
 

 

�Abstract – A novel finite element solution post-processing 
technique to determine the effects of rotor skewing is presented 
in this paper.  It was previously proposed that a post-processing 
semi-numerical method to calculate the harmonic torque 
components in synchronous machines is useful to machine 
designers. Harmonic Maxwellian stress components create 
parasitic effects during machine operation such as torque ripple, 
which is extremely undesirable in many applications and is a 
major cause of acoustic noise and vibration which can limit the 
machine’s application. Rotor skewing usually allows reduction 
of this torque ripple and this paper expands previous work to 
include a good approximation of skewing effects using a single 
2D time stepping Finite Element (FE) study with the developed 
post-processing method. The method reduces computation time 
for skew effect calculation where a large 3D FE simulation would 
usually be required.  
 

Index Terms—Electric motor, Maxwell stress tensor, 
harmonics, skew, synchronous machines, torque ripple. 

I.   INTRODUCTION 

ARMONIC content in the airgap of electrical machines 
is inherent due to the non-ideal nature of the machine’s 

geometry and excitation. Torque ripple is a major concern in 
electrical machines causing unwanted acoustic vibration and 
noise [1] as well as inducing potential mechanical damage to 
the machine’s insulation system [2]. This parasitic effect can 
also limit the machine’s application range, for example 
military and aerospace applications where low noise and 
vibration are required. Effective reduction of these parasitic 
effects is an important consideration and challenge for 
electrical machine designers, though few analysis tools give 
helpful information into the causes. Finite element analysis 
alone only predicts the total instantaneous rotor 
electromagnetic torque. It has been shown previously [3] that 
post-processing is required. In terms of torque ripple, no 
information relating to the composition can be explicitly 
found when using conventional techniques, only the resultant 
torque waveform, with calculations of mean torque and torque 
ripple as a percentage are available. Fractional slot 
concentrated windings (FSCW) bring many advantages to the 
design of synchronous machines [4], however in machines 
with fractional slot concentrated windings the space harmonic 
content in the airgap is greater than a distributed winding. 
Therefore, the magnitude of these parasitic effects are greater 
and consequently the importance of their analysis and 
minimization is increased. The space harmonic content 
derives from the winding factors of particular winding 
patterns, which depends upon the machine slot-pole 
combinations [4]. Space harmonic analysis of FSCW MMF 
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waves and analysis of their effects on permanent magnet 
synchronous machines (PMSM) performance is detailed in 
[5] and in synchronous reluctance machines [4]. The space 
harmonics cause perturbations in the Maxwell Stress tensor, 
leading to high torque ripple. The aim of the paper is to extend 
the previously published semi-numerical post-processing 
technique [3] for efficient computation of the effect of skew 
in synchronous machines in relation to the previously 
designed cSynRM. The machine originally exhibited high 
torque ripple, but was reduced through improved 
electromagnetic design, however rotor skew could also be 
used [6] at the expense of mean torque. The developed 
technique eliminates computationally intensive 3D finite 
element solutions and reduces the computation to a 2D finite 
element calculation with a quick post-processing computation 
and gives insights previously unobtainable. 

II.   MAXWELL STRESS TENSOR 

The Maxwell stress tensor ധܶ [7] is extensively used in the 
calculation of forces and torques in electric machines [8], (in 
space Թଶ with cylindrical coordinates); 
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The rotor force density can be shown to be expressed as a 
surface integral; 
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In the tensor matrix, elements a11 and a21 are the radial 
magnetic pressure and the tangential shear stress acting upon 
the rotor surface S1, depicted in Fig. 1. The former is linked to 
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Fig. 1. Rotor surface, S1, on which the Maxwell stress tensor acts. Torque 
production is tangential to the surface and the radial force density is normal 
to the surface. 



 

 

magnetic pull and the latter determines the torque production 
in the machine and also the torque ripple [3]. 

III.   AIRGAP FIELD 

In general, the airgap field of an electrical machine can be 
expressed; 
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Time stepping finite element analysis provides access to 
accurate airgap fields at the desired machine operating points. 
Extraction of the air gap field defined by an arc in the centre 
of the air gap is then performed through post-processing. The 
airgap flux density can be discretised and extracted; 
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where ܤఏ and ܤ௥ are the tangential and radial magnetic flux 
density components around the airgap circumference as a 
discrete function of time and space respectively. The angle 
around the airgap is discretised according to; 
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where n is the discrete sample index and N is the number of 
samples. The radial and tangential components, around the air 
gap at each point in time can then be decomposed into 
harmonics, v,  using a discrete space Fourier series; 
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It can be shown that the inverse transform of Eq. (6) can be 
represented; 
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Evaluation of the field around the air gap at each time instant 
is performed to obtain the magnetic field used for subsequent 
post-processing calculations of the harmonic quantities. The 

term	ߗ଴ ൌ
ଶగ

ே
 is the discrete angle. These transforms allow 

calculation of the radial and tangential fields at a point in time 
(or specific rotor angle) as; 
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The tangential and radial field components are transformed 
from the global x-y coordinate system into the local 
cylindrical coordinate system by a linear transformation; 
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The parameters ܤ௫ and ܤ௬ must be predetermined for all 
airgap angles and rotor positions for the semi-numerical 
analysis to work through population of the field values into 
the developed equations. Where the field functions can be 
written in the continuous domain; 
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These expressions are then used to calculate the rotor 
electromagnetic torque. However, they must be modified in 
order to account for slot skewing on the rotor or stator. 

IV.   INCORPORATION OF SKEW 

In electric machine modelling, skew requires a 3D finite 
element computation which is time consuming. A quick 
method to assess the effect of skewing on torque quality 
would be useful to machine designers. In developing a 
mathematical model of skew effect prediction using only 
faster 2D finite element solutions, the harmonic skew factor 
is useful [9]; 
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where ߠ௠
ୢୣ୥ is the skew angle in mechanical degrees and p the 

number of rotor poles. The airgap flux density is proportional 
to the resultant MMF, which is a rotating wave in space and 
time that can be decomposed into harmonic contra-rotating 
MMF waves, the MMF is written; 
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components can be written as co-sinusoidal functions in space 
and time. The term ߦ௩ is the winding factor incorporating the 
skew factor, ݇௦௞௩ as ߦ௩ ൌ ݇௦௞௩݇ௗ௩݇௣௩ where ݇ௗ௩ is the 
distribution factor and ݇௣௩ is the pitch factor. In the previous 
analysis [3], the pitch and distribution factors are taken into 
account, however the skew factor can be considered in post 
processing. We can write that; 
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where Λିଵሺߠሻ is the inverse airgap permeance function, 
where it can be shown that [10]; 
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݇஼ is the Carter coefficient, ݃ the minimum airgap length and 
ܳ௦ the number of stator slots. The relative value of the 
harmonic permeance holds the following relation; 
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Consequently; 
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Therefore, equations 11 and 12 can then be modified to 

allow for closed form prediction of skewing; 
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It is then possible to continue the analytical analysis so that 
post-processing of finite element studies can yield 
approximations of the rotor skewing effect without the 
requirement of computationally intensive 3D finite element 
models. 

V.   CLOSED-FORM THEORY OF TANGENTIAL FORCE 

In developing equations relating to the electromagnetic 
torque production, the tangential shear stress element of the 
Maxwell Stress Tensor is the quantity of interest;  
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with the corresponding torque calculated by; 
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These expressions yield only the resultant shear stress and 
electromagnetic torque. Modifying Eq. 21 by incorporating 
skew factor; 
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Eq. 23 yields a closed loop solution and enables access to the 
harmonic torque components due to individual field 
harmonics incorporating skew effects. The rotor shear stress 
equation must be written for a point in time; 
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Setting for convenience ߮௥௩	ෞ ൌ 0 and defining	߮ௗ௩

	 ≜
߮ఏ௩
	ෞ െ ߮௥௩	ෞ , an equation for electromagnetic torque for an 

individual field harmonic order is; 
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This integral is non-trivial and cumbersome in exponential 
form and is best performed by transforming the exponentials 
into trigonometric functions; 
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By analysis, for	ݒ ∈ 	Ժ ⇒	 sinሺ4ݒߨ ൅ ߮ௗ௩

	 ሻ
	
→ sinሺ߮ௗ௩

	 ሻ, thus 

the first term in eq. (27) disappears and the harmonic torque 
equation is now a relatively simple equation; 
 

ఏܶ௩
	 ൌ ቆ

௦௞௩݇ߨ4
ସ ݈௔ݎଶ|ܤ௥௩	 ఏ௩ܤ||

	 |

଴ߤ
ቇԸeሼ݁௜ఝ೏ೡ

	
ሽ 	 					ሺ28ሻ 

 
The total torque at a time instant due to all harmonics is 
readily calculated as; 
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Therefore it is now possible to obtain information relating to 
the actual contribution of each field harmonic to the torque 
waveform and consequently the torque ripple. This 
information was previously unobtainable. Noting that 
ଶݎ௔݈ߨ ൌ ௥ܸ the rotor electromagnetic volume; 
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which for the total torque at a time instant; 
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The full expression for a particular time instant is therefore; 
 

ఏܶ
	 ൌ	 ࣦ෍|ܤ௥௩	 ఏ௩ܤ||

	 | cosሺ߮ௗ௩
	 ሻ sinସ ቆ

௠୰ୟୢߠ݌ݒ

2
ቇ

ஶ

௩ୀଵ

				ሺ32ሻ 

 
where 

ࣦ ൌ ൬
64 ௥ܸ

଴ߤ
൰ ൫ߠ݌ݒ௠୰ୟୢ൯

ସ
																							ሺ33ሻ 

 
This allows an approximate prediction of how a skew angle ߙ 
affects the torque quality in the machine. Usually this is not 



 

 

possible to implement as access to individual torque 
components is not available. The skew factor (a cardinal 
sinusoidal function) is presented in Fig. 4. This analysis 
assumes that the skewing is uniform along the machine length 
and no ‘stepped skewing’ is used. To revert to an unskewed 
machine,	݇௦௞௩

ସ ൌ   .in (31) ݒ∀1

VI.   IMPLEMENTATION 

Easy implementation of the derived equations is possible 
through post-processing of a 2D finite element solution and 
designing a MATLAB script to facilitate this post processing. 
A simplified block diagram of implementation is presented in 
Fig. 2. 

A 2D finite element time stepping model must be solved 
initially – the airgap fields are then extracted and transformed 
in MATLAB. From these fields the harmonic torque 
components (for each time instant) without skew effects are 
calculated and then scaled based on calculated skew factors 
for the correct skew angle and machine slot-pole combination, 
according to Eq. 30. The torque harmonics are then summed 
over the entire range to obtain the resultant torque waveform 
with the effects of rotor skew, this provides an estimate of the 
torque waveform with a skewed rotor from 2D FEA.  

VII.   APPLICATION 

In order to compare the developed technique based on Eq. 
32 and 3D finite element analysis, the 6 slot 4 pole 
synchronous reluctance motor that is known to exhibit torque 
ripple is analysed and results compared. The machine has a 
150mm outer diameter and stack length with a 0.5mm airgap. 
The rated torque with an unskewed rotor is 20Nm at 1500rpm. 
The torque ripple is approximately 40% of the mean torque 
with the unskewed rotor where mean torque and torque ripple 
are respectively calculated; 
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ఏܶ
௧ is the torque at time t and T is the end time of the cycle. 

The rotor is skewed up to 60 mechanical degrees which 

equates to one stator slot pitch. Figure. 3 shows the unskewed 
rotor with rotors skewed at 30 and 60 degrees. Figure. 4 shows 
the skew factors for the 4 pole machine with skew angle in 
mechanical degrees. Figure 5 shows the relative reduction in 
torque magnitude with skew angle based on Eq. 30. 
 

 
 

Fig. 3. Top: Unskewed; Middle: 30 degrees skew; Bottom: 60 degrees skew.
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Fig. 2. Implementation of the developed method 

 

 
Fig. 4. Harmonic skew factors with skew angle. 
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Through 2D finite element time stepping studies and the 
developed post processing method, the torque with no rotor 
skew was reconstructed from the torque harmonic 
components, presented in Fig. 6. The waveform match is 
reasonably good with the vast majority of content replicated. 
Figure 7 presents a comparison of the waveforms between the 
3D FEA and the 2D FEA + post processing with 30 degrees 

of rotor skew. Figure 8 presents the comparison at 60 degrees 
rotor skew. Table I presents a summary of results..  

 

The results show a good replication of the torque waveform 
from no skew to 60 degrees skew with a very good match on 
mean torque, however the accuracy of the torque ripple 
calculation is limited. The torque ripple is calculated here; 
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In terms of reducing the torque ripple in the machine, in this 
case the reduction in mean torque is significant and skew is 
not warranted. However, the method can be applied to other 
machines, where the physical insight given by calculating the 
individual torque contributions for each field harmonic and 
how their contribution changes with skew could be extremely 
valuable. 

VIII.    COMPUTATION TIMES 

It is well known that 3D FEA is a computationally intensive 
and can take a very long time to solve depending upon the 
geometry and the mesh size. Two dimensional studies cannot 
conventionally take into account skew, though solve much 
faster due to a much smaller number of elements. In this study, 
the 2D FEA was performed with a fine mesh in the airgap 
region with a coarser mesh in the less crucial regions (16,936 
triangles) – an unskewed 2D FEA took approximately 4 
minutes on Intel i7 870, 2.93GHz machine with 16GB of 
RAM. The 2D FEA post processing takes less than 1 minute, 
so the combined time for 2D FEA + Post processing is 
approximately 5 minutes.  
 
As for the 3D FEA, an average solution time with a skewed 
rotor was 3.5 hours (540,723 tetrahedrons). Therefore the 
computation time by utilizing 2D FEA with post-processing 
is significantly reduced (by 97.5%), at the cost of accuracy. 
The discrepancy in accuracy between the methods is briefly 
discussed in the next section. A close up of the airgap and 
surrounding mesh are found in Fig. 9 and the 3D mesh as a 
whole in Fig. 10. 

 

 

TABLE I 
3D FEA VS 2D FEA WITH POST PROCESSING 

Skew 
Angle 
(deg) 

3D FEA 2D FEA w/POST  

Mean Torque 
(Nm) 

Torque 
Ripple  

(% 
Average) 

Mean 
Torque 
(Nm) 

Torque 
Ripple  

(% 
Average) 

No 
Skew 

 
19.72 79.03% 

20.1 
(+2.03 %) 

44.5% 
(-43.69 %) 

 
30 

 
 

15.66 42.78% 
16.05 

(+2.29 %) 
36.0% 

(-15.89 %) 

60 
 

9.03 
 

43.01% 
 

9.03 
(+0 %) 

 

33.69% 
(-21.66%) 

 

 

 
 

Fig. 9. 2D FEA mesh in the airgap and slot opening. 

 
 

Fig. 10. 3D FEA model mesh. 

 
 
Fig. 6. Torque profile of unskewed rotor. 
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Fig. 7. Torque profiles with 30 degree rotor skew.  
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Fig. 8. Torque profiles with 60 degree rotor skew. 
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IX.   ACCURACY 

The mean torque prediction is consistently within 3% of the 
3D FEA solutions however the torque ripple calculation 
differs significantly due to the variation between the 2D FEA 
and 3D FEA. This discrepancy not due to the inaccuracy of 
the method as there is a large difference in the unskewed 
torque ripple figures. This suggests that the FEA software 
computes the Maxwell stress tensor using a different method 
than in Equation 22. In using this method, sensitivity to local 
field errors is high (which are a distinct possibility) and thus 
the computed stress tensor is sometimes inaccurate. It is 
beyond the scope of this paper to consider the optimal 
evaluation of the Maxwell stress tensor, however it is 
suggested that to improve the results of this post-processing 
method, in the case of 2D FEA, a method based on a surface 
integral over the entire airgap to average the forces would be 
advantageous. Such a method is described in [11]. 

X.   CONCLUSION 

This paper has presented a novel 2D finite element post 
processing method to obtain harmonic torque components 
based on harmonic decomposition of the Maxwell stress 
tensor. These harmonic torque components are used to then 
calculate the effect of rotor skewing by taking into account 
the effect of the skew factor on the airgap fields and the 
corresponding Maxwellian stress. It is shown that 
computation time for traditional 3D FEA skew analysis can 
be reduced by over 97% by using 2D FEA plus the novel post 
processing algorithm. The waveform results of the 2D plus 
post processing match closely to the 3D FEA however due to 
the method used to evaluate the Maxwell stress tensor, 
inaccuracies occur. The mean torque calculation is within 3% 
but a large variation in torque ripple is observed – 
improvements can be made through advancements in the 
stress tensor evaluation algorithm.  
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