
Using Hadoop To Implement a Semantic Method Of
Assessing The Quality Of Research Medical Datasets

Stephen Bonner
University Of Huddersfield

Huddersfield, UK
s.bonner@hud.ac.uk

Prof. Grigoris Antoniou
University Of Huddersfield

Huddersfield, UK
g.antoniou@hud.ac.uk

Dr. Laura Moss
University of Glasgow

Glasgow, UK
Laura.Moss@glasgow.ac.uk

Ibad Kureshi
Durham University

Durham, UK
ibad.kureshi@durham.ac.uk

Dr. David Corsair
University of Aberdeen

Aberdeen, UK
dcorsar@abdn.ac.uk

Illias Tachmazidis
University of Huddersfield

Huddersfield, UK
U1273221@hud.ac.uk

ABSTRACT
In this paper a system for storing and querying medical RDF
data using Hadoop is developed. This approach enables us
to create an inherently parallel framework that will scale
the workload across a cluster. Unlike existing solutions, our
framework uses highly optimised joining strategies to enable
the completion of eight separate SPAQL queries, comprised
of over eighty distinct joins, in only two Map/Reduce itera-
tions. Results are presented comparing an optimised version
of our solution against Jena TDB, demonstrating the supe-
rior performance of our system and its viability for assessing
the quality of medical data.

Keywords
RDF, SPARQL, Hadoop, Map/Reduce, Medical Data, Error
Checking

1. INTRODUCTION
Recent technological advances in modern healthcare have

led to a vast wealth of patient data being collected. This
data is not only utilised for diagnosis but also has the po-
tential to be used for medical research. However, accord-
ing to [5], there are often many errors in datasets used for
medical research. In this study they found error rates rang-
ing from 2.3% to 26.9% in a selection of medical research
databases. With such high error rates present in medical
databases there is clear need for a system to assess the qual-
ity of data before it used as the basis of cutting edge research.

1.1 Big Data and Healthcare
Big Data is a rapidly increasing area of interest within

the computer science field and draws upon areas from many
different disciplines. Both academic and industrial fields are
generating and collecting data at an unprecedented rate and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM http://dx.doi.org/10.1145/2640087.2644163
...$15.00
http://dx.doi.org/10.1145/2640087.2644163.

scale. This data, and the analysis of it, is being used to
replace models and guesswork as the basis for decision mak-
ing [1]. The biomedical and general healthcare fields have
the potential to be one of the biggest contributors to and
benefactors from the big data phenomenon. The volume of
worldwide healthcare data as of 2012 is estimated to be over
500 petabytes [4]. Analysing this data has the potential to
alter biomedical research and healthcare diagnosis [6].

1.2 Current Implementation
A Linked Data approach to assessing the quality of med-

ical data has been created. [3] This framework can be bro-
ken down into three key stages: firstly pre-existing medical
data is converted into RDF data and stored in Jena TDB.
Secondly the data can be annotated with provenance in-
formation, such as the specification of the machines which
recorded the data. Lastly a data checking component as-
sesses the quality of the data via a series of eight SPARQL
rules. The current implementation relies on traditional se-
mantic web technologies which are not well-adapted to pro-
cess the volume of data which healthcare entails. Due to
this the current framework suffers from performance and
scalability issues when processing massive RDF datasets.

2. HADOOP IMPLEMENTATION AND AL-
GORITHM DESIGN

2.1 Structure and Distribution Of The Real-
World Medical Data

For any new framework to be designed, real-world medical
data was required. Due to ethical and privacy reasons it was
not possible to have access to large volumes of real medical
data. However, three anonymised datasets were provided by
the University Of Glasgow. The datasets all contain neuro-
logical data from the BrainIT project [2]. The datasets con-
tain information regarding neurological readings taken from
patients, along with information regarding the machines and
sensors which produced these values. The provided datasets
represent a small period of time for three different patients
and combined they contain 7,933,649 RDF triples. To bet-
ter understand the distribution of the data, the number of
unique RDF Subjects, Predicates and Objects were obtained
using a simple Map/Reduce job. The results of which can
be seen in table 2. The results show that only 61 unique

predicates are used throughout all of the datasets. Further,
it can be seen that the number of unique subjects and ob-
jects are closely matched. It also shows that compared to
the total number of triples (7,933,649), many of the subjects
and objects are replicated numerous times.

All of the original SPARQL queries join distinct groups
of triples, which are linked by a common theme. Broadly,
the distinct groups of triples are related to two things: pa-
tient recording values and permitted value ranges. For any
possible optimisations for later queries, knowledge of the dis-
tribution of these triple groups would be required. In order
to explore the distribution of these groups a Map/Reduce al-
gorithm was devised that assessed the number of members
in set triple groups. This was then run against the same
three medical RDF datasets, grouping the triples into one
of three groups. The groups were ?range, ?obs and ?cs and
were chosen to reflect the triple groups used in the SPARQL
queries. The result is shown in table 3. The results show
that the distribution of the triple groups is massively skewed
towards the ?obs group.

As the framework needed to be tested against massive
datasets, one billion triples were synthetically generated. To
produce the new data, a Map/Reduce algorithm was devel-
oped which generated new RDF data based upon an input
of real world medical RDF data. The algorithm retains the
structure and distribution from the real world data, but in-
serts new randomly generated values for the variable triple
elements.

2.2 Query Planning
Before designing the implementation, a plan to complete

all the queries was created. Firstly as the queries share
many common elements, a super-query was created to avoid
the re-computation of joins. Using this super-query removes
a large percentage of duplicated joins which the standard
queries would perform. The listing in appendix B.1 below
shows how all the required SPARQL queries could be com-
piled into a single list. While this query would not return the
correct result if run upon a standard SPARQL endpoint, us-
ing Hadoop enables the correct joins to be performed. Figure
1 shows a graphic representation of how the various triple
groups are linked and how the Hadoop-based approach pro-
cess the required joins. All the elements in a triple group
are linked via a single common element, with links between
groups also being between common elements.

2.3 Hadoop-Based Framework Design
A key consideration when designing the Hadoop based

approach was the joining strategies to be used. The major-
ity of the existing approaches rely on a series of cascading
reduce-side joins. Due to the vast number of joins required
to assess medical data, an approach similar to the existing
solutions would result in many Map/Reduce iterations being
used. This in turn would result in very poor performance.
From reviewing the current literature it is possible to see
that there are gaps which would enable a highly optimised
system that stores and quires RDF data using Hadoop to
be created. Firstly, the case can be made for exploring a
system where prior knowledge of the data to be stored in-
forms a highly optimised system. Knowledge of the struc-
ture and distribution of any RDF data could be utilised to
enable efficient map-side and broadcast joins to be used.
For example, triples which contain common elements could

be grouped together to enable map-side joins. Also smaller
groups of triples which are required to be joined to larger
groups could be made available via a broadcast join. This
would save on numerous costly iterative reduce-side joins
which the current solutions rely upon. Secondly, the case
can be made for designing a system in which knowledge of
the type of SPARQL queries to be performed allows for op-
timised query planning. Currently none of the existing sys-
tem use knowledge of the SPARQL queries which will be
performed to save on costly re-computation. This means
that the current solutions would recompute all the required
joins for two SPARQL queries in which only one join was
different. A highly optimised solution would not waste time
and resources re-performing joins, instead it would only per-
form the additionally required join. This could be achieved
by creating a super-query from an input of multiple queries,
so that common joins would not be recomputed.

3. DATA UPLOAD ALGORITHM

3.1 Stage One - Compression
Due to the costly nature of dictionary encoding, an al-

ternative solution was developed. To implement this new
solution, common predetermined namespaces in the original
RDF data are located and replaced with shorter ones. This
has the advantage of both reducing the amount of space
each triple consumes on the HDFS and also reducing the
amount of network traffic during the shuffle and sort phase.
As the namespaces to be replaced are predetermined this
stage can be implemented as a Map only job. This approach
was chosen instead of a full dictionary encoding as it can be
accomplished in a map only job and is therefore quicker. It
also requires no additional Map/Reduce stage to decode the
data once complete, as is required by the dictionary encod-
ing method.

3.2 Stage Two - Sort-On Subject
The goal of this stage is to store all of the RDF predicates

and objects for a certain subject on the same line of input on
the HDFS. As shown in section 2.1, the majority of subjects
used in the medical data are used in multiple unique triples.
Utilising a method similar to the one described by [8], can
be justified both by this replication of subjects, also many
of the joins required for the SPARQL queries are performed
upon the subject. Using this method reduces replication of
triples to further save space on the HDFS and also enables
faster performance of joins in the query stage. The sort on
subject stage will allow the query stage to perform joins via
a map-side join rather then the more costly reduce-side join
method. To implement the sort on subject stage, the Map
stage scans the entire compressed RDF data set, setting each
RDF subject as the key and the rest of the triple as the value.
The Reduce stage then outputs the subject followed by all
the associated predicates and objects.

4. QUERY STAGE
The query algorithm is designed to replicate the results

that would be returned by running the SPARQL queries
used in the original study [3] [7]. To achieve this, several
different Hadoop joining strategies were utilised along with
exploitation of the distribution of the data.

As discussed in section earlier, the distribution of the med-
ical RDF data can be categorised into two sections. Firstly a

portion of the RDF triples contain information about med-
ical equipment, sensor accuracy, permitted data ranges and
medical conditions. This information is a very small propor-
tion of the datasets and is consistent across them all. Sec-
ondly the bulk of the RDF data concerns the actual time do-
main records and values associated with the patients them-
selves. Knowledge of this meant that it was possible to join
the smaller selection of triples to larger ones via a broad-
cast join. This was achieved by using the Hadoop feature
called Distributed Cache. The Distributed Cache allows set
files from the HDFS to be pushed to either a Map or Re-
duce task. This allows multiple elements to be joined via a
broadcast join, thus bypassing the need for a series of Cas-
cade Reduce-Side Joins.

4.1 Selection Stage
This stage has two main functions and is implemented as

a complete Map/Reduce iteration. Firstly it traverses all
triples stored on the HDFS and selects only those required
by the queries. Secondly, it then performs some of the re-
quired joins before the data is passed to the second stage of
the query algorithm. The complete workflow for the selec-
tion stage can be seen in figure 4. This figure will be referred
to throughout this section.

The input to this stage is the formatted data emitted by
the upload stage and stored on the HDFS. As the data query
algorithm formats the data so that all predicate and object
for a certain subject are available on the same line, this en-
ables a map-side join to be used to perform some of the
required joins. The requirement for a map-side join is that
triples needing to be joined share a common subject. Map-
side joins are the most efficient of the available Hadoop join-
ing strategies as they bypass the need for any of the data to
be transferred over the network. An example section from
a SPARQL query which could be joined via a map-side join
is shown in figure 2.

Figure 2 shows the ?range portion of query which is com-
mon across all the queries. All of the required BGPs in this
portion of the query are joined upon the subject. As all
the predicates and objects for a certain subject are avail-
able on the same line of input, the data can be joined in the
Map stage. A further optimisation implemented here is the
collection of all the required values for the ?range portion
of the query in the same job. The current Jena implemen-
tation would recompute the ?range joins each time for the
minimum and maximum queries, even though the difference
is one BGP. In the Hadoop implementation, both the mini-
mum and the maximum values are collected in the same job.
After the values have been joined together they are collected
and then written onto separate files in the HDFS via a spe-
cial output function called Hadoop Multiple Outputs. By
default, any output from a Map/Reduce task is combined
into a single file large file. However using Hadoop Multiple
Output enables the output from any task to be split into sep-
arate files, but predetermined files, when being stored on the
HDFS [9]. The procedure described above is used for other
triples groups which meet the requirements to be joined in
the map phase. Each separate triple group is written out to
its own unique file. This is done so that each triple group
can be accessed directly at a later time, avoiding a costly
re-search for them. The location of this process, along with
the other triples groups which qualify from a map-side join
can be seen in figure 4. The figure shows how the various

triple groups joined via a map-side join are collected and
written into separate files on the HDFS using Hadoop Mul-
tiple Outputs. This step is completed without the need to
initiate a reduce task.

For joins that cannot be performed via a map-side join,
they must be completed via a reduce-side join. An example
case for using a reduce-side join would be when an object
from one triple must be joined to a subject from a second
triple. An example of this is shown in figure 3.

To join the triples shown in figure 3 via a reduce-side join,
two stages must be performed. Firstly in the map phase,
once one of the triples to be joined has been located, the
element on which it is to be joined is set as the key and the
rest of the triple as the value. In addition, the value is tagged
with its join group and its join order. Any common elements
will be passed to the same reducer. The join group is used
in the reduce stage to decide which elements are members of
which triple groups. The join order is used to determine a set
order for the elements when being written out on the HDFS.
Figure 4 shows the location of the reduce-side join. It also
shows how the final output from any reduce-side joins are
also written back onto the HDFS using the Hadoop Multiple
Outputs feature. This is done so that only the files which
contain the relevant triples can be used as input to the join
stage, thus avoiding the need to rescan the entire contents
of the HDFS.

4.2 Join Stage
This stage has two main functions. Firstly it performs the

rest of the required joins to compete the queries. Secondly,
it then formats and then emits the final output. This stage
makes use of the broadcast-join method discussed earlier.
The use of a broadcast-join enables numerous elements to
be joined together from within the same in the same job.
Using the existing methodology from the literature, the joins
would otherwise have been performed via a series of costly
cascade reduce-side joins. Figure 5 shows the workflow for
the complete join stage Map/Reduce iteration.

To perform the broadcast-join, the smaller files created in
the selection phase are distributed to all the reducers run-
ning in the join phase. This uniform distribution of files is
achieved by making use of the Hadoop Distributed Cache
feature. This feature allows smaller files to be made avail-
able to any Map or Reduce task running upon any node
within the cluster. The files pushed to the reduce phase are
extracted into Hashtables, which allows for extremely fast
lookups when checking for element membership. The broad-
cast join method is particularly applicable in this case, since
as highlighted in section 2.1, the data is massively skewed
towards one triple group. This group, which always forms
the ?obs part in any query, is far too large to be stored
in memory so must be joined via a reduce-side join. How-
ever, the smaller triple groups can be joined to the larger
?obs group via numerous broadcast joins. The location of
the broadcast join in the join stage workflow can be seen in
figure 5.

These concepts are practically implemented in the follow-
ing manner. Firstly the map phase, which takes as input a
file containing the ?obs results from the reduce section. The
map phase decides if the current input is an ?obs record
or a ?a2 record based on length. These two triple groups
are then joined via the common element and passed to the
reduce phase. In the reduce phase the two groups which

will be available in the same job due the shuffle and sort
phase. The system then performs the rest of the joins via
the broadcast method. As explained above the files which
are to be joined via the broadcast join method are all ex-
tracted from the Hadoop distributed cache and loaded into
Hashtables in main memory. Then the different triple groups
highlighted in figure 1 can be joined via any common ele-
ments. Each one of the joins performed via the broadcast
method would otherwise have had to been completed via a
separate reduce-side join, as they are all performed upon in-
dividual elements. Once the required joins are completed the
algorithm then performs the conditional logic determined by
original queries. The logic conditions include checking val-
ues against a pre-determined range. Figure 5 shows the full
range of conditional logic check which the stage performs.
Once the algorithm finds a value that does not meet the
requirements, it will emit the required value and the other
associated values back on the HDFS. This stage again makes
use of the Hadoop Multiple Outputs, to split the output from
each conditional logic check into its own file. This allows a
user to more easily see and access the values which have
failed a particular logic condition.

5. EXPERIMENTAL EVALUATION

5.1 Testing Methodology
The framework was tested on a dedicated Hadoop clus-

ter. The cluster comprises a head node with eight data
nodes. All of the machines are running CentOS 6.5 64-Bit,
Java OpenJDK 1.7.0 51 and Hadoop 1.2.1. All the machines
communicate via a dedicated Gigabit switch. The hardware
specification of the cluster nodes is detailed in table 1. In
this context a result is the time taken at the end of a success-
fully completed job, subtracted from the time at the start.
These values are generated from within the Hadoop code
itself and incorporate all the JVM initialisation and HDFS
write stages. For the Jena-based results, the collection of
the start and end time values as well as the running of the
Jena binaries was performed by a shell script. All the ex-
periments were repeated five times and an average taken to
produce the final presented results.

5.2 Performance Scalability Across Number
Of Nodes

To test how the Hadoop approach scales across different
cluster sizes, it was run on different numbers of nodes. The
results for 512M and 1000M are absent for the single node as
the volume of storage space required to store these volumes
of triples was greater than the 250GB of HDFS capacity
available on the single node. Figure 6 shows how the up-
load algorithm scales across nodes. As the number of nodes
increases, the time taken to complete the upload algorithm
decreases. For example it took the single node cluster con-
figuration 275 minutes to upload 256M triples, while it only
took the eight node cluster configuration 30 minutes to pro-
cess the same number of triples. Figure 7 shows how the
query algorithm scales across different numbers of nodes.
Again, increasing the number of nodes has a dramatic effect
on the total time taken to complete the query algorithm.
The increase in number of nodes always results in a decrease
in total time taken to complete the collection of queries.

5.3 Query Stage Speed-Up

To assess the relationship between number of nodes and
run time, a comparison of speed-up was performed. To cre-
ate this comparison, the total time taken for the query algo-
rithm of approach one across two, four and eight nodes was
divided by the time taken for one node. This enables the
speed-up resulting from increasing the number of nodes to
become apparent. The best case scenario would be that the
speed-up would reflect the increase in node numbers. For ex-
ample, this best-case scenario would mean that time taken
to complete a set task on one node would be eight times
faster when running on eight nodes. Figure 8 shows the
speed-up of different node numbers against a single node on
dataset sizes up to 256M. The results highlight some very
interesting trends in the query speed-up of approach one.
The speed-up factor increases consistently as the number
of nodes increases, which is to be expected. However the
speed-up factor for a particular number of nodes does not
stay consistent across dataset sizes. For example at 32M
triples the speed-up factor of going from one node to eight
nodes is 2, however at 256M triples the speed-up factor is
5.9.

5.4 Comparison With Jena TDB
To test how the Hadoop approach compares with Jena

TDB, Jena was run on one of the nodes which comprises the
Hadoop cluster. This allowed for direct comparisons to be
drawn. The results shown for Jena TDB are the combination
of the time taken for Jena to complete all the original eight
SPARQL queries which the Hadoop approach is also using.
The results show the combined upload and query time for
the approaches to complete all eight queries. Figure 9 shows
how the Hadoop approach, running on the full eight node
cluster, compare against Jena running on a single node. The
dataset size of 128M triples was the maximum size which
Jena was able to successfully run against. This shows how
effective the Hadoop approach to be when compared with
Jena as it is over 22 times faster then Jena on a dataset size
of 128M triples.

6. CONCLUSIONS
From such positive results when compared with Jena, it

can said that Hadoop is very effective at storing and query-
ing medical RDF data. The Hadoop approach demonstrates
better performance then Jena when running on the same
machine and processing the same datasets. The Hadoop
approach also demonstrates scalability when tested in a dis-
tributed environment, meaning that it is well equipped to
deal with NHS-sized datasets. Hadoop allows for a system
to assess the quality of medical data which is not only better
performing than using traditional Semantic Web technolo-
gies, but it is also able to process the massive volumes of
data required by the NHS, as it scales the workload across
a computer cluster. This project has also introduced two
novel methods for use when completing SPARQL queries
using map/reduce: the use of broadcast joins and the cre-
ation of the super-query.

The project uses the broadcast join method for completing
many of the required joins. This method reduces the need
for a series of cascade reduce-side joins. This project appears
to be the first from the currently available literature to make
use of the broadcast join method to perform queries on RDF
data. This project also appears to be the first to introduce

the notion of the super-query. A super-query is created from
a series of standard SPARQL queries and is used to save
on the re-computation of common joins. This something
neither Jena or the existing Hadoop-SPARQL approaches
appear to implement.

The work performed for this paper will hopefully be used
to allow for more and larger medical databases to be checked
for errors and inconsistencies. This should hopefully lead to
more accurate and reliable databases being used in both
medical research and also for diagnosis.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge the work of the

BrainIT group investigators and participating centres to the
BrainIT dataset. The authors would also like to acknowl-
edge the use of the University of Huddersfield Queensgate
Grid in carrying out this work

8. REFERENCES

[1] D. Agrawal, P. Bernstein, E. Bertino, S. Davidson,
U. Dayal, M. Franklin, J. Gehrke, L. Haas, A. Halevy,
J. Han, H. V. Jagadish, A. Labrinidis, S. Madden,
Y. Papakonstantinou, J. Patel, R. Ramakrishnan,
K. Ross, C. Shahabi, D. Suciu, S. Vaithyanathan, and
J. Widom. Challenges and Opportunities with Big Data
2011-1. 2011.

[2] I. Chambers, B. Gregson, G. Citerio, P. Enblad,
T. Howells, K. Kiening, J. Mattern, P. Nilsson, I. Piper,
A. Ragauskas, et al. Brainit collaborative network:
analyses from a high time-resolution dataset of head
injured patients. In Acta Neurochirurgica Supplements,
pages 223–227. Springer, 2009.

[3] D. Corsar, L. Moss, and I. Piper. Data quality
assessment using linked data: A case study in the
medical domain. In E-KAW 2012, The 18th
International Conference on Knowledge Engineering
and Knowledge Management, 2012.

[4] B. Feldman, E. M. Martin, and T. Skotnes. Big data in
healthcare hype and hope. 2012.

[5] S. I. Goldberg, A. Niemierko, and A. Turchin. Analysis
of data errors in clinical research databases. In AMIA
Annual Symposium Proceedings, volume 2008, page 242.
American Medical Informatics Association, 2008.

[6] D. Howe, M. Costanzo, P. Fey, T. Gojobori,
L. Hannick, W. Hide, D. P. Hill, R. Kania,
M. Schaeffer, S. St Pierre, et al. Big data: The future of
biocuration. Nature, 455(7209):47–50, 2008.

[7] L. Moss, D. Corsar, and I. Piper. A linked data
approach to assessing medical data. In P. Soda and
F. Tortorella, editors, 25th International Symposium on
Computer-Based Medical Systems (CBMS), 2012, pages
1–4, 2012.

[8] K. Rohloff and R. E. Schantz. High-performance,
massively scalable distributed systems using the
mapreduce software framework: the shard triple-store.
In E. Tilevich and P. Eugster, editors, PSI EtA. ACM,
2010.

[9] T. White. Hadoop: The Definitive Guide. O’Reilly,
second edition edition, 2010.

APPENDIX
A. TABLES

A.1 Cluster Specification

Component Head Node Data Node

CPU Intel Q8400 Intel Q8400
RAM 4GB DDR2 8GB DDR2
HDD 250GB (7200RPM) 250GB (7200RPM)

Table 1: Specification Of The Hadoop Cluster

A.2 Subject, Predicate and Object Distribu-
tion

RDF Element Number Of Elements

Subject 1,523,106
Predicate 61

Object 1,711,702

Table 2: Subject, Predicate and Object Distribution

A.3 Triple Group Distribution

Triple Group Name Number Of Elements

?obs 3,426,188
?range 518

?cs 446

Table 3: Triple Group Distribution

B. DIAGRAMS

B.1 Super-Query

?range a med:AcceptableRange .

?range med:clinicalRangeMax ?max .

?range med:clinicalRangeMin ?min .

?range pd:hasParameter ?p .

?obs a mo:PhysiologicalObservation .

?obs ssn:observedProperty ?p .

?obs ssn:observationResultTime ?time .

?obs pd:atHumanTime ?htime .

?obs ssn:observationResult ?a1

?obs ssn:observedBy ?sensor.

?a1 ssn:hasValue ?a2 .

?a2 pd:readingValue ?value .

?sensor ssn:hasMeasurementCapability ?mc.

?mc a ssn:Accuracy .

?mc ms:capabilityValue ?accuracy .

med:Hypertension med:requiredSymptoms ?cs .

med:Hypotension med:requiredSymptoms ?cs .

?cs med:clinicalFeatures ?cscf .

?cscf pd:hasParameter ?p .

?cscf med:clinicalRangeMax ?csrMax .

?cscf med:clinicalRangeMin ?csrMin .

B.2 Triples Groups

Figure 1: Triple Group Joining Plan

B.3 Map-Side Join Example

Figure 2: Example Section Of A SPARQL Query
That Can Be Joined Via A Map-Side Join

B.4 Reduce-Side Join Example

B.5 Selection Stage

B.6 Join Stage

B.7 Upload Performance Scalability Across Nodes

Figure 3: Example Section Of A SPARQL Query
That Can Be Joined Via A Reduce-Side Join

B.8 Query Performance Scalability Across Nodes

B.9 Query Speed-Up Factor

B.10 Hadoop Approach Comparison With Jena

Figure 4: Selection Stage Workflow

Figure 5: Join Stage Workflow

Figure 6: Upload Performance Scalability Across Nodes

Figure 7: Query Performance Scalability Across Nodes

Figure 8: Query Speed-Up Factor

Figure 9: Hadoop Approach Comparison With Jena

