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ABSTRACT

Recently developments in numerical methods such as the Extended Finite Element Method (X-FEM)

and the Extended Boundary Element Method (X-BEM) have significantly improved the accuracy in

linear elastic fracture mechanics (LEFM) problems. Nevertheless, the postprocessing involved in the

calculation of the Stress Intensity Factors still presents a computational burden. The most usual SIF

evaluation techniques are the J-integral or the more general Interaction Integral (M-integral), which may

require considerable computational resources of the order of those required to obtain the solution of the

LEFM problem. A direct approach, where the SIFs are revealed in the solution vector, has been developed

by [1] for isotropic materials and is further extended to anisotropic materials in this work.

Key Words: Boundary element method; Anisotropic materials; Enrichment functions; Fracture mechan-

ics

1. Introduction

The boundary element method (BEM) is a well established discretisation method when dealing with frac-

ture mechanics problems. It offers high accuracy and stability in providing results for the discontinuous,

singular stress fields at crack tips than domain discretisation methods such as the Finite Element Method

(FEM). However, in the last 15 years, the use of the partition of unity has improved the performance of

the FEM, being further called Extended Finite Element Method (X-FEM) [1]. It was verified that the

accuracy of the X-FEM could be similar to that found in BEM (see [2] for instance).

The partition of unity approach was first employed in [3] in a dual BEM formulation, in order to be more

general than the quarter-point [4]. The quarter-point approach displaces the position of the central node

to capture the proper
√

r behaviour at the crack tip (r being the distance from the crack tip). However,

enrichment functions as specified in [2, 3] cause the linear system to suffer from ill-conditioning aris-

ing from the addition of new degrees of freedom to the problem. In a recent work, the authors [5] have

developed an implicit enrichment, where only a couple of degrees of freedom are added to the problem

for each crack tip, hence adding the enrichment to more elements and not increasing the total number of

degrees of freedom of the fracture problem. This methodology was called direct approach, and was ob-

tained using the displacement field around the crack tip with the Williams’ expansion, valid for isotropic

materials only.

In this work, we propose a more general form of enrichment functions for anisotropic materials, obtained

from the Stroh formalism following the work of [2].

2. Governing equations

Consider an anisotropic elastic domain Ω, the static equilibrium equations in the presence of body forces

b are defined as

σi j, j + bi = 0 (1)

Symmetry holds for the stress and strain tensors, i.e.: σi j = σ ji; εi j = ε ji, where εi j =
1
2
(ui, j + u j,i)



The linear constitutive equations are given by the generalized Hooke’s law

σi j = Ci jklεkl (2)

where Ci jkl define the material constants tensor, satisfying the following symmetry relations

Ci jkl = C jikl = Ci jlk = Ckli j (3)

3. Enrichment formulation

Adopting a polar coordinate system (r, θ) with origin at the crack tip, the asymptotic displacement field

around a crack-tip in a plane anisotropic domain can be expressed by means of the Stroh formalism [6]

as

ui(r, θ) =

√

2

π
ℜ

(

KαAimB−1
mα

√

r (cos θ + µm sin θ)
)

(4)

where the summation convention over repeated indices holds; i,m = 1, 2; α = I, II is associated with the

fracture modes; and ℜ(·) is the real part of (·); A, B and µ are obtained from the following eigenvalue

problem

(

−C22
−1C21 −C22

−1

C11 − C21
T C22

−1C21 −C21
T C22

−1

) (

Am

Bm

)

= µm

(

Am

Bm

)

(no sum on m) (5)

with

C11 := C1i j1; C21 := C2i j1; C22 := C2i j2 (6)

Expanding and rearranging the terms of Eq. (4) in the same way as in [2], the enrichment functions are

calculated as

Fl j(r, θ) =

√

2r

π

(

A11B−1
11
β1 + A12B−1

21
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12
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22
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(7)

where βi =
√

cos θ + µi sin θ, r is the distance between the crack tip and an arbitrary position, θ is

the orientation measured from a coordinate system centred at the crack tip. Note that these enrichment

functions are the equivalent of Williams’ expansion for isotropic materials [5].

The anisotropic enrichment functions can also be used for isotropic materials, since this is a degenerated

case from anisotropic materials (both eigenvalues are equal). For more details please refer to [2].

The displacement field can be defined in a similar fashion as [7]

u j =

M
∑

a=1

Naua
j + K̃IFI j + K̃IIFII j (8)

where Na represents the shape function for node a, ua
j

is a general coefficient rather than the nodal

displacement, M is the number of nodes, K̃I and K̃II stand for the mode I and mode II Stress Intensity

Factors (SIF), respectively, and they are now part of the solution vector instead of being calculated after

the displacement solution is obtained. For the numerical discretisation of the fracture mechanics problem,

the BEM is used.

4. Boundary Element Method (BEM)

The proposed enrichment is used with a Dual BEM formulation. The superposition of two boundaries

(crack faces) can cause the degeneration of the linear system of equations if only the displacement bound-

ary integral equation (DBIE) is employed. A traction boundary integral equation (TBIE) can be obtained

from the differentiation of DBIE and further substitution into the constitutive laws equation (see [8] for

details). The DBIE and the TBIE for the direct approach are given as [5].

ci j(ξ)u j(ξ) +

∫

Γ

p∗i j(x, ξ)u j(x)dΓ(x) +

∫

Γc

p∗i j(x, ξ)K̃l jFl j(ξ)a
α
k dΓ =

∫

Γ

u∗i j(x, ξ)p j(x)dΓ(x) (9)

ci j(ξ)p j(ξ) + Nr

∫

Γ

s∗ri j(x, ξ)u j(x)dΓ(x) + Nr

∫

Γc

s∗ri j(x, ξ)K̃l jFl j(ξ)a
α
k dΓ = Nr

∫

Γ

d∗ri j(x, ξ)p j(x)dΓ(x)

(10)



where Γc = Γ+∪Γ− stands for the crack surfaces Γ+ and Γ− and Nr is the normal at the observation point.

Let us recall that strongly singular and hypersingular terms arise from the integration of the p∗
i j

, d∗
ri j

and

s∗
ri j

kernels and they are regularised using the methodology proposed in [9], while the weakly singular

terms are dealt using Telles transformation [10].

The addition of K̃I and K̃II requires two more equations so the linear system of equations can be solved.

The additional equations come from a restriction in the crack faces, in order to remove the displacement

discontinuity observed at the crack tip. The displacement continuity can be enforced as

L
∑

a=1

Nau
a upper

j
=

L
∑

a=1

Naua lower
j (11)

where L is the number of nodes used for the crack tip extrapolation. Eq. (11) is applied for both x and y

directions, resulting in two different equations.

5. Numerical results

To validate the proposed approach, an isotropic material model is used. As specified previously, the

isotropic case is a special case of an anisotropic material, where both the eigenvalues are equal, and

special measures must be taken [11]. A small disturbance can be imposed into the eigenvalues, so they

will be no longer be equal and the enrichment functions can be used. In this example, E = 10000 is the

Young’s modulus and ν = 0.3 is the Poisson ratio.

Figure 1 illustrates a rectangular plate (h/w = 0.5) with a single edge crack of length a under a uni-

form loading σ. The size of the crack is defined by a/w = 0.5. Results for the X-FEM are obtained

using topological and geometrical enrichment, with a fixed area of re/a = 0.2. For more information

about both adopted enrichment types please refer to [2] for instance. Results are illustrated in Figure 2,

where the proposed direct approach for calculating the SIFs presents similar accuracy to other numerical

approaches, such as the J-integral and an X-BEM formulation in [3].
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Figure 1: : Edge crack plate under a uniform load.

6. Conclusions

A direct approach for calculating the SIF in anisotropic materials has been presented in this work. The

used enrichment functions have the advantage of depending only on the material properties, presented

in a concise matrix form. Moreover, there are no further dependencies on the orientation of the material,

which allow the enrichment functions to be as general as possible. The results are seen to match the

reference solution, so we can conclude that the direct approach is an alternative method for obtaining the

SIF, with similar precision to other evaluation methods for obtaining the SIF.
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Figure 2: : Mode I SIFs for the edge crack problem.
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