is claw-free but that is
neither K4 nor the 3-prism then C3(G) is a Kempe class.

Lemma 2.4 If G is a 3-connected cubic graph that is not claw-free then C3(G)
is a Kempe class.

Observe that Theorem 1.2 follows from the above lemmas, which form
a case distinction. Hence it suffices to prove Lemmas 2.2–2.4. We prove
Lemma 2.2 in the remainder 5 .

We need three auxiliary results and one more definition: a graph G is d-
degenerate if every induced subgraph of G has a vertex with degree at most d.

Lemma 2.5 ([15,18]) Let d and k be any two integers with d ≥ 0 and k ≥
d+ 1. If G is a d-degenerate graph then Ck(G) is a Kempe class.

Lemma 2.6 ([18]) Let k ≥ 1 be an integer. Let G1, G2 be two graphs such
that G1 ∩G2 is complete. If both Ck(G1) and Ck(G2) are Kempe classes then
Ck(G1 ∪G2) is a Kempe class.

Lemma 2.7 ([15]) Let k ≥ 1 be an integer and let G be a subgraph of a graph
G′. Let c1 and c2 be the restrictions, to G, of two k-colourings c′1 and c′2 of
G′. If c′1 and c′2 are Kempe equivalent then c1 and c2 are Kempe equivalent.

Proof of Lemma 2.2. Let G be a connected cubic graph that is not 3-
connected. As G is cubic, G has at least four vertices. Because G is not
3-connected, G has a separator S of size at most 2. Let S be a minimum
separator of G such that G = G1 ∪ G2 and G1 ∩ G2 = S. As every vertex
in S has degree at most 2 in each Gi and G is cubic, G1 and G2 are 2-
degenerate. Hence, by Lemma 2.5, C3(G1) and C3(G2) are Kempe classes. If
S is a clique, we apply Lemma 2.6. Thus we assume that S, and any other
minimum separator of G, is not a clique. Then S = {x, y} for two distinct
vertices x and y with xy 6∈ E(G).

Because S is a minimum separator, x and y are non-adjacent and G is
cubic, x has either one neighbour in G1 and two in G2, or the other way
around; the same holds for vertex y. For i = 1, 2, let Ni(x) and Ni(y) be the
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set of neighbours of x and y, respectively, in Gi. Then we have that either
|N1(x)| = 1 and |N2(x)| = 2, or |N1(x)| = 2 and |N2(x)| = 1, and similarly,
that either |N1(y)| = 1 and |N2(y)| = 2, or |N1(y)| = 2 and |N2(y)| = 1. Let
x1 ∈ N1(x) for some x1 ∈ V (G1).

We may assume that |N1(x)| 6= |N1(y)|; if not we can do as follows. Assume
without loss of generality that N1(x) = {x1} and that |N1(y)| = 1. Then
{x1, y} is a separator. By our assumption that G has no minimum separator
that is a clique, we find that {x1, y} is a minimum separator with x1y /∈ E(G).
As G is cubic, x1 has two neighbours in V (G1) \ {x, x1}. As |N1(y)| = 1 and
x1 and y are not adjacent, y has exactly one neighbour in V (G1) \ {x, x1}.
Hence we could take {x1, y} as our minimum separator instead of S in order
to get the desired property. We may thus assume that |N1(x)| 6= |N1(y)|. As
this means that |N2(x)| 6= |N2(y)|, we can let N1(x) = {x1} and N2(y) = {y1}
for some y1 ∈ V (G2).

It now suffices to prove the following two claims.

Claim 1 All colourings α such that α(x) 6= α(y) are Kempe equivalent in
C3(G).

We prove Claim 1 as follows. We add an edge e between x and y. This results
in graphs G1 + e, G2 + e and G+ e. We first prove that C3(G+ e) is a Kempe
class. Because x and y have degree 1 in G1 and G2, respectively, and G is
cubic, we find that the graphs G1 + e and G2 + e are 2-degenerate. Hence, by
Lemma 2.5, C3(G1 + e) and C3(G2 + e) are Kempe classes. By Lemma 2.6, it
holds that C3(G + e) is a Kempe class. Applying Lemma 2.7 completes the
proof of Claim 1.

Claim 2 For every colouring α such that α(x) = α(y), there exists a colouring
β with β(x) 6= β(y) such that α and β are Kempe equivalent in C3(G).

We assume without loss of generality that α(x) = α(y) = 1 and α(y1) = 2. If
α(x1) = 2 then we apply a Kempe change on the (1, 3)-component of G that
contains x. Note that y does not belong to this component. Hence afterwards
we obtain the desired colouring γ. If α(x1) = 3 then we first apply a Kempe
change on the (2, 3)-component of G that contains x1. Note that this does
not affect the colours of x, y and y1 as they do not belong to this component.
Afterwards we proceed as before. This completes the proof of Claim 2 (and
the lemma). 2
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