
1

Computing a configuration skeleton for motion planning
of two round robots on a metric graph

Dr Vitaliy Kurlin
Department of Mathematical Sciences

Durham University, Durham DH1 3LE, UK
Email: vitaliy.kurlin@gmail.com

Dr Marjan Safi-Samghabadi
Tehran, Iran

Email: marjan.safi.samghabadi@gmail.com

Abstract—A connected metric graph G with n vertices and without
loops and multiple edges is given as an n×n-matrix whose entry ai j is
the length of a single edge between vertices i 6= j. A robot in the metric
graph G is the metric ball with a center x ∈ G and a radius r > 0.

The configuration space OC(G,r) of 2 ordered robots in G is the set
of all centers (x,y) ∈G×G such that x,y are at least 2r away from each
other. We introduce the configuration skeleton CS(G,r) ⊂ OC(G,r) that
captures all connectivity information of the larger space OC(G,r).

We design an algorithm of time complexity O(n2) to find all connected
components of OC(G,r) that are maximal subsets of all safe positions
(x,y) connectable by collision-free motions of the two round robots.

I. INTRODUCTION

A. Round robots on a metric graph

Examples of metric graphs in practice are magnetic tapes on a
floor, train tracks, blood vessels or trajectories of particles. Vertices
of such a graph are junctions where more than two branches meet.

Our modeled robot could be an automatic train that moves on the
railway. Each time the train moves through a junction, all other nearby
trains should be kept away from the junction. On a small scale, a
robot can be a string shaped device that moves through a blood vessel
and it has the ability to spread out at a junction v to arcs of length at
most r within all branches attached to the junction v.

More formally, a non-oriented graph G consists of a finite set of
vertices and a finite set of edges, where each edge e connects two
vertices, has a fixed length l and is isometric to the segment [0, l]
in the real line. Then G becomes a metric space with the distance
d(x,y) equal to the length of a shortest path between x,y ∈ G.

During a motion of two robots of a radius r on G the distance
between their centers x,y should remain at least 2r. Then such a
configuration (x,y) ∈ G×G is called safe or collision-free.

For a graph G in the plane, it is convenient to draw a robot as
a round disk, see Fig. 1. However we consider abstract graphs not
embedded into any space and the following more abstract model of a
robot that is always within G. Namely, the metric ball with a center
x ∈G and a radius r > 0 is the set {y ∈G : d(x,y)≤ r} ⊂ G of those
points in the graph G that are within the distance r from the center x.

B. The configuration space of two round robots

The ordered configuration space OC(G,r) of two robots of the
same radius r in a metric graph G consists of all pairs (x,y) ∈G×G,
where x,y are the centers of the robots with d(x,y)≥ 2r.

The unordered configuration space UC(G,r) of two unlabeled
robots in G, is the quotient space OC(G,r)/S2, where S2 is the
symmetric group acting on OC(G,r) by permuting 2 robots.

We consider collision-free motions, but we allow the robots to
touch each other when d(x,y) = 2r. Therefore, the configuration space
OC(G,r) is compact. We exclude the case when r = 0 because the
inequality d(x,y)≥ 0 allows collisions.

Fig. 1. Left: 2 robots of radius 1 in H = [0,4]. Right: the space OC(H,1).

In Fig. 1, we consider two robots on the straight segment H = [0,4]
in the real line. The configuration space OC(H,1) consists of two
symmetric triangles in the right hand side picture of Fig. 1.

C. Our contribution: the configuration skeleton CS

We call a space Z (path-)connected if we can join any two points
x,y∈ Z by a continuous path α : [0,1]⊂ Z, where x = α(0), y = α(1).
The properties of connectedness and path-connectedness are equivalent
for simplicial complexes including graphs. The configuration space
OC(H,1) in Fig. 1 consists of two connected components.

We introduce a 1-dimensional subgraph of the 2-dimensional space
OC(G,r) that is called the configuration skeleton CS(G,r). We prove
in section III that the inclusion CS(G,r)⊂OC(G,r) establishes a 1-1
map (bijection) between all connected components.

Hence, computing connected components of the space CS(G,r)
reduces to the simpler connectivity problem of the smaller skeleton
CS(G,r). The set of vertices in CS(G,r) is the same as the set of
vertices in OC(G,r). So the algorithm can output all pairs (u,v) ∈
OC(G,r) of vertices u,v that are in the same connected component.

Practically, if two pairs (x,y),(w,z) ∈ OC(G,r) are in different
components, then it is not possible to swap these robots without
collisions. Having computed the skeleton CS(G,r), we can decide if
two given configurations (x,y),(w,z) can be connected by a collision-
free motion within the original configuration space OC(G,r).

D. Previous work on configuration spaces

The tradition of robots following a guide-path of magnetic tapes
on the floor has led to modeling the problem of studying the
motion of robots on graphs. The simplest model when robots are
zero-sized points has been studied in considerably short period of
time. Topological invariants of configuration spaces of robots on
graphs including the Euler characteristic, the fundamental group,
homology and cohomology groups are the main motivation of most
research carried out in this topic.

A. Abrams and R. Ghrist in [9] considered configuration spaces of
the Automated Guided Vehicles (AGVs) in a warehouse. K. Barnett
and M. Farber in [5] studied homology and cohomology of the
configuration space OCn(G,0) of n zero-sized robots on a graph G.
Consecutively, M. Farber and E. Hanbury in [6] investigated the
homology groups of OCn(G,0), where G is a generalized mature
graph.

D. Farley and L. Sabalka have studied the cohomology of n zero-
sized robots on a tree in [7]. A. Abrams, D. Gay, and V. Hower show
that the discretized configuration space of n points in the k−simplex

2

is homotopy equivalent to a wedge of spheres of dimension kn+1 in
[1]. K. H. Ko and H. W. Park in [10] computed the first homology
of the configuration space UCn(G,0) of n zero-sized robots on G.

V. Kurlin in [11] designed an algorithm to write down a presentation
with explicit generators and relations for the fundamental group of
OCn(G,0). The key idea is to update a presentation according to a
Seifert - van Kampen construction when we start from a simple graph
G and then add edges to G one by one. Every generator is realized
as a collision-free motion of n zero-sized robots in the graph G.

Applications of configuration spaces of robots on graphs to physics
is explored in [4] and [3]. In [4], JM Harrison, JP Keating, JM
Robbins consider 2 unordered spinless particles on a quantum graph
G. They introduce a new way to study quantum statistics. This result
is applied to topological quantum computing, topological insulators,
the fractional quantum Hall effect, superconductivity and molecular
physics. In [3], Jonathan M. Harrison, Jonathan P. Keating, Jonathan M.
Robbins, Adam Sawicki study the relation between quantum statistics
and the connectivity of quantum graph G. They have also computed
topological gauge potentials for 2-connected quantum graphs.

K. Deeley was probably the first who considered in [2] round robots
of a positive radius a connected graph G. He proved that for any small
enough radius r > 0 the configuration space OCn(G,r) of n round
robots is homotopy equivalent to the space OCn(G,0) of zero-sized
robots. We consider the same model of a robot as a metric ball and
answer the harder question whether two configurations in OC(G,r)
can be connected by a collision-free motion for any radius r > 0.

II. CONNECTIVITY OF CONFIGURATION SPACES

A configuration space OC(G,r) consists of all pairs (x,y) ∈ G2

where x,y are the centers of robots such that d(x, t)≥ 2r. Connectivity
of OC(G,r) means that any two configurations of 2 round robots can
be connected by a collision-free motion in the space OC(G,r). So the
centers x,y should remain at least 2r away from each other during a
motion to avoid a collision.

Proposition 1. If a connected graph G has at least one vertex of
degree greater than 2 and the length of every edge is at least 2r, then
the space OC(G,r) is always connected.

Proof: It is enough to swap 2 robots near a vertex of degree 3 as
shown in Fig. 2.

Fig. 2. Robots can be swapped without collisions on the tripod graph.

Example 2. Let G be the graph with 3 edges of length 2 in Fig. 3.

Fig. 3. (The graph G, (left) the configuration space OC(G,r) for r≤ 1 (right).
The configuration skeleton CS(G,r) for r ≤ 1 (right-bottom). OC(G,r) for
1 < r ≤ 2 (left-bottom).

Case 1. Let 0 < r ≤ 1. The configuration space OC(G,r) is
connected and shown in Fig. 3 [right]. We can find a continuous
motion between any two configurations of OC(G,r). The blue area
shows the configurations when the robots are on different edges. The
yellow area shows the configurations when the robots are on the same
edge.

Finally, the black skeleton shown in Fig. 3[right-bottom] is for the
configurations that both robots are on vertices or one robot is fixed
on a vertex and the second robot moves along one edge. The black
skeleton represents configuration skeleton CS(G,r).

Case 2. Let 1 < r ≤ 2. The configuration space OC(G,r) is not
connected. Indeed, there is no continuous motion from (v1,v2) to
(v1,v3). Since fixing a robot on a vertex of degree one stops the
second robot to move to the vertex v, the robots only can only move
near vertices of degree one. Therefore, the configuration space consists
of 6 connected components as shown in Fig. 3[bottom-left].

The number of connected components in this case is equal to the
number of vertices in OC(G,r). If we fix one robot at a vertex, the
other robot cannot move along one edge. So the configuration skeleton
has 6 components when both robots move only near vertices of G.

Case 3. Let r > 2. The space OC(G,r), hence CS(G,r), is empty.

radius Number of connected components of CS(G,r)
0 < r ≤ 1 1
1 < r ≤ 2 6
2 < r 0

Example 3. Let Q be the graph with 3 edges of length 2 in Fig. 4.

Case 1. Let 0 < r ≤ 1. The configuration space OC(Q,r) is
connected and shown in Fig. 4 [right]. The blue cylindrical area shows
the configurations when a robot is on the cycle and the second robot
is on the hanging edge. The yellow cylinder shows the configurations
when both robots are on the cycle. The red triangles are when both
robots are on the hanging edge. The black skeleton CS(Q,r) is for
the configurations that both robots are on vertices or one robot is
fixed on a vertex and the second robot moves along one edge.

3

Case 2. Let 1 < r ≤ 2. The edges are too short for swapping the
robots near the vertex of degree 3, so OC(Q,r) has 2 components.

Fig. 4. (The graph Q and its the configuration space OC(Q,r) for 0 < r ≤ 1.

As we have seen in the examples above, constructing the configu-
ration space OC(G,r) for any connected graph G may not be easy.
In the following section, we will see a technique to find the number
of connected components of OC(G,r) without explicitly constructing
this 2-dimensional configuration space.

III. CONFIGURATION SKELETON

In this section, we define the configuration skeleton CS(G,r) of
OC(G,r). We will show in Theorem 6 that the connectivity problem
for the space OC(G,r) reduces to smaller skeleton CS(G,r).

A cycle C in G is a sequence of distinct vertices v1, . . . , vk such that
any vi, vi+1 (in the cyclic order) are adjacent. The following definition
introduces the concept of the configuration skeleton CS(G,r).

Definition 4. Let G be a connected metric graph. We assume that
any vertex on any cycle C ⊂ G has a diametrically opposite vertex,
otherwise, we add the diametrically opposite vertex of degree 2 to the
cycle C. The configuration skeleton of OC(G,r), denoted by CS(G,r),
is the following combinatorial graph whose vertices are all pairs
(u,v) such that u,v are vertices of G and the distance d(u,v)≥ 2r.
The edges of CS(G,r) are constructed by the 2 rules below.

(1) We connect pairs (v,u), (w,u) by an edge in CS(G,r) if v,w are
connected by an edge in G. We similarly connect (u,v) and (u,w).

(2) We connect pairs (u,v), (w,z) by an edge in CS(G,r) if
• u, w, are adjacent vertices on a cycle C ⊂ G, and
• v, z, are adjacent vertices on the same cycle C ⊂ G, and
• d(u,z)< 2r and d(v,w)< 2r.

The following example illustrates Definition 4.

Example 5. Let G be the graph in Fig. 5, where all unlabeled edges
has length 1. Let sr = 3

2 . To create the skeleton CS(G, 3
2), first we add

the vertices d,c diametrically opposite to the vertices a,b, respectively
as shown in Fig. 5 [right]. This addition guarantees that we have
vertices at the furthest distance on the same cycle.

The skeleton CS(G, 3
2) has the vertex (u,v), because the vertices u,v

of G are at least 2r = 3 away from each other. However, CS(G, 3
2) has

no vertex (u,a), because d(u,a) = 2 < 2r. By Definition 4, all vertices
of CS(G, 3

2) are contained in the configuration space OC(G, 3
2).

After finding the vertices of CS(G, 3
2), we add edges by rules (1),

(2) of Definition 4. For instance, we add an edge between the vertices
(u,v), (u,w) ∈CS(G, 3

2) since v, w are adjacent in G. Similarly, we

add an edge between (v,u), (w,u) by rule (1). All blue edges in the
graph CS in Fig. 5 are constructed by rule (1).

The centers of the robots of radius 3
2 can be at any pair (x,y) of

diametrically opposite points in the cycle C. However rule (1) does
not allow us to an edge edge between pairs (a,d) and (b,c), because
d is too close to the adjacent vertices b,c. That is why we need rule
(2) adding an edge between (a,d) and (b,c) in CS(G, 3

2).

Fig. 5. First we add diametrically opposite vertices to all vertices on the cycle
(right). The configuration skeleton has one connected component (bottom).

Main Theorem 6 below justifies the concept of the configuration
skeleton CS(G,r) capturing all connectivity information of OC(G,r).

Theorem 6. For any connected graph G and a radius r > 0, the
inclusion CS(G,r)⊂OC(G,r) induces a 1-1 correspondence between
connected components of the 2-dimensional configuration space
OC(G,r) and its smaller 1-dimensional skeleton CS(G,r). Hence, for
vertices u,v,w,z of G, the configurations (u,v),(w,z) can be connected
by a collision-free motion in OC(G,r) if and only if they can be
connected by a path in the configuration skeleton CS(G,r).

We shall prove Theorem 6 at the end of section V. The key idea
is to replace any collision-free motion by a a sequence of elementary
motion only along edges of the configuration skeleton.

IV. ELEMENTARY MOTIONS OF ROBOTS

Before defining what an elementary motion is, we explain the
importance of vertices in CS(G,r). Let robots be at any points on
the graph G without collision, we have three cases: (1) both robots
be at vertices in G, (2) both robots be on some edges in G and
(3) a robot be at a vertex and the other robot be on an edge. We
claim we can achieve case (1) from the cases (2), (3) by pushing
robots on an edge to a possible close vertex. Considering the robots
are not on a cycle in G, we can push away the robots until they
reach a vertex. When the robots are on a cycle, by pushing the
robots away on the cycle, they reach a vertex since we have a
diametrically opposite vertex to any vertex. This is important since
it shows there is a path from any configuration to a vertex in OC(G,r).

Definition 7. For any metric graph G, all elementary motions in
OC(G,r) are defined in case (1) and (2) below.

(1) Let u,v,w be vertices of G, for example see Fig. 5. If d(v,w)≥ 2r
and v,w are connected by an edge in G, then the motion from (u,v)

4

to (u,w) is called elementary. This means the first robot is fixed at
vertex u and the second robot moves from v to the adjacent vertex w.
Similarly, we define an elementary motion from (v,u), (w,u).

(2) Let the vertices a, b, c, d be on a cycle C of G, for instance
see Fig. 5. If d(a,d) ≥ 2r, d(b,c) ≥ 2r, a is adjacent to b, and d
is adjacent to c, then we can move the first robot from a to b and
simultaneously, the second robot from d to c in the same direction on
the cycle without collisions. This motion is also called elementary.

V. ANY MOTION DECOMPOSES ONTO ELEMENTARY ONES

By Definition 7 every edge in CS(G,r) between vertices (u,v),(w,z)
is an elementary motion between the same configurations (u,v),(w,z)
in OC(G,r). Proposition 8 reduces any collision-free motion in
OC(G,r) to elementary motions, which helps prove Theorem 6.

Proposition 8. Any collision-free motion (x(t),y(t)), 0≤ t ≤ 1, where
x(0), y(0), x(1), y(1) are vertices of G, can be replaced by a finite
sequence of elementary motions.

Proof: We prove the theorem by induction on the number k of vertices
in G that at least one of the robots visits during the motion (x(t),y(t)),
0 ≤ t ≤ 1. Vertices are counted with multiplicities, i.e. when in a
motion a robot visits the same vertex m times over 0 < t < 1, then
we count this vertex m times. But the initial and the final vertices
x(0), y(0), x(1), y(1) are not counted.

Induction base: (k = 0) If the robots do not visit any vertices
over 0 < t < 1, then robot 1 moves along one edge and robot 2
moves simultaneously along another edge. There are the following
two cases.
Case (1) : let d(x(0),y(1))≥ r1 + r2 or d(x(1),y(0))≥ r1 + r2. Then
the motion from (x(0),y(0)) to (x(1),y(1)) can be replaced by two
elementary motions by Lemma 4.11 [12], where u = x(0), v = y(0),
w = x(1), z = y(1).
Case (2) : let d(x(0),y(1)) < r1 + r2 and d(x(1),y(0)) < r1 + r2.
Then by Definition 7, the motion from (x(0),y(0)) to (x(1),y(1))
is elementary. So the induction base k = 0 is complete.

Inductive assumption: let the theorem hold for all motions when
both robots visit at most k vertices of G, counted with multiplicities.

Inductive step: We prove the theorem for a motion when both robots
visit exactly k+1 vertices of G. We consider the time interval from 0
to the first moment t ∈ (0,1), when one of the robots reaches a vertex,
say robot 1. So robot 1 moves from the vertex x(0) to an adjacent
vertex x(t), and robot 2 moves from the vertex y(0) to a point y(t),
not a vertex. There are no vertices between y(0), y(t). We have the
following cases.

Case(1) : let d(x(t),y(0))≥ r1 + r2.

• We fix robot 2 at y(0) and move robot 1 from x(0) to x(t). This
elementary motion from (x(0),y(0)) to (x(t),y(0)) is collision-
free since y(0) is far away from both points x(0) and x(t).

• Then we fix robot 1 at x(t) and move robot 2 from y(0) to y(t.)
This motion from (x(t),y(0)) to (x(t),y(t)) is collision-free since
x(t) is far away from both points y(0) and y(t).

After that the robots move from (x(t),y(t)) to (x(1),y(1)) as in the
original motion. During the motion from (x(t),y(0)) to (x(1),y(1)),
the robots visit only k vertices because the vertex x(t) is not counted
anymore as the initial position of robot 1. So the inductive step is
finished in case (1).

We apply Lemma 4.12 [12] for v = y(0), w = x(t), z = y(t). The
assumptions of Lemma 4.12 [12] hold since

Fig. 6. The figure illustrates case (1), when y(0), x(t) are far away.

• x(0), y(0), x(t) are vertices of G, and
• the point y(t) ∈ G is not a vertex, and
• the vertex x(0) is adjacent to x(t), and
• there is no vertex between y(0) and y(t), and
• we have d(x(t),y(0))< r1 + r2.

Let q be the adjacent vertex to y(0) by the edge that contains y(t).
The condition

d(w,z) = d(x(t),y(t))≥ r1 + r2

in Lemma 4.12 [12] holds, because the robots at time t do not collide.
Lemma 4.12 [12] implies that d(q,x(t))≥ r1 + r2, for w = x(t), v =
y(0), z = y(t).

Case(2) : let d(x(t),y(0))< r1 + r2 and d(q,x(0))≥ r1 + r2.

• We fix robot 1 at x(0) and push robot 2 from y(0) to q. So the
elementary motion (x(0),y(0)) to (x(0),q) is collision-free since
x(0) is far away from both points y(0), q.

• Then we fix robot 2 at q and push robot 1 from x(0) to x(t).
The elementary motion from (x(0),q) to (x(t),q) is collision-free
since q is far away from x(0), x(t).

• We now fix robot 1 at x(t) and push robot 2 back from q to y(t).
This motion from (x(t),q) to (x(t),y(t)) is collision-free since
x(t) is far away from both q, y(t).

Fig. 7. Case (2), when y(0), x(t) are close, but q, x(0) are far away.

After that we have the original motion from (x(t),y(t)) to
(x(1),y(1)). During the motion from (x(t),q) to (x(1),y(1)), the
robots visit only k vertices because the vertex x(t) is not counted
anymore as the initial position of robot 1. So the inductive step is
finished in case (2).

Case (3) : Let d(x(t),y(0))< r1+r2 and d(q,x(0))< r1+r2. Then
x(0), y(0), x(t), y(t) are on a topological circle C ⊂ G.

• Then we move robot 1 from x(0) to x(t), simultaneously, we
move robot 2 from y(0) to q. By Definition 7, the elementary
motion from (x(0),y(0)) to (x(t),q) is collision-free since x(t),
q are far away.

• Then we fix robot 1 at x(t) and move robot 2 back from q to
y(t). The motion from (x(t),q) to x(t),y(t) is collision-free since
x(t), y(t) are far away.

5

After that we have the original motion from (x(t),y(t)) to
(x(1),y(1)). During the motion from (x(t),q) to (x(1),y(1)), the
robots visit only k vertices because the vertex x(t) is not counted
anymore as the initial position of robot 1. So the inductive step is
finished in case (3).

Fig. 8. Case (3), when y(0), x(t) are close, and q, x(0) are close too.

Proof of Theorem 6. For any vertices u,v of G, the pair (u,v)
belongs to the configuration space OC(G,r) if and only if (u,v) is a
vertex of the configuration skeleton CS(G,r). By Proposition 8 any
motion between configurations in OC(G,r) can be replaced by a finite
sequence of elementary motions along edges of CS(G,r).

Therefore, any configurations (u,v),(w,z), where u,v,w,z are
vertices of G, can be connected by a motion in OC(G,r) if and
only if they are connected by a path in the skeleton CS(G,r).

The algorithm given in the following section computes the number
of connected components of CS(G,r), which equals the number of
connected components of OC(G,r) by Theorem 6.

VI. ALGORITHM FOR COMPUTING THE SKELETON CS(G,r)

The input is an n×n adjacency matrix of a graph G with n vertices.
If vertices i, j are adjacent, then the entry ai j is the length of the edge
between them, otherwise ai j = 0. The output is the configuration
skeleton CS(G,r) as the list of all its vertices and edges.

Step 1. The algorithm lists all the cycles of G with time complexity
O(n2), where n is the number of vertices of G, see [8]. By computing
the distances between vertices on all cycles, we add a vertex
diametrically opposite to each vertex on every cycle. Therefore, the
algorithm extends the adjacency matrix of the graph G by adding
new vertices and adjusting the length of corresponding edges.

Step 2. Consider all pairs (i, j), where i, j are vertices in G. If G
consists of n vertices, we have n(n−1) pairs. The algorithm constructs
a (n2−n)× (n2−n) adjacency matrix CS(G,r), where the rows and
the columns are the pairs (i, j). Since we can arrange the rows and
columns arbitrarily, we arrange rows and columns in an ascending
order: (1,1), (1,2), (1,3), . . . ,(2,1) (2,2), (2,3), . . . ,(n2−n,n2−n).
We insert copies of the adjacency matrix of the graph G in CS(G,r)
in the following way.
• We insert the first copy of n×n adjacent matrix A of the graph

G in the first n rows and columns. We insert the second copy of
A in (n+1) to 2n rows and columns. We insert the third copy
of A in (2n+1) to 3n rows and columns, etc.

• The remaining entries of CS(G,r) are n×n diagonal matrices,
where the rows are from (i,1) to (i,n) and the columns are from
(j,1) to (j,n) and the entry of the diagonal is 0 if i, j are not
adjacent in A and is 1 if i, j are adjacent in A.

This step is done with time complexity O(n).

Step 3. The algorithm checks the value of each entry in the matrix
of the given graph to be less than 2r. We remove the row and the
column for any pair (i, j) with d(i, j)< 2r to avoid collisions. This
step is done with time complexity O(n2).

Step 4. The algorithm lists all connected vertices in CS(G,r) in
some separate component sets. Then starts from one set, finds the
vertex (i, j) such that i, j are on the same cycle. Then checks if the
adjacent vertex k to i and the adjacent vertex l to j are on the same
cycle and checks if d(k, i)< 2r, d(l, j)< 2r.

Finally, the algorithm looks for (k, l) in other component sets. If all
previous steps are successful, the algorithm changes in the adjacency
matrix of CS(G,r) the entry of the row (i, j) and the column (k, l)
to 1 and does the same process in the next component set. In other
words, we only need to find one edge between some vertices of
two component sets. If the previous steps are not successful, the
algorithm will check for the next element of the first component set
until reaching the success. Otherwise, the algorithm concludes that
the component set disconnected from other component sets.

Step 5. The algorithm plots CS(G,r) or introduces the final
component sets.

Lemma 9. The time complexity of the construction of the configura-
tion skeleton CS(G,r) is at most O(n2).

Proof: The algorithm constructs CS(G,r) in 5 steps. The time
complexity of each step is at most O(n2), so the sum of all the
steps time complexity is O(n2).

Lemma 10. The time complexity of the construction of the configu-
ration skeleton CS(T,r) is at least O(n2).

Proof: The configuration skeleton CS(T,r) is the simplest case since a
tree T is connected and does not consist of any cycles. The algorithm
constructs CS(T,r) in 3 steps: step 2, step 3 and step 5. Since step 3
is done with time complexity O(n2) then the time complexity of the
algorithm is O(n2).

As shown in the table of Example 2, for different ranges of radii
we get different numbers of connected components of CS(G,r). Our
algorithm finds the number of connected components of CS(G,r) for
all ranges of the radius r.

VII. CONCLUSION AND FUTURE WORK

In previous sections we defined the configuration space OC(G,r)
of 2 robots with radii r1, r2 on a connected graph G where each
edge has a fixed length. Our main interest is to compute the number
of connected components in OC(G,r). In few examples, we have
shown that constructing OC(G,r) is not easy. Therefore, we defined a
configuration skeleton CS(G,r) of OC(G,r) with the same number of
connected components and the Algorithm VI computes the number of
connected components of CS(G,r). Theorem 6 is a formal statement
to prove such claim.

Briefly speaking, in this paper we introduced a new technique
to compute the number of connected components by the algorithm
with O(n2) time. In this technique we highlight the configurations
when at least one robot is at a vertex in G. Since the number of such
configurations is finite we can implement it in a fast algorithm. Then
we show that all other configurations in OC(G,r) can continuously
move to such highlighted configuration.

In this topic, there are several interesting invariants to discover.
For example, the fundamental group of CS(G,r) for particular graphs
such as K5, K3,3 is not isomorphic to the fundamental group of
OC(G,r). Therefore, a formal statement to describe the fundamental
group of OC(G,r) remains open.

We can also progress this topic by considering finite number
of robots on a connected graph G and investigate the behavior of

6

OCn(G,r) by finding different invariants of such configuration space.

Another interesting exploration can be done by considering robots
on a obstacle-free plane (or even a plane including several obstacles).
Then define the configuration space of such case that provides a higher
freedom for the motion of AGVs on the real factory floor.

REFERENCES

[1] A. Abrams, D. Gay, and V. Hower, Discretized configurations and
partial partitions. Proc. Amer. Math. Soc. 141 (2013), 1093-1104.

[2] K. Deeley, Configuration spaces of thick particles on a metric graph.
Algebraic & Geometric Topology 11 (2011) 1861-1892.

[3] J. M. Harrison, J. P. Keating, J. M. Robbins, A. Sawicki, n-particle
quantum statistics on graphs. Communications in Mathematical Physics
330 (2014), 1293-1326.

[4] JM Harrison, JP Keating, JM Robbins, Quantum statistics on graphs.
Proc. R. Soc. A 467(2125), 212-223 (2011).

[5] K. Barnett and M. Farber, Topology of configuration space of two
particles on a graph, I. Algebraic & Geometric Topology 9 (2009)
593-624.

[6] E. Hanbury and M. Farber, Topology of configuration space of two
particles on a graph, II. Algebraic & Geometric Topology 10 (2010)
2203-2227.

[7] D. Farley and L. Sabalka, On the cohomoloy rings of tree braid groups.
Journal of Pure and Applied Algebra 212 (2008), 53-71.

[8] R. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi, G. Sacomoto Op-
timal Listing of Cycles and st-Paths in Undirected Graphs. Proceedings
of SODA 2013, 1884-1896.

[9] A. Abrams and R. Ghrist, Finding topology in a factory: configuration
space. Amer. Math. Monthly, 109, 140-150.

[10] Ki Young Ko and Hyo Won Park, Characteristics of graph braid groups.
Discrete & Computational Geometry 48 (2012) 915-963.

[11] V. Kurlin, Computing braid groups of graphs with applications to robot
motion planning. Homology, Homotopy and Applications, v. 14 (2012),
no. 1, p. 159-180.

[12] M. Safi Samghabadi, Collision-free motions of round robots on metric
graphs. Available at http://etheses.dur.ac.uk/7767.

