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Abstract

This paper proposes a functional that assigns low
‘energy’ to sets of subsets of the image domain consist-
ing of a number of possibly overlapping near-circular
regions of approximately a given radius: a ‘gas of cir-
cles’. The model can be used as a prior for object ex-
traction whenever the objects conform to the ‘gas of cir-
cles’ geometry, e.g. cells in biological images. Config-
urations are represented by a multi-layer phase field.
Each layer has an associated function, regions being
defined by thresholding. Intra-layer interactions as-
sign low energy to configurations consisting of non-
overlapping near-circular regions, while overlapping
regions are represented in separate layers. Inter-layer
interactions penalize overlaps. Here we present a theo-
retical and experimental analysis of the model.

1. Introduction

Object extraction is one of the key problems of im-
age processing. The problem is simple to state: find
the regions in the image domain occupied by a speci-
fied object or objects. It is, however, hard to solve: for
all except the simplest images, solution requires object
models containing significant shape information in ad-
dition to information concerning image properties. In
addition, in many applications the number of instances
of the object of interest occurring in the image may be
unknown a priori, and the objects may interact: they
may cluster together, be regularly spaced, or tend not to
overlap, for example.

Most shape modelling methods use one or more
template shapes and variations around them to capture
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shape uncertainty [1, 9, 8]. These methods are ineffi-
cient when the number of objects is unknown or when
objects interact. Each object requires separate represen-
tation and computation, as well as auxiliary variables to
achieve geometric invariance. Each pair of interacting
objects requires extra computation. ‘Higher-order ac-
tive contour’ (HOAC) models [7] provide an alternative
approach. HOAC models can describe shape knowl-
edge without templates, using long-range dependencies
between region boundary points, and are intrinsically
invariant. When expressed in terms of phase fields [6],
they can be used to model configurations consisting of
multiple interacting objects at no extra cost.

An important subset of object extraction problems
involve multiple objects of near-circular shape, e.g. tree
crowns in remote sensing images, and cells and other
structures in biological images, and are thus difficult to
solve using standard shape modelling methods. To ad-
dress these problems, Horvath et al. [4, 3] described
a HOAC model favouring subsets of the image domain
consisting of any number of near-circular components
with approximately a given radius. This ‘gas of circles’
(GOC) model was successfully used for the extraction
of tree crowns from aerial images. The model suffers,
however, from two limitations that render it unsuitable
for many important applications. The first arises from
the representation: because the configuration space con-
sists of subsets of the image domain, as opposed to sets
of subsets, touching or overlapping objects cannot be
represented. The second arises from the model: the
long-range interactions that favour near-circular shapes
also create repulsive interactions between nearby ob-
jects, meaning that objects in low-energy configurations
are typically separated by a distance comparable to their
size. In [5], a first attempt was made to overcome these
limitations in a binary Markov random field model.
However, the use of binary variables means that the ge-
ometric accuracy of the representation is limited, and
solution requires computationally expensive stochastic



optimization.
In this paper, we propose a generalization of the

GOC model [3] that overcomes all these limitations
while maintaining computational efficiency: the multi-
layer phase field GOC model. This model consists of
multiple instances of the phase field GOC model, each
instance being known as a ‘layer’. This makes it pos-
sible to represent overlapping objects as subsets on dif-
ferent layers, thereby removing the first limitation. The
only inter-layer interaction is an overlap penalty: the
long-range interaction does not act between different
layers. As a result, objects in separate layers do not re-
pel, thereby removing the second limitation. MAP esti-
mates can be computed by minimizing the energy of the
model via gradient descent, which is relatively compu-
tationally efficient. With a suitable data likelihood, the
new model can be used for object extraction in the many
cases in which the ‘gas of circles’ geometry is relevant.
In this paper, we demonstrate its use for the extraction
of cells and lipid droplets from biological images.

2. Single-layer ‘gas of circles’ phase field
model

A phase field model [6] represents a subset R ⊂ D
by a function ϕ : D → R on the image domain D, and
a threshold t: R = {x ∈ D : ϕ(x) ≥ t}. The single-
layer ‘gas of circles’ phase field energy E is [3]:
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where d controls the range of interaction and H is the
Heaviside step function. This model assigns low energy
to subsets of D consisting of a number of near-circular
regions of approximately a given radius, separated by
distances comparable to their size [3].

3. Multi-layer ‘gas of circles’ phase field
model

We now extend the single-layer model of equa-
tion (1) to a multi-layer GOC model. The use of multi-
ple layers enables the representation, not just of subsets,

Figure 1. Layered phase fields

but of sets of subsets of D, because subsets with non-
empty intersection can now be represented on separate
layers. As a result, the new model can represent objects
that touch and overlap in the image.

This is not enough on its own because the long-
range interaction in equation (1) creates a repulsion be-
tween connected components, favouring configurations
in which the objects are separated by a distance com-
parable to their size. While appropriate for some prob-
lems, e.g. tree crowns in regular plantations [3], it fails
for problems in which objects are touching or overlap-
ping, see e.g. Fig. 6. To overcome this limitation, in the
new model the long-range interactions act intra-layer
but not inter-layer. This has two effects. First, the low-
energy configurations in each layer are still ‘gas of cir-
cles’ configurations, as required. Second, the repulsive
interaction is eliminated, because repulsively interact-
ing regions can ‘escape’ to separate layers. The result is
that overlapping ‘gas of circles’ configurations on sep-
arate layers can now be combined without penalty. To
avoid degenerate configurations, in which a given ob-
ject is duplicated across all layers, an inter-layer area
overlap penalty is introduced.

To proceed, we redefine the phase field as a multi-
component object: ϕ = {ϕi}i∈[1..ℓ] : [1..ℓ] × D → R,
ϕ, where ℓ is the number of layers. The total energy Ẽ
of the new multi-layer model then takes the form

Ẽ(ϕ) =
ℓ∑

i=1

E(ϕi) +
κ

4

∑
i̸=j

∫
D
(1 + ϕi)(1 + ϕj) , (3)

where E is defined in equation (1), and κ is a new pa-
rameter controlling the strength of the overlap penalty.
An example of a low-energy configuration is shown
in Fig. 1.

Note that ‘background’ points, with ϕi ≃ −1, do not
generate overlap penalty. Note also that if they do not
overlap, objects in range of the repulsive interaction will
tend to lie in different layers. If they do overlap, there
is competition between the repulsive interaction and the



overlap penalty. If κ is not too large, they will exist on
separate layers; if κ is large enough, they will exist on
the same layer, perhaps reducing to one object.

l = 1 l = 2 l = 3 l = 5

κ = 0.02 κ = 0.02 κ = 0.02 κ = 0.02

Figure 2. Typical configurations of the prior model
(r = 10, negative circle energy). κ = 0 in the top row.

3.1 Functional derivative of the energy

The layered phase field energy will be minimized
via gradient descent, for which we need to compute its
functional derivative:

δẼ(ϕ)

δϕk(x′)
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4
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(4)

where EO(ϕ) denotes the overlap energy term from
Eq. (3). The first term is simply the functional deriva-
tive of E evaluated at the ϕk, and so is known [6, 3].
The derivative of the overlap energy is
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4. Experimental results

In this section, we report the evaluation of the be-
haviour of the multi-layer phase field GOC model on
synthetic and real microscope images. For these exper-
iments, we used the following phase field data term:
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where: ∇ϕ, and ϕ± = (1 ± ϕ)/2 are approximately
the normal vector to the boundary, and the characteristic
functions of the region (+) and its complement (−) re-
spectively [2]; I : D → R is the image data; µin,out and
σin,out are the parameters of pixel-wise Gaussian distri-
butions modelling the image in the interior (in) and ex-
terior (out) regions, learned from samples; and γ1,2 are
positive weights.

Fig. 2 shows some minimum energy configurations
of the prior model. Without loss of generality, we chose
d = 10, αf = 0.2795, βf = 0.0911, λf = 0.625 and
Df = 0.75 to ensure the negative circle energy needed
to have objects in the minimum energy configuration.
As expected, κ = 0 yields overlapping objects, while
κ > 0 prevents overlaps. If κ is too high, then either an
empty configuration or unstable circles are produced.

In the next experiment, we take a closer look at the
properties of the model in the case of two circles with
different levels of overlap. We used two layers, circles
of radius 10, and κ values in the range [0, 1]. Fig. 3
shows segmentation error versus κ and overlap w. Near
κ = 0.7 there is a clear fall in the segmentation error. If
w > 10, we need a larger κ to achieve a good segmen-
tation.

noisy small optimal large
image κ κ κ

Figure 3. Segmentation results for noisy images con-
taining two overlapping circles. Overlap w: 5 (top);
10 (middle); 15 (bottom). Small κ = 0.55; optimal
κ = 0.7 (0.8 when w = 15); large κ = 1.

Finally, we examine the relationship between the
data weight γ2, overlap penalty κ, and extraction accu-
racy on synthetic images with more than two touching
circles. Fig. 4 shows the ratio of correctly detected cir-
cles as a function of κ and γ2. It is clear that there are
several parameter pairs for which one can achieve a cor-
rect segmentation starting from a random initialization.

4.1. Biological application

In microbiology, one of the main image processing
problems is to extract multiple objects, e.g. cells, lipid
droplets, or other sub-cellular components, that are of-
ten near-circular with many overlaps. The light micro-
scope techniques used produce noisy, blurred images



Figure 4. Results on synthetic images. Left: segmen-
tation; right: proportion of correctly detected circles as
a function of κ and γ2.

with low contrast. The results shown in Fig. 5 and Fig. 6
show that the proposed model can solve these object ex-
traction problems.

To initialize the multi-layer phase field, we used
a simple thresholding and connected component de-
tection, plus random assignment of different layers to
nearby initial regions. Typical computation time in
Matlab is about 20 seconds for a 200× 100 image with
3 layers.

Figure 5. Extraction from light microscope images
of cells having a particular radius.

5. Conclusions

The multi-layer phase field GOC model is capable of
representing and modelling an a priori unknown num-
ber of touching or overlapping near-circular objects.

Figure 6. Extraction from light microscope images
of lipid drops having a particular radius.

Such problems occur frequently in biomedicine and bi-
ology (e.g. cell images). Experiments show that the
model behaves as expected, and that when coupled with
an appropriate data model and initialization, can effi-
ciently extract such object configurations from synthetic
and real images.
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