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Abstract

We analyse the impact of a policy decision on crop
rotations, using the imprecise land use model that
was developed by the authors in earlier work. A spe-
cific challenge in crop rotation models is that farmer’s
crop choices are driven by both policy changes and
external non-stationary factors, such as rainfall, tem-
perature and agricultural input and output prices.
Such dynamics can be modelled by a non-stationary
stochastic process, where crop transition probabilities
are multinomial logistic functions of such external fac-
tors. We use a robust Bayesian approach to estimate
the parameters of our model, and validate it by com-
paring the model response with a non-parametric es-
timate, as well as by cross validation. Finally, we use
the resulting predictions to solve a hypothetical yet
realistic policy problem.

Keywords. multinomial logistic regression, stochas-
tic process, robust Bayesian, conjugate, maximum
likelihood, crop, decision

1 Introduction

This paper investigates a specific actual real-world
problem, namely how imprecise probability can be
used to inform policy, in a way that reflects limited
data and lack of information to policy makers. In
general, policy decisions aim to balance the greater
good to society with the welfare of the individual, in
terms of economic costs and benefits from a policy
implementation. For example, farmers typically grow
crops to maximise their profits, however governments
can influence this decision through policy interven-
tions to meet the needs of society, such as biodiversity,
economic resilience, and security of supply.

An issue which has received a lot of attention recently
concerns changes in crop rotations, which are linked
to negative environmental impact, reduced diversifi-
cation of crops and reduced self-sufficiency in feed

and food. Concerning animal feed, protein demand
has increased a lot, due to increasing meat demand
from developing countries. Also, the use of European
legumes such as peas and beans [11] has declined. At
the moment, the UK imports most of its protein; how-
ever, these prices are going up due to growing global
demand for soya [7]. Simultaneously, growing more
protein can improve diversity, and thereby increase
resistance against disease and climate change, and im-
prove supply security [8]. For these reasons, reforms of
the Common Agricultural Policy that are now being
implemented includes two measures specifically aimed
at increasing the amount of protein crops grown [2].

We will look at a hypothetical scenario to see how
nitrogen price affects the amount of legumes being
grown. Legumes produce their own nitrogen, and so
require little nitrogen based fertiliser. As such, one
expects that farmers tend to grow less fertiliser de-
pendant crops as nitrogen prices increase. We will
formulate and answer a hypothetical decision prob-
lem which illustrates the types of problems that can
be solved using land use models.

Farmers generally grow crops in rotation to prevent
build-up of pests and diseases, and thereby to max-
imise yields and profit margins. The optimal crop
choices vary with soil type and climate conditions.
The rotation is generally driven by the length of the
period required between successive plantings of the
most valuable crop that can be grown, in order to
allow pests and diseases to decline to non-damaging
or readily controllable levels. Rotating crops also
spreads risk in the face of weather variability and an-
nual fluctuations in commodity prices.

Modelling crop distributions across time and space
is highly non-trivial. Building a statistical model for
farmers’ crop choices is difficult, because there are so
many factors that influence a farmer’s choice. We
need to take care in picking the relevant major influ-
encing factors. Moreover, although we have a reason-
ably sized database, some crop types and factor levels



are quite rare. Furthermore, prior expert information
is difficult to obtain. Thus, building a model capa-
ble of making reasonable inferences about future crop
distributions is a difficult problem.

Building on the work of Luo [9], and Chen and
Ibrahim [4], we previously developed a land use model
that accurately captures uncertainty in the modelling
process [16, 13]. In that work, a non-stationary
stochastic process models crop choice, where crop
transition probabilities are multinomial logistic func-
tions, and predictions are based on sets of conju-
gate priors and MAP estimates for efficient sensitivity
analysis. Here, we will use this model to answer the
hypothetical policy question discussed earlier.

Compared to our earlier work in this domain [16, 13],
the novel contributions of this paper are: (i) We train
our model on a much larger data set, and handle a
larger number of crop types. (ii) We deal with numer-
ical stability issues resulting from near-zero counts.
(iii) We propose a non-parametric estimation method,
which is, as far as we know, new in the literature.
(iv) We validate our model, using two different ap-
proaches: formally through classification based accu-
racy measures, and heuristically through comparison
with non-parametric estimates. (v) We propose a new
method for the decision analysis based on MAP esti-
mation. (vi) We apply our model to a hypothetical
policy decision problem.

The paper is structured as follows. Section 2 describes
the land use model from [13]. Section 3 explains the
set of priors and posterior inferences. Section 4 shows
some of the results from the model. Section 5 de-
scribes the model validation. Section 6 analyses a
decision problem. Section 7 concludes the paper.

2 The Model

We model crop rotations on a particular field as a
non-stationary stochastic process, with J states, cor-
responding to J crop choices. The crop grown at time
k is denoted by Yk. The choice of Yk+1 is influenced
by regressors Xk = (Xk0, Xk1, . . . , XkM ), as well as
by Yk, but is otherwise independent of the history of
the system. As usual in a regression analysis, we set
Xk0 = 1. We denote the transition probabilities by

πij(x) = P (Yk+1 = j | Yk = i,Xk = x) (1)

We assume a multinomial logistic regression model for
πij(x), with J2(M+1) model parameters βijm, where
i ∈ {1, . . . , J}, j ∈ {1, . . . , J}, and m ∈ {0, . . . ,M}:

πij(x) =
exp(βijx)∑J
h=1 exp(βihx)

(2)

i x1 x2 ni(x) ki1(x) ki2(x) ki3(x) ki4(x)
1 93 112 2 0 1 0 1
2 56 154 1 0 0 1 0
1 85 110 1 0 0 0 1
3 30 90 1 1 0 0 0
...

...
...

...
...

...
...

...

Table 1: Crop rotation data for a particular soil type,
where i is the previous crop grown, x1 is the observed
rainfall, x2 is the nitrogen price, ni(x) is the current
crop total for i and x, and kij(x) is the number of
crop j being grown.

with βijx :=
∑M
m=0 βijmxm. Without loss of general-

ity we can set βiJm = 0 for all i and m, and call this
the baseline category logit model [3].

Soil type is a significant driver of crop choice. Follow-
ing [9], we split our data by soil type, and perform a
separate analysis for each soil type. For ease, we do
not index our model parameters by soil type.

For estimation, we have ni(x) observations where the
previous crop was i, and the regressors were x. Ob-
viously ni(x) will be zero at all but a finite number
of x ∈ X , where X = {1} × RM . Of these ni(x)
observations, the crop choice was j in kij(x) cases.

Obviously, ni(x) =
∑J
j=1 kij(x) for each i. Table 1

shows an extract from the data set.

The following conjugate prior for the model parame-
ters β was proposed in [13]:

f0(β|s0, t0) ∝ exp
(∑J

i=1

∑
x∈X s0i(x)

[
∑J
j=1 t0ij(x)βijx− log

∑J
j=1 exp(βijx)

])
(3)

where s0i and t0ij are non-negative functions such
that s0i(x) = t0ij(x) = 0 for all but a finite number of

x ∈ X , with 0 ≤ t0ij(x) ≤ 1 and
∑J
j=1 t0ij(x) = 1 on

those points x where s0i(x) > 0. This conjugate prior
matches the form of the likelihood, and the posterior
distribution and parameters are [13]:

f(β|k, n, s0, t0) = f0(β|sn, tn) (4)

sni(x) = s0i(x) + ni(x) (5)

tnij(x) =
s0i(x)t0ij(x)+kij(x)

s0i(x)+ni(x)
(6)

3 Inference

Because prior expert opinion is very difficult to obtain
in our problem, we use sets of prior densities, similarly
to Walley’s IDM [18]. Here, we study inferences re-
sulting from a fixed prior function for s0i(x):

s0i(x) =

{
s if x ∈ X,

0 otherwise,
(7)



for some X ⊂ X and a near vacuous set T of prior
functions for t0. Note that in earlier work [13] we
used a full vacuous set, however we found that we
need to bound the t0ij(x) parameters away from zero
at those points where s0i(x) > 0 in order to maintain
numerical stability in cases where we have very few
observations; we chose this bound ε = 0.01 > 0 small
enough to have no observable impact on the analysis.

X is the set of regressor values where we specify prior
beliefs. It can be any finite subset of X , but we note
that the inferences appear more intuitive if X is chosen
to sensibly cover the range of observed x values [16].
As in the imprecise Dirichlet model [18, Section. 2.5],
smaller values of s typically produce tighter posterior
predictive bounds. For further discussion of why this
choice of priors makes sense, we refer to [13].

A standard way to do the inference now would go via
MCMC. However, as we wish to perform a sensitivity
analysis against the prior, and the dimension of the
parameter space is very large, MCMC is too slow for
our purpose. Therefore, we simply use MAP estima-
tion. If we can find a MAP estimate for all t0 ∈ T, we
obtain a set B∗ of solutions β∗, one for each t0 ∈ T.
Each member of B∗ corresponds to an estimate of the
posterior transition probability. Therefore,

π̂ij(x) ≈ inf
β∗∈B∗

exp(β∗ijx)∑J
h=1 exp(β∗ihx)

(8)

π̂ij(x) ≈ sup
β∗∈B∗

exp(β∗ijx)∑J
h=1 exp(β∗ihx)

(9)

are the desired lower and upper posterior probability
estimates of the transition probability.

4 Case Study

We have crop rotation data from two separate regions
in the UK, detailing which crop was grown in every
field in each region from 1993 until 2004 [15].

We have data available for a variety of regressors: here
we look at rainfall [10] before sowing and the nitro-
gen price [1]. Rainfall is important as some crops grow
better when it is wetter, and some soil types deal with
heavy rainfall better. We can assume farmers are in-
terested in maximising their profit margin. Most fer-
tilisers are nitrogen based, and as such a high nitro-
gen price will impact profit margins for crops which
require large amounts of fertiliser.

We will assume a farmer is faced with a choice of J = 4
types of crops: wheat, legumes, rapeseed and all other
crops. A common practice is to grow wheat (gen-
erally the most profitable crop) followed by a break
crop, such as legumes or rapeseed. Transitions be-
tween legumes and rapeseed are very rare (this only

W
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O

Figure 1: Possible crop transitions, where W is wheat,
R is rapeseed, L is legumes, and O is other. Transi-
tions between R and L do not occur in practice so
have been excluded from the model.
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Figure 2: Prediction of future crop distributions on
heavy soil given a future scenario.

occurred 3 times in roughly 30000 observations). We
could leave these transitions in, but they make negli-
gible difference to the inferences, and experts have no
interest in these transitions anyway. Therefore, we re-
move them from the model. Figure 1 depicts all crops
and transitions in our model.

An important use of land use models is to predict
what may happen in the future, given a future sce-
nario for the regressors. For future crop distributions,
we use the methodology for imprecise Markov chains
developed in [6]. Our initial distribution is calculated
empirically from the data and is 23% wheat, 5% rape-
seed, 4% legumes and 68% others. Figure 2 shows the
results for heavy soil.

The figure shows the historical crop distribution up to



2004 and the values of the regressors until that point.
It then shows the predicted crop distributions for the
next five years, given a future scenario for the regres-
sors. Here, we have analysed what would happen if
future rainfall will be quite low (compared to the ob-
served historical values), and future nitrogen prices
will be high. We can see that, although nothing dras-
tic is predicted, legumes seem to increase somewhat.
We could compare different scenarios to analyse the
impact of changes in, say, nitrogen price. However, a
government can influence regressors such as nitrogen
price through policy. Thus, it is of interest to study
a decision problem which aims to advise this policy.
We do this analysis in section 6.

Note that our data runs from 1993 to 2004, so in fact
the prediction is until 2009. It would be interesting
to compare predictions with actually observed crop
distributions, however field level data was no longer
being collected from 2005 onwards. It may be possi-
ble in the future to validate against satellite data (we
currently do not have such data in this study), and
thereby to gauge the predictive power of the model.

5 Validation

We discuss two methods for validating the model.
A first naive but simple way is to graphically com-
pare the predicted transition probabilities with a non-
parametric estimate from the data. A second way is
to cross validate the model’s predicted best response
with parameters estimated from training data against
the response as in the test data; this is similar to what
is done in classification.

5.1 Non-Parametric Estimates

A simple non-parametric estimate of πij(x) takes a
weighted average of the observations around x:

π̃ij(x) :=

∑
x′∈X w(x− x′)kij(x′)∑
x′∈X w(x− x′)ni(x′)

(10)

where w is some suitably chosen kernel, that is, a non-
negative symmetrical function centred around the ori-
gin. A key choice in this function is the so-called
bandwidth, which quantifies the smoothness of the
estimate. We took a multivariate Gaussian kernel:

w(x) := |Σ|−n/2 exp

(
−1

2
xTΣ−1x

)
(11)

with

Σ2 :=

[
1 0 0
0 202 0
0 0 202

]
(12)

Note that the first component of x is always taken
to be the constant 1, hence only the lower right 2 ×

2 submatrix of Σ2 is relevant. The choice of 20 for
both components was done by trial and error to get
sufficiently smooth estimates.

Figure 3 depicts π̃ij(x) as calculated from eq. (10) and
[π̂ij(x), π̂ij(x)] as calculated from eqs. (8) and (9), for
all cases of previous crop i and soil type, as a function
of nitrogen price and for a fixed value of rainfall (we
chose the historic mean, 55mm). We can see that our
model predictions and the non-parametric estimates
coincide quite well. The most notable differences are
located at the extremes of our observed nitrogen data.

Figure 4 shows a smoothed version of ni(x), that is:∑
x′∈X

w(x− x′)ni(x′)/w(0) (13)

These plots give an idea of the size of the denominator
in eq. (10), and thereby how much data is near each
point x. The lowest data densities are observed from
legumes on heavy soil type, where the average number
of observations lies around 20. The highest data den-
sity is observed from other on light soil type, where we
see numbers between 1000 and 2300. This difference
in data density is well reflected in the robust Bayesian
estimates. The data density decreases substantially as
nitrogen price increases, and interestingly our robust
Bayesian intervals also become wider in this direction,
as desired: we built a robust Bayesian model to cap-
ture exactly this sort of feature.

The worst fits are observed in the two bottom right
plots, where the robust Bayesian model seems to
slightly overestimate the slopes of the curves. We
currently have no good explanation as to why this
behaviour occurs.

5.2 Cross Validation

A typical method for validating classifiers is to split
the data into training and test data, and then to com-
pare the predicted class (or set of classes) from the
model based on the training data, with the actual
classes in the test data. We can consider our model
as a classifier, in the following sense: we compare the
farmer’s actual choice with the most likely predicted
crop. For example, for the predictions in fig. 3, for
that particular value of rainfall, the most likely crop
from other is other, wheat from legumes and rapeseed,
and either other or wheat from wheat, depending on
nitrogen price. Of course, in the test data, rainfall
will vary as well; fig. 3 just shows a particular slice
of the model. Note that our model sometimes pro-
duces a set of most likely crops, as we do a sensitivity
analysis over all β∗ ∈ B∗.

For credal classification, there are a number of perfor-
mance measures [5]. The determinacy is the percent-
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Figure 3: Non-parametric estimates π̃ij(x) and robust Bayesian interval estimates [π̂ij(x), π̂ij(x)] for all previous
crops i, soil types, as a function of nitrogen price, for fixed rainfall. Probability lies on the y axis.
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Figure 4: Smoothed ni(x) as a function of x. This
gives an idea of the accuracy of the non-parametric
estimates plotted in fig. 3.

region deter- single indeterminate set
minacy accuracy output size accuracy

Anglia 0.968 0.722 2.008 0.855
Mease 0.988 0.758 2.140 0.929
All 0.976 0.734 2 0.795

Table 2: Cross validation results

age of classifications where the output class is unique.
The single accuracy is then the accuracy of those pre-
dictions. The indeterminate output size is the average
number of classes when the output class is not unique.
Finally, the set-accuracy is the percentage of times an
indeterminate set contains the correct classification.

To ensure that all the data is used for testing, the
analysis is typically repeated, say 10 times, by split-
ting the original data set into 10 parts, and then re-
peatedly testing on each of these parts, based on train-
ing on the complement of the testing part.

We can use a similar approach to validate our model.
We have two distinct geographical regions in our
dataset. We perform cross validation within each re-
gion, and also combine the two regions together and
perform cross validation on the entire data set.

Table 2 presents the results. The single accuracy is
quite excellent: our model predicts the correct crop
in 70–75% of the cases. The set accuracy is even bet-
ter, around 80–90%. We note that the determinacy
is quite high as a result of the large data set used.
This is mostly due to the fact that there is a clear
dominant crop type for most combinations of soil and
previous crop growing. If we split our analysis by
soil and previous crop, we find certain combinations
where the determinacy is much lower. Due to space
constraints we omit this analysis here, as it only af-
fects determinacy in a substantial way. Indeed, we
can already now tell that the set accuracy will on av-
erage remain about 80–90%, which indicates that the
model performs very well. Finally, we note that the
set accuracy is at its lowest for the full data. A logical
explanation for this is that the regions are geograph-
ically quite distinct. Even despite these differences,
the model copes well.

To assess the predictive power of the model, we com-
pared our multicategorical logistic model with a much
simpler multinomial model, without covariates, using
the imprecise Dirichlet model [18] with s = 2 for our
priors. Due to the amount of observations in our data
set, this model always predicts a single crop type. In
regions where data is abundant, the logistic model
also outputs a single predicted crop, and the mod-
els perform similarly (around 73% accuracy in both
cases). However, in regions where the data is sparse
and where therefore the logistic model produces a set



of predictions, the logistic model has 84% set accu-
racy, whereas the multinomial model has only 43%
accuracy. This shows the benefits of our logistic model
in regions of sparse data.

Note that this method for validation assesses only
whether the farmer grows the most likely predicted
crop. If this is what we are interested in, then, in
regions where there is abundant data, the multino-
mial model is preferable: it produces similar perfor-
mance as generally one crop dominates the others,
and it is a much simpler model. However, we are in-
terested in understanding the drivers behind farmer’s
crop choices, and obviously the multinomial model
cannot capture this, unlike the logistic model. Conse-
quently, in our view, the traditional classification per-
formance measures are not entirely suitable to assess
model performance. This also raises an interesting
question in how classification performance measures
could be adapted to capture model performance not
only related to the most likely predicted class.

6 Policy Example

An important use of land use modelling is to aid pol-
icy makers. Changes in policy affect farmer’s deci-
sions, and so land use models can predict the impact
of these changes. As mentioned in Section 1, there
is an interest in the UK in increasing the amount of
legumes being grown. Changes in government policy
can help to achieve this.

To inform policy makers, we consider a series of sce-
narios with varying nitrogen price, and thereby in-
vestigate the hypothetical impact on crop transitions.
Because legumes require far less fertiliser than rape-
seed, we expect that an increase in nitrogen price leads
to an increased growing of legumes. We emphasize
that we have not built a causal model [14], thus one
must be wary not to give too strong an interpretation
to the inferences presented here.

Both legumes and rapeseed are break crops, so we
are particularly interested in transitions from wheat,
depicted in the bottom three plots of fig. 3. We see
that, for all soil types, as nitrogen prices increase, the
amount of legumes grown after wheat increases too.
We use these three plots in our policy example.

There is perhaps a more obvious way to approach this
problem. The usual way a government would aim to
increase levels of legumes is by offering a subsidy to
grow them. We have the data available to us to at-
tempt this. By including profit margin as a regressor,
we performed an analysis where we altered the profit
margin of legumes relative to rapeseed. One would
expect that as legumes became relatively more prof-

itable, for example through increased subsidy, more
farmers would plant legumes as a break crop instead
of rapeseed. However, the results in fact showed the
opposite happening.

One potential explanation for this is the format of the
data. The profit data we use [12] is actually the pre-
dicted profit for the next year. We use this as that is
the information farmers have available when making
their decision. As such, if there is expected to be an
increase in legumes for the next year, then because
of supply and demand, there may be a predicted de-
crease in the profitability of legumes. As such, we
suspect there is a confounding variable. In fact, using
nitrogen price directly produces more sensible results.
Although this makes the analysis less intuitive, for
this reason, we proceed with nitrogen price directly.

We are interested in analysing how a farmer’s decision
responds to changes in nitrogen price. Thus, we as-
sume that the policy maker has some control over the
nitrogen price, and we analyse the decision problem
from the policy maker’s point of view (rather than the
farmer’s). If the policy maker can specify utilities for
different outcomes, then we can use these utilities to
make a specific recommendation as to which nitrogen
price achieves the best expected utility. In our robust
Bayesian setting, we investigate the effect of a wide
range of priors on the optimal decision. As legumes
are fairly rare in some cases, this allows us to identify
situations where we do not have sufficient information
in order to arrive at a conclusion.

For the purpose of this paper, we choose a very simple
form for the utility function:

U(a, b) = 100a− κb (14)

where a is the fraction of legumes across all farms, b
is the nitrogen price, and κ is chosen to control how
this price is weighed against the level of legumes. Note
that a is multiplied by 100. This ensures a reasonable
scale for the utility, but otherwise makes no technical
difference as utility functions are unique up to positive
affine transformations. Also, we do not fix any partic-
ular value for κ; instead, we investigate our decision
problem across a range of κ values.

As before, we do not actually calculate the expected
utility, as this is computationally too expensive. In-
stead, we directly use the MAP estimate for β, and
calculate the corresponding value for a

a(β∗, b) :=
exp(β∗ij · (1, r, b))∑J
h=1 exp(β∗ih · (1, r, b))

(15)

where (1, r, b) is x; r is rainfall, which for the purpose
of this analysis is kept fixed. Varying r makes no
substantial difference to the conclusions of our study.



As here we are only interested in transitions from
wheat to legumes, i represents wheat and j represents
legumes. The (approximate) optimal decision is then

arg max
b∈[b1,b2]

U(a(β∗, b), b) (16)

where a(β∗, b) is the fraction of legumes in the model
with MAP parameter β∗ and nitrogen price b.

In our robust setting, we actually have a set B∗ of β∗

values. We use interval dominance, due to the sim-
plicity by which it can be computed and graphically
represented. Specifically, with

U(b) := infβ∗∈B∗ U(a(β∗, b), b) (17)

U(b) := supβ∗∈B∗ U(a(β∗, b), b) (18)

all b ∈ [b1, b2] that satisfy

U(b) ≥ maxb∈[b1,b2] U(b) (19)

are deemed optimal. We have taken the values b1
and b2 to be the lowest and highest observed histori-
cal nitrogen price. These are the values our model is
built on. Therefore, in our decision problem we vary
nitrogen price over the range of values we have pre-
viously observed. Figure 5 shows [U(b), U(b)] when
moving from wheat on each soil type and for vari-
ous values of κ. The horizontal black line represents
maxb∈[b1,b2] U(b). Values of b for which U(b) lies above
this line are optimal by interval dominance. Of course,
in reality, a government would not base policy on pre-
vious crop or soil. However, we present this analysis
as it shows a variety of interesting features, and also
compares well with the validation plots in fig. 3.

The same trends are observable across all soil types.
When κ = 0, we are saying that the policy maker is
indifferent to changes in nitrogen price. As such a
high nitrogen price is desirable, as the model predicts
this leads to an increase in legume growth. Thus, the
values of b which are optimal are high.

As we increase κ, eq. (14) says that a higher nitrogen
price is becoming more detrimental to society. As
such, we expect lower values of b to become optimal.
Eventually, we reach a point for which all b are opti-
mal. For example, on light soil this occurs at κ = 0.02.

Eventually we reach a stage where a high nitrogen
price is highly undesirable for society, regardless of
the benefits that it brings with respect to increased
legume growth. For example, on medium soil and
κ = 0.07, only b values less than 100 are optimal.

For a policy maker, once decided on a value of κ
(which would be determined by the policy maker
determining what scenarios they are indifferent be-
tween), then the job would be to determine how to

alter the nitrogen price to suit society’s needs. For
example, on heavy soil with κ = 0.06, a high nitrogen
price is beneficial to society. As such, a government
could increase tax on nitrogen to increase the price
of it. On the other hand, for heavy soil and κ = 0.2
government could decrease tax on nitrogen.

We stress again that the above analysis is purely hypo-
thetical. We made unrealistic assumptions, and made
no attempt at modelling causal relationships, so the
conclusions drawn above in no way represent realistic
policy proposals. Instead we demonstrated mathe-
matical techniques for aiding policy making. Only if
we had suitable data, a suitable utility function, and
a suitable choice of causal covariates, could we draw
hard policy conclusions from the results.

7 Summary and Conclusions

In this paper we further developed the previously pro-
posed land use model from [13]. The model uses
multinomial imprecise logistic regression with sets
of conjugate prior distributions, on a non-stationary
stochastic process. We obtained robust Bayesian
bounds on the posterior transition probabilities of
growing wheat, legumes, rapeseed or anything else,
as functions of rainfall and nitrogen price. Compared
to previous work we trained our model on a much
larger data set. We addressed numerical stability is-
sues by use of a near vacuous set of priors to bound
probabilities away from zero.

We validated our model in two ways: comparing a
non-parametric estimate with the robust Bayesian in-
terval estimate, and by performing cross-validation.
The results show that our model performs well, par-
ticularly in areas where there are few observations.

We formulated and answered a hypothetical decision
problem with real-world relevance. We investigated
what level of nitrogen price is most beneficial to soci-
ety to promote legume growth. We used interval dom-
inance to identify optimal policies due to its graphi-
cal representability and computational simplicity. We
demonstrated how land use modelling can aid policy
makers, and how imprecise probability can help to
solve real world problems.

On a critical note, we may wonder about what is the
advantage of using an imprecise probability model
as opposed to a precise non-parametric model, or
a precise Bayesian model? Indeed, confidence in-
tervals on the parameters could be easily obtained
through the non-parametric model that we introduced
in eq. (10)—albeit with all the issues that come with
such estimates particularly in regions where the data
is sparse and where we do not believe that eq. (10)
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Figure 5: [U(b), U(b)] when moving from wheat to legumes on all soil types, for various values of κ. Utility lies
on the y axis.



is accurate. Similarly, credible intervals could be ob-
tained through MCMC on just a single prior. How-
ever, for decision making, we need expected utility
(or, loss), not confidence intervals or credible inter-
vals. A precise Bayesian model always gives an exact
expectation, and one would still worry about sensitiv-
ity against the prior, thereby ending up doing exactly
what we do in the paper. Moreover, it is well known
that the simplest way to find admissible frequentist
decisions goes through a robust Bayesian analysis [17].
So, frequentists should find our analysis also quite ap-
pealing, provided they accept the parametric model.

Future work will concentrate on analysing decision
problems in a more realistic way. Our data set is
quite old—after 2004 field level data was not collected
in the UK. However, it is planned to start again in
the near future, meaning the model can be built on
more relevant data. We plan on obtaining legume
subsidy price, and including that as a regressor to see
if that stops the confounding error discussed in sec-
tion 6. The profit margin of a crop is simply a func-
tion of various factors, including subsidy level. Thus,
including subsidy directly in the model as a regres-
sor will be straightforward. We also plan to investi-
gate other decision criteria, such as maximality and
E-admissibility, particularly when interval dominance
leads to vacuous decisions. The utility function could
also be enhanced to account for risk aversion, and
other factors that influence the benefits to society.
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