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Abstract. Use of plane wave basis for the numerical solutions of acoustic wave problems using
element based methods has become an attractive approach for extending the allowable fre-
quency range for simulations beyond that available using piecewise polynomial elements. The
non-uniqueness of the solution at characteristic frequencies resulting from the use of the con-
ventional boundary integral equation is well known. The standard methods of overcoming this
problem are the so-called CHIEF method and that of Burton and Miller. The latter method
introduces a hypersingular integral which can be treated in several ways. In this paper we
present results for Partition of Unity BEM (PUBEM) for Helmholtz problem and compare the
performance of CHIEF against a Burton-Miller formulation regularised using the approach of
Chen et al.

1. INTRODUCTION
The theory of the boundary element method (BEM) for solving boundary integral equations
(BIE) is well established. It is known that the Conventional BIE (CBIE) based on Green’s
function representations for an exterior acoustic problem results in a non-unique solution at
characteristic frequencies for the corresponding interior problem and that this is a purely math-
ematical phenomenon. There are several methods to handle the non-uniqueness. One of the
extensively used method is the so called Combined Helmholtz Integral Equation Formulation
(CHIEF) due to Schenck [1], where some extra Helmholtz integral equations evaluated at inte-
rior points are added in the original system matrix. Although this results in an over-determined
system, the CHIEF method ensures a unique solution at the characteristic frequency. How-
ever, one needs to choose the interior points such that they do not lie on the nodal lines of the
interior modes of Helmholtz problem thus failing to provide any necessary constraint for unique-
ness of the solution. This can therefore introduce uncertainties for complicated geometries at
high frequencies as the nodal lines become densely packed in the interior making it difficult
to find suitable locations for the placement of interior points. Another method to avoid the
non-uniqueness problem is due to Burton and Miller [2]. It was shown in their work that the
integral equation resulting from linear combination of the CBIE and its normal derivative at
the collocation point always results in a unique solution. The main problem with this method is
the evaluation of the hypersingular integral which arises as a result of the differentiation of the
CBIE. In the present study, we compare the CHIEF method with one regularized form of the
Burton-Miller formulation for acoustic scattering from hard cylinders in two dimensions using
PUBEM. The two methods are compared for their accuracy of the solution and efficiency.

2. BOUNDARY INTEGRAL EQUATION
The mathematical formulation for deriving the CBIE from the Helmholtz equation is well estab-
lished [3]. The CBIE for an acoustic scattering (or radiation) problem governed by the Helmholtz



differential equation is given by
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where p is the collocation or source point, q the field point, G the free space Green’s function for
the Helmholtz problem, nq and np the normals respectively at points q and p pointing away from
acoustic domain Ω, ϕ(q) the unknown acoustic potential and ϕi(p) the known incident acoustic
wave. c(p) is the free coefficient which depends on the local geometry of Γ at p. In this study
we assume Γ is smooth and take c(p) = 1

2 . The normal derivative of (1) at the collocation point
p is given by
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and the Combined Hypersingular BIE (CHBIE) due to Burton and Miller [2] is
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where α is a coupling constant most commonly taken as i/k. In the present study, we analyse
the acoustic scattering from sound hard cylinders. A sound hard surface is where the normal
derivative of the total acoustic potential vanishes. Therefore, all the terms involving the normal
derivative of acoustic potential vanish. As mentioned earlier, the main drawback of (3) is the
numerical treatment of the hypersingular integral, i.e. the last integral on the left hand side.
Chen et al [4] give the following weakly singular form of the hypersingular integral∫
Γ
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where G0 is the free space Green’s function for the Laplace equation. For the present case of
a hard boundary, the last term in the right hand side of (4) vanishes. Consequently, the final
equation for this case of a hard boundary can be expanded as
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The acoustic potential at a point x on the boundary Γ using plane wave basis can be approxi-
mated as

ϕ(x) =
3∑

j=1

Nj

Mj∑
m

Ajmeikdjm·x x ∈ Γ (6)

where Nj is the j
th shape function, Ajm the unknown which can be thought of as the amplitude

of the mth plane wave with wave number k associated with node j. The direction of the mth

plane wave at node j is given by unit vector djm and x is the location of the point where the



potential ϕ is sought. We consider a three noded element with Mj as the number of plane waves
associated with the jth node. In the context of the BEM, the plane wave basis defined in (6) can
be used to express the unknown acoustic potential on the boundary Γ. Choosing appropriate
locations on the boundary Γ as collocation point p yields the following set of linear equations
from (5)

[H]{a} = {b} (7)

where the vector a contains the amplitudes of plane waves, Ajm, which can be used to quickly
recover the acoustic potential on the boundary Γ using (6).

3. NUMERICAL EXAMPLES
This section presents the error analyses for two problems viz. i) plane wave scattering from a
single sound hard cylinder and ii) from an array of four cylinders. At the outset, it is convenient
to define a parameter τ which gives the number of degrees of freedom per wavelength for a given
problem, i.e.,

τ =
T

ka
(8)

where T is the total number of degrees of freedom in the system for one cylinder and a is the
radius of the cylinder. Thus for the problem of scattering from a single cylinder with unit radius,
τ = T/k where T will be simply the multiplication of the total number of nodes on the scatterer
boundary and number of plane waves per node. It may be noted that the introduction of plane
waves into the basis makes the boundary integrals oscillatory in nature and it is very important
that these integrals be computed as accurately as possible. We follow the strategy described in
[5], namely element subdivision, for evaluating these integrals.

For all the results presented here the parameter τ ≈ 3.0 unless otherwise mentioned. This
value has been found to be sufficient to recover solutions with acceptable engineering accuracy
of 1% and moderate condition numbers which can be efficiently handled with the Singular Value
Decomposition (SVD) algorithm, see [5]. All the results are obtained with 30 integration (Gauss)
points per wavelength unless otherwise mentioned. For both the single cylinder and four cylinder
examples, we use two 3-noded continuous elements per cylinder along with the trigonometric
shape functions presented by Peake et al [6]. For all computations the integration points are
placed analytically on the scatterer boundary. We now define the relative L2 error for the total
acoustic potential ϕ on the boundary Γ, E2(ϕ) as

E2(ϕ) =
∥ϕ− ϕ̃∥
∥ϕ̃∥

(9)

where ϕ is the numerically computed solution and ϕ̃ the analytical solution computed using the
infinite or approximate series for a given scattering problem. The 2-norm condition number for
the matrix H, κ(H) may be defined as

κ(H) =
σmax(H)

σmin(H)
(10)

where σmax(H) and σmin(H) are respectively the maximum and minimum singular values of the
matrix H computed using the SVD algorithm. As discussed earlier, the placement of interior
collocation points for the CHIEF method might become an issue. For the numerical examples
presented in this study, the interior points are placed completely randomly in the interior of the
cylinder(s). The number of interior points used here is 20% of the total number of equations
in (7) since this has been found to give stable results for the CHIEF method. Also the CHIEF
points in the interior of the cylinder(s) are placed such that they are sufficiently away from the
boundary.
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Figure 1: E2(ϕ) for the single cylinder problem

3.1 Scattering from a single sound hard cylinder
We first investigate the performance of CHIEF and Burton-Miller methods for the classical
problem of plane wave scattering from an acoustically hard cylinder of infinite extent. We use
the infinite series in [7] to compute the analytical solution for the scattered potential, ϕs, on the
surface of a hard cylinder. The total acoustic potential ϕ can be computed by simply performing
a complex addition of incident wave to the scattered potential obtained using the infinite series
from [7], i.e., ϕ = ϕi+ϕs. The relative L2 error for the total acoustic potential is then computed
using (9). Fig. 1 shows the relative L2 error, E2(ϕ) for CHIEF and Burton-Miller methods.
As seen from Fig.1, CHIEF provides better accuracy compared to Burton-Miller results. Note
that when the weak singularity in (5) is handled with the Telles scheme without splitting the
interval containing the singularity, the Burton-Miller formulation gives poorer results. Despite
the regularization, the integrals in the (5) are slowly converging. As is evident, to achieve a com-
parable accuracy to that of the CHIEF method, the integrals in the regularized Burton-Miller
formulation needs to use Telles transformation with splitting the interval towards left and the
right of the singularity.

3.2 Scattering from an array of four cylinders
The scattering from a multi-cylinder array presents a more challenging case as it involves multiple
reflections from individual cylinders which ultimately forms the total acoustic field. The recursive
multiple reflections make this problem an ideal candidate to test the efficacy of PUBEM to
obtain an accurate solution. We consider a setting of four unit radius sound hard cylinders of
infinite extent with their centres placed at (-2,-2), (2,-2), (2,2) and (-2,2) in a two dimensional
homogeneous unbounded acoustic medium (air). Let this array then be impinged by a unit
amplitude plane wave with wavenumber k at an angle of θI = 45◦ with the horizontal. We use
the formula proposed by Linton and Evans [8] (eq. 2.15) to compare our PUBEM solution for
the total acoustic potential on the surface of each cylinder. The formula proposed by Linton
and Evans is based on the addition theorem that combines the separable solutions of Helmholtz
equation, see [9] for details. The addition theorems can be efficiently used to compute the
solution but the infinite series has to be truncated in practice. Theoretically of course, an
infinite sum should result in a converged solution. However, when solving even the truncated
system of linear equations, the addition of extra terms in the series can make the matrix formed
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Figure 2: Stability of Linton-Evans series, eq. (2.15) in [8]
.

Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4

CHIEF BM CHIEF BM CHIEF BM CHIEF BM

τ ≈ 3.0 5.98E-04 1.03 2.15E-04 2.71 2.78E-04 6.26 1.67E-04 2.01

τ ≈ 3.5 8.67E-06 4.06E-05 1.28E-05 9.39E-05 7.6E-06 3.29E-05 516E-06 3.82E-05

τ ≈ 3.9 2.01E-07 4.07E-06 1.87E-07 4.01E-06 3.46E-07 6.32E-06 1.92E-07 5.17E-06

Table 1: PUBEM results - E2(ϕ) for scattering from four cylinder array for k = 36.9171 and
θI = 45◦, 100 terms in Linton-Evans series

using (2.15) in [8] highly ill-conditioned. Fig.2 shows the dependence of the condition number
of the system matrix formed from (2.15) in [8] on the number of terms included in the series.
Note that k = 2.4048 is an irregular wavenumber (first zero of the first kind Bessel function, J0).
Clearly the reason for such significantly high condition numbers is the wide spread of eigenvalues
with the growing number of terms in the series.

We useM terms in the Linton-Evans series, thus, a system of linear equations of sizeNc(2M+
1) is formed where Nc is the number of cylinders (4 in the present case). We use a linear least
squares solver with QR factorisation to solve this system of linear equations using suitable
routines from the LAPACK library and obtain the total acoustic potential on each cylinder
surface. This solution is considered as the reference solution and used to compute the relative
L2 error (see (9)) for our PUBEM solution with the CHIEF and Burton-Miller methods. For the
error analysis of the four cylinder problem, we consider two cases of the wavenumber, namely,
k = 36.9171 and k = 150. It may be noted that both k = 36.9171 and k = 150 are irregular
wavenumbers. The L2 error results shown in Tables 1-2 are obtained using two continuous
elements per cylinder with trigonometric shape functions as before. All the results are obtained
with 30 integration points per wavelength.
We have used M = 100 for k = 36.9171 and M =200 for k = 150, in the Linton-Evans series.
The condition number of the coefficient matrix for the Linton-Evans series for k = 36.9171 with
100 terms was 14.28 and that for k = 150 with 200 terms was 16.29. It can be noted from
Tables 1-2 that the accuracy of both CHIEF and regularised Burton-Miller methods improves
with more plane waves per node i.e. by increasing the value of the parameter τ .



Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4

CHIEF BM CHIEF BM CHIEF BM CHIEF BM

τ ≈ 2.2 8.26 15.26 12.53 27.67 42.43 98.36 15.68 37.90

τ ≈ 2.6 6.73E-05 3.0E-03 7.30E-05 2.6E-03 7.23E-05 4.8E-03 7.98E-05 7.0E-03

τ ≈ 3.0 6.48E-05 6.47E-05 6.40E-05 6.39E-05 6.68E-05 6.70E-05 6.40E-05 6.46E-05

Table 2: PUBEM results - E2(ϕ) for scattering from four cylinder array for k = 150 and θI = 45◦,
200 terms in Linton-Evans series.

4 CONCLUSION
We have presented a plane wave enriched BEM formulation of the regularised Burton-Miller
equations for the exterior acoustic scattering problem in two dimensions. The error analyses
presented for the classical single and the multiple scattering problems show that the CHIEF
method outperforms Burton-Miller method by at least 1 order of magnitude for the problems
considered in this paper. The Burton-Miller method can prove competitive despite the difficult
and slowly converging integrals if suitable coordinate transformations are implemented. The
CHIEF method may be preferred over the Burton-Miller formulation, at least for simpler ge-
ometries and moderate wavenumbers (k < 200) as the former does not have the problem of
hypersingular integrals and provided that a sufficient number of interior collocation points are
chosen that ensure the linear independence of the coefficient matrix H.
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