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Abstract

This paper illustrates the formulation of viscoplastic-damage constitutive models using the framework of hyperplasticity.
The entire constitutive behaviour is derived from only two scalar potentials; a free energy potential and a dissipation
potential. This ensures that the model obeys the laws of thermodynamics.
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1. Introduction

Time-dependent constitutive models are essential for modelling the deformation of underground cavities excavated in
creeping rock and are very useful in producing a successful design. Creep behaviour is prominent in soft rocks such as salt
rock and potash, and has even been observed in hard rocks, highlighting the importance of designing for such behaviour.

In this paper we present a new class of time-dependent constitutive models which are able to take into account both
the secondary and tertiary stages of creep deformation. Three stages of creep are typically observed in laboratory creep
tests: a primary stage considered to be viscoelastic, a secondary stage considered to be viscoplastic and a tertiary stage
considered to be caused by material damage, through the formation of cracks. Thus here we develop a viscoplastic-damage
constitutive model. These models are novel as they are derived using the hyperplastic framework of Houlsby and Puzrin
[1] and therefore automatically obeys the laws of thermodynamics. In this approach the entire constitutive behaviour
can be derived from two scalar potentials; a free energy potential which provides the elasticity law, and a dissipation
potential which provides the yield function, the direction of plastic flow and the evolution of a damage variable. No
additional assumptions are required. We assume that the viscoplasticity and damage are coupled, therefore they occur
simultaneously. The classical sign convention in geomechanics is adopted; where compressive stresses are taken to be
positive. The constutive models are formulated in term of effective stresses.

2. Formulation of a Von-Mises viscoplastic-damage constitutive model

This section presents the derivation of the constitutive equations using the hyperplastic framework. The free energy
potential can be written for a damaged material as follows

ψ =
1
2
{εe}(1 − αd)[De]{εe}, (1)

where {εe} is the elastic strain vector, [De] is the elastic stiffness matrix and αd is a scalar damage parameter.

Differentiating the free energy potential with respect to the elastic strain vector produces the elasticity law

{σ} = ∂ψ

∂{εe} = (1 − αd)[De]{εe}. (2)

The free energy potential (equation (1)) can be expressed as follows in terms of deviatoric and mean stresses

ψ =
q2

6G(1 − αd)
+

p2

2K(1 − αd)
, (3)
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where q is the von Mises equivalent stress defined as q =
√

3J2, where J2 =
1
2 tr([s][s]), where the deviatoric stress is

[s] = [σ]− p[1] and [1] is the three by three identity matrix, p is the mean stress, G is the shear modulus and K is the bulk
modulus.

The stresses associated with the damage can then be derived as follows

χd =
∂ψ

∂αd
=

q2

6G(1 − αd)2 +
p2

2K(1 − αd)2 . (4)

For a coupled viscoplastic-damage material the dissipation potential Ḋ can be defined as

Ḋ = σy

√
(rpα̇s1 + rpηn−1α̇n

s2)2 + (rdρα̇d)2, (5)

where α̇s1 and α̇s2are internal variables representing the equivalent deviatoric plastic strain rate α̇s(αs1 = αs2 = αs), η is
the viscous coefficient which controls the extent of plastic strain, n is a material constant, whilst rp and rd are constants
governing the ratio of viscoplasticity and damage. σy = σy0Π(αd), where σy0 is the uniaxial yield stress. ρ is defined as

ρ =
q

6G(1 − αd)2 +
p2

2K(1 − αd)2q
, (6)

It should be noted that for a rate-independent von Mises material, the above dissipation potential reduces to the form given
by Einav et al. [2].

Differentiation of the dissipation potential with respect to the plastic strains gives the dissipative stresses.

χq =
∂Ḋ∗

∂α̇s1
+

1
n
∂Ḋ∗

∂α̇s2
. (7)

Noting that αs1 = αs2 = αs, we can show that

χq =
σy(rpα̇s + rpη

n−1α̇n
s)rp(1 + (ηα̇s)n)√

(rpα̇s + rpηn−1α̇n
s)2 + (rdρα̇d)2

. (8)

Differentiating with respect to α̇d gives the dissipative stress due to damage

χd =
∂Ḋ∗

∂α̇d
=

σyα̇d(rdρ)2√
(rpα̇s + rpηn−1α̇n

s)2 + (rdρα̇d)2
. (9)

Since there is no kinematic hardening, the true stresses and the dissipative stresses are identical. From equations (8)and
(9): (

q
rpσy(1 + (ηα̇s)n−1)

)2

+

(
q

rdσy

)2

= 1. (10)

Rearranging equation (10) we obtain

α̇s =
1
η

 1√(
σyrp

q

)2 −
( rp

rd

)2
− 1


1

n−1

(11)

The plastic strain rate α̇s is a non negative quantity, therefore the expression inside the bracket in equation (11) must
be greater than or equal to zero. Therefore the yield criterion is given by

f =
(

q
σy

)2  1
r2

p
+

1
r2

d

 − 1 (12)

From this equation we can find that the constants rp and rd are related by the following expression

1
r2

p
+

1
r2

d

= 1, (13)

2



from which it follows that rp ≥ 1 and rd ≥ 1. In the limiting case when rp = 1, rd → ∞ and the constitutive model
simplifies to the well-known Perzyna viscoplastic model [4].

An expression for the damage internal variable can be found from equation (9), bearing in mind that ρ = χd
q

α̇d =
α̇s

(
1 + (α̇sη)n−1

)2

ρ

(
rp

rd

)2

. (14)

3. Formulation of a Drucker-Prager visco-plastic constitutive model

For a frictional material, the dissipation function can be assumed to take the form:

Ḋ =
√

(rp(c2 p + c1)α̇s1 + rpηn−1α̇n
s2)2 + (rdρ(c2 p + c1)α̇d)2, (15)

where c1 = dΠ(αd) and c2 = µΠ(αd), where d is a constant related to the cohesion, µ is a constant related to the frictional
angle and Π(αd) is the softening/hardening function. ρ is defined as

ρ =
q2

6G(1 − αd)2(q − c3 p)
+

p2

2K(1 − αd)2(q − c3 p)
, (16)

where c3 = βΠ(αd) and where β is a constant, related to the dilation angle. d, µ and β can be calculated from the cohesion,
friction angle and dilation angle.
As a side condition we will impose a linear relationship between the volumetric and shear strain rates

α̇v + c3α̇s = 0, (17)

where αv = tr([εp]).

Starting from the dissipation function of equation (15) together with the constrain given by equation (17) and following
the procedure illustrated in the previous section, it can be shown that

α̇s =
1
η

(c2 p + c1)

 1√( rp

ck

)2 −
( rp

rd

)2
− 1




1
n−1

(18)

where
ck =

(q − c3 p)
(c2 p + c1)

. (19)

And the damage internal variable is given by

α̇d =

α̇s

(
1 + (α̇sη)n−1

(c2 p+c1)

)2

ρ

(
rp

rd

)2

. (20)

The yield criterion is given by

f = ck2
 1

r2
p
+

1
r2

d

 − 1 (21)

In order to use this constitutive model for practical application we must use a stress integration procedure. Here we
use the iterative implicit backward Euler (bE) stress integration scheme.
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4. Validation with triaxial data

The Drucker-Prager viscoplastic-damage constitutive model, which is applicable to geomaterials, has been validated
using data from triaxial compression testing of sandstone carried out by Yang and Jiang [3]. The experimental data was
obtained from short-term loading tests and long-term creep tests. Note that here we use a softening/hardening function
Π(αd) equal to (1 − ααd)2, where α is the softening hardening parameter. This function fits well with the experimental
data.

The short-term loading tests were conducted by Yang and Jiang [3] under different confining pressures. We simulated
these triaxial tests by using a single material point in MATLAB 7.9.0. We apply the initial confining pressure in the first
time step and then apply an increment of strain over each subsequent time step, ensuring that the rate of applied strain
corresponds to a rate of applied stress of 0.127 MPa/s, which is consistent with the rate adopted in the triaxial experiments.
This rate of stress is applied over the full time period of the simulation (prior to and during material softening). Yang and
Jiang [3] conducted a creep test under multi levels of stress. The applied rate of stress (σ1 − σ3) was the same as that
used in the short-term tests (0.127 MPa/s), with a confinement σ3 of 5 MPa. When a required level of stress was obtained
it was held constant and the sandstone was allowed to creep for 48 hours. The final and highest level of stress used was
σ1 − σ3 = 160 MPa. Under this constant level of stress, the three typical stages of creep were observed. This stress was
below the peak strength of the material, but corresponded to the point where yield was initiated. In order to simulate a
creep test, we modified the program used for the short-term tests by keeping σ1 − σ3 constant when yield begins. Here
we do not simulate a multi-stage creep test, but rather use a single level of stress equal to the final level of stress used by
Yang and Jiang [3] (σ1 − σ3 = 160 MPa). This is justified from the results of triaxial tests carried out by Yang and Jiang
[3]. Their findings showed that very little creep occurred below the yield stress of the sandstone.

Figure 1 compares the short-term stress-strain curves obtained by Yang and Jiang [3] and those obtained using the
new frictional constitutive model. The model parameters used in the simulations are shown in Table 1. We observe that
the constitutive model provides a good prediction of the experimental data for all three confining pressures, at both peak
stress and in the region of material softening. The experimental data obtained from the long-term tests is shown in Figure
2, along with the response of the new constitutive model. Here we observe that the constitutive model underestimates the
strain shown in the experimental data. However the overall shape of the curves is very similar, therefore the constitutive
model provides a useful approximation.

(a)

Figure 1: Validating constitutive model using short-term stress-strain triaxial data

d[MPa] µ β η[MPa h] n α rp

21.95 0 −2.38 1525 1.5 0.375 1.05

Table 1: Values of constitutive model parameters used in the triaxial simulation

It should be noted that more experimental data is required in order to determine the constitutive model parameters
more accurately. Triaxial tests under different rates of loading are required, as the magnitude of the peaks of the short-
term stress strain curves shown in Figure 1 is dependent on the rate of loading. A higher rate of loading could produce
higher peaks, whilst a lower rate of loading could produce lower peaks. In order to obtain the strength parameters d, µ
and β more accurately it is necessary to conduct triaxial tests under low rates of loading.
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Figure 2: Creep response of model under yield stress

5. Conclusions

A novel viscoplastic-damage constitutive models have been derived within the framework of hyperplasticity. These
models are able to describe both the secondary and tertiary stages of creep behaviour. The new frictional viscoplastic-
damage model is validated with experimental data obtained by Yang and Jiang [3] for samples of sandstones. This model
can be used for a variety of applications such as the creep analysis of underground tunnels and storage caverns as well as
applications outside the field of geomechanics. The model can be generalised by incorporating an appropriate lode angle
dependency function such as that suggested by Eekelen [5].
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