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Abstract—The classification of electrical load profiles has
become increasingly important as a driver for distribution
companies in understanding substation data. The daily load
profile can often give great insight into the types of customers
connected to the substation and can assist with developing a
long-term forecast. The literature in this area often uses data
mining and clustering techniques to determine a load diagram
representative for a subset of customers or substations. The
type of technique used can often lead to representative load
diagrams of unique shapes with differing numbers of customers
belonging to each group.

This paper analyses clustering techniques on representative
load diagrams for primary substations at the distribution level.
In particular, this paper will analyse clustering techniques in
terms of their performance and effect on load profile groupings.
The results show that K-means clustering showed the best
performance in generating unique, well-populated cluster groups.
This gives a greater understanding of the divisions between
substations which can be used for future forecasting.

Index Terms—Clustering methods, Power distribution, Load
modeling

I. INTRODUCTION

It is necessary for distribution network operators to gain
more insight into annual demand trends in order to plan for
future scenarios. This includes the fact that electric demand
is expected to increase but there is an additional expected
impact from new technologies such as electric vehicles and
heat pumps. For this research, the demand data is collected
using SCADA (supervisory control and data acquisition)
systems from primary substations at 30 minute intervals
giving a daily load profile with 48 points. The primary figure
needed from this is the maximum demand for each substation
on an annual basis which all future forecasts are based on.
This will give justification for any necessary reinforcement
needed on the network before firm capacity is exceeded.

The motivation for examining daily load profiles in
particular comes from the need to determine underlying
trends within the annual load profile. Because of industry
knowledge, it is accepted that there are seasonal and day of
the week variations in load profiles. Therefore by examining

the different periods separately, it is possible to see seasonal
demand variation. An additional motivator is analysing the
flattening of demand profiles. In this case, it is defined as
the difference between the summer trough and winter peak
demand. Any difference in daily load profile will help to
explain this difference. It is also good to reaffirm the types
of customer belonging to any daily load profile. The shape of
a load profile is often indicative of the mixture of domestic
and commercial/industrial customers and will aid engineering
judgment. The final motivator comes from a need to separate
primary substations on the distribution network into groups
to aid the forecasting process. Substations with similar load
profiles are more likely to have similar long-term profiles.
Therefore any forecasting algorithms can act on these groups
separately and potentially reduce error and increase reliability.

One method of analysis that has proven to be popular in
another literature survey [1] is to determine representative
daily load profiles for a substation by data mining methods.
These load profiles can then be used to categorise substations
based on their daily load for improved forecasts. In particular,
various clustering techniques can be used to build these load
profiles. However, each method can lead to load profiles of
different shape with differing numbers of customers belonging
to each cluster.

This paper will look at three popular clustering methods
and their effect on load profile data. This will be done by
a discussion of each individual method along with the use
of clustering validity metrics. Section II explores some of
the related work in the area. Section III gives an overview
of the methods used in the paper. Section IV details the
methodology used for the clustering process. Section V applies
the methodology and discusses the obtained results. Section
VI justifies the connection of this work to a future forecasting
algorithm. Section VII summarises the results by discussing
which algorithm performed the best and what impact this will
have on future forecasting.



II. RELATED WORK

In the literature, load profile clustering has been investigated
[1] [2] [3], but there are gaps where there is room for new
research. In particular, [1] also looks at various clustering
techniques for load profile classification but pre-partitions the
data by type of customer. However, in this work the customer
data is used to support the load profiles obtained and assumes
no prior knowledge. Additionally, the distribution level is
considered at primary substations operating at 11/33/66 kV
levels. These substations consist of several different types of
customers including domestic, commercial and industrial so
individual customers cannot be considered. Any consideration
of customer mixture would have to be realised post clustering.
Also in [1], much of the focus is on the use of different
clustering validity metrics to judge how well each clustering
technique works with little to no discussion on the effect of
the methods themselves on the specific data set used.

An investigation into load profile clustering was also carried
out by Western Power Distribution in their Low Voltage
(LV) network templates project [4]. Using clustering and their
own customer database, they developed daily load profiles
for distinct customer mixtures on their network. However,
it lacked a detailed explanation of clustering methods and
opted on a single one (hierarchical) leaving room for fur-
ther research. This study will be unique in the analysis of
multiple clustering techniques on distribution level substation
data while considering not only the typical clustering validity
metrics but also the methodology of each individual clustering
technique.

III. THEORY AND METHODS USED

In order to create groups to improve upon both engineering
understanding and to improve future forecasting, a few classic
clustering algorithms will be used. These particular methods
were chosen because of their use in similar studies [1] [4] and
because of their familiarity [5]. In subsections A, B and C,
an overview of the clustering methods used will be given. In
subsection D, an overview of the metrics used will be given.
Finally, in subsection E, a link to an engineering context is
given by association with the customer types on the network.

A. K-Means Clustering

K-means clustering [6] is one of the most popular clustering
techniques used across various disciplines on a wide variety
of data. The basic steps of the algorithm are as follows:

1) Choose number of K clusters.
2) Assign data points to a cluster centre based on a distance

metric.
3) Calculate the mean of each cluster group which becomes

the new centre.
4) Repeat 2-3 until all data points are assigned to the same

cluster.
Although this is a simple method that is widely used, there

are classical problems associated with this method. One of
the disadvantages is that the initial random choice of cluster

centres can often cause very different clusters to form. A
popular technique to address this as suggested in [5] and [7]
is to run the algorithm several times and choose the solution
with the lowest sum of squared distance between the data
and cluster centroids. Furthermore, there is also the issue of
sensitivity to outliers as all points are forced into clusters. This
will be considered when analysing the shapes of each cluster.
Finally there is always the issue of the choice of number of
K clusters as addressed in subsection III-D.

B. Hierarchical Clustering

The hierarchical clustering method is based on a tree struc-
ture known as the dendrogram [5]. This can be done in a top
down approach known as the divisive method which starts at a
single cluster and performs binary splits until all clusters only
have one member. However, this method is computationally
intensive and not often used. More commonly used is the
agglomerative method which is a bottom up approach built
starting from single member clusters and combining clusters
until there is only one cluster. The algorithm is as follows:

1) Start with N clusters where N is the number of data
points.

2) Combine clusters based on a linkage method starting from
the clusters which are closest together.

3) Add the newly formed cluster to the distance matrix.
4) Repeat 2-3 until there is only one cluster containing all

elements.
The choice of linkage method for hierarchical clustering will

also have to be considered. In [8] some of the most common
linkage methods are summarised. The average linkage method
is seen as being one of the most robust methods and is
the average distance between all pairs of data points where
one comes from each group. This is in contrast to simpler
methods known as single linkage (nearest neighbour) and
complete linkage (furthest neighbour) where distance is simply
calculated by the nearest or furthest points in each group.
An additional linkage criteria known as Ward’s method was
also considered by [1] but it was found that average linkage
was better at rejecting dissimilar load profiles whilst Ward
attempted to find groups of the same size. A choice of
number of clusters must be made here by choosing a threshold
horizontal division on the dendrogram.

C. Fuzzy C-means Clustering

In this type of clustering, data points do not have to belong
to a single cluster but instead have degrees of membership
in [0, 1] that denote the extent to which a point is similar to
that cluster centre. Otherwise, the procedure is quite similar
to K-means with the following steps:

1) Choose number of K clusters and initialise random centre
points.

2) Update the membership matrix U by uij =((∑K
v=1

d(xi,cj)
d(xi,cv)

) 1
m−1

)−1
, where uij ∈ U is the

fuzzy membership matrix, d(·, ·) is a chosen distance
metric such as Euclidean distance, xi ∈ X is the matrix



of load profiles, cj is the cluster centre and m > 1 is
the fuzzification parameter.

3) The matrix of cluster centres C = (ci) is then updated
ci =

(∑N
j=1(uij)

mxj

)(∑N
j=1(uij)

m
)

, i = 1, ...,K

4) Repeat 2-3 until the matrix of centres stabilises.
The disadvantages of using fuzzy C-means are similar

to using K-means in that there is no definitive method to
identify the initial partitions and that the method is sensitive to
outliers. The uniqueness of fuzzy membership can offer more
insight than crisp clustering because it can help to show the
uniqueness (or non-uniqueness) of the cluster centres and the
similarity of load profiles to the centres.

D. Clustering Validity

In order to attain supporting evidence for the engineering
based explanations of the cluster solutions, clustering validity
metrics will be used. These metrics can be used to ascertain
both the effectiveness of one clustering algorithm versus
another and to determine the number of clusters that should
be used. For crisp clustering, a couple of popular indices are
used here: Dunn’s index and Davies-Bouldin.

Dunn’s index is a popular method in the literature and
identifies compact and separate clusters [10]. The Dunn index
T is defined as

T = min
1≤i≤c

 min
1≤j≤c,j 6=i

 min
xi∈Xi,xj∈Xj

(d(xi, xj))

max
1≤k≤c

yk

 (1)

where xi ∈ Xi is a cluster group of vectors, c is the number
of clusters used, d(·, ·) is the standard Euclidean distance
metric, and yk = max

xl,xm∈Xk

(xl, xm). The best solution is the

one with the highest Dunn’s index.

The Davies-Bouldin (DB) criterion is defined as a ratio of
within cluster and between cluster differences [9]. Suppose Si

and Sj are dispersion measures which are the average dis-
tances between each point in the clusters and their respective
centroids. Mij is the Euclidean distance between the ith and
jth clusters. Then the DB index R̄ is

R̄ =
1

N

N∑
i=1

maxi 6=j{Ri,j}, Ri,j =
Si + Sj

Mi,j
. (2)

The best clustering solution is the one with the smallest DB
index.

For fuzzy clustering, the allowance for partial membership
requires a different clustering validity metric. One of the most
popular metrics in use is the Xie-Beni metric [11] which is
defined as

S =

c∑
i=1

n∑
j=1

U2
ij‖Vi − xj‖2

nmin
i,j
‖Vi − Vj‖2

(3)

where c is the total number of clusters, n is the number of
vectors (in this case substations), Uij is an entry in the fuzzy

membership matrix, Vi is a cluster centroid, and xj is a vector
in the data set. The best solution is one with the lowest Xie-
Beni index.

E. Association with Customer Type

Regardless of clustering technique used, it is desirable to
have an idea of the types of customer associated to each
substation. By using the PCA investigation in [12] it is possible
to attribute a customer make-up to each of the primary substa-
tions. In particular, there is a need to distinguish between do-
mestic customers and commercial/industrial customers. Within
domestic customers, there is also a distinction between rural
and urban domestic customers. In [12], it was determined
that the first principal component (PC1) shows a distinction
between domestic and commercial/industrial customers where
a positive values indicates a greater influence from commer-
cial/industrial customers and a negative value indicates greater
influence from domestic customers. The second principal
component (PC2) shows a distinction between rural and urban
customers where a positive value indicates a greater influence
from rural customers and a negative value indicates a greater
influence from urban customers. By making this association, it
will give supporting evidence for an engineering explanation
of resultant clusters. This is useful as both an explanation of
the load profiles themselves and as insight into the differences
between the clustering techniques.

IV. METHODOLOGY

Initially, each clustering technique will be analysed
separately and representative load profiles for the summer
period are considered. There are multiple ways a normalisation
process can be done. In this paper, the following will be
used. Each substation on the network has an annual demand
profile consisting of readings taken every 30 minutes. The
summer period is defined as June 1 2012-August 31 2012
for a total of 4416 readings. According to the investigation
in [4], it is more appropriate to normalise each daily load
profile and then average over a period of time as opposed to
averaging the period first and then normalising. This helps to
highlight daily load patterns and is not as subject to seasonal
variation. Normalising by the maximum of each day and then
averaging over the summer period is the procedure followed
here to attain the representative load profiles.

Before the clustering is done, the number of K clusters
needs to be determined for each method. Depending on the
criteria used, a different number of chosen clusters could be
indicated.

There are three main pieces of information that will inform
the discussion for each method. First are the cluster centroids
and how the load profile changes over the course of the day.
The cluster centroids are generated directly for K-means
and fuzzy C-means. For hierarchical clustering, the profiles
belonging to each cluster can be averaged to generate a
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Fig. 1. Dunn’s Index for Crisp Clustering Algorithms

centroid.

Second are the population sizes of the clusters. These are
easily gained for K-Means and hierarchical clustering. For
fuzzy C-means, because of partial membership, a different
method must be used. The membership values across the
membership matrix U are summed to attain population sizes.

Third are the principal component values from [12] for
each cluster centroid. As explained in section III, this allows
for an idea of the customer make-up to be understood
for each cluster. For K-means and hierarchical clustering,
these are the average values of PC1 and PC2 for each
cluster. Associating the customer classification principal
components from [12] is not as straightforward for fuzzy
clustering because of the allowance for partial membership.
However, the impact of the PCA can still be discussed with
simple matrix multiplication. Let U be a c × m matrix of
fuzzy cluster memberships where m is the total number of
substations and c is the number of clusters and let V be the
m × 2 matrix which contains the first two PC scores for
each substation. Then the matrix W = UV is a c× 2 matrix
which contains the summation of the PC scores for each
cluster weighted by the cluster membership of the substations.

After the discussion of each method, the clustering validity
metrics will be discussed further in the context of the clusters
and any differences between the methods will be highlighted
and explained.

V. RESULTS AND DISCUSSION

A. Choice of K Number of Clusters

The Dunn index in Fig. 1 shows that K-means and Ward’s
linkage criteria performed the worst. However, upon closer
inspection it was found that the average, single and complete
methods had most of the substations in a single cluster,
making this misleading. The size of clusters for K-means
and Ward’s linkage are shown in their respective sections.
For the choice of K, considering local maximums in a small
neighbourhood, K ∈ [9, 14] is appropriate for Ward’s linkage.
For K-means, there is no clear local maximum so based
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on K ∈ [9, 14] being a good choice for Ward’s linkage,
K = 9 clusters are chosen. The smallest number of clusters
is preferable whenever possible for ease in understanding.

The choice of K according to the DB index in Fig. 2 is
less clear. There is a local minimum for Ward’s linkage at
K = 9 but there is also one at K = 6. For K-means, there is
a local minimum at K = 8 but the differences between for
nearby values of K are small. Since the choice of K = 9 has
the most supporting evidence, it is used for subsection V-B
and V-C.

For fuzzy clustering, the Xie-Beni index in Fig. 3 shows
a general decrease as the number of clusters is increased
which would suggest choosing a high number of clusters.
As discussed earlier, this can be counterintuitive for the
desire to achieve an engineering based explanation of load
profile shapes. This problem is acknowledged in [11] and
proposes a few ways to address this. One way to do this
is by considering the maximum number of clusters n − 1
to be where there is a monotonically decreasing value
of S afterwards. Then select the lowest value of S in
c ∈ [2, n − 1]. However, there may not be a point at which
the series is monotonically decreasing. Instead, using prior
knowledge that c� n a local minimum can be selected. Here,
a value of 12 clusters is chosen as it is a clear local maximum.
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Fig. 4. Clusters Gained By K-means

TABLE I
K-MEANS CLUSTERING POPULATIONS AND PRINCIPAL COMPONENT

VALUES

Population PC1 PC2
Cluster 1 60 0.101 0.155
Cluster 2 162 -0.164 -0.262
Cluster 3 72 2.969 -0.067
Cluster 4 127 0.297 0.224
Cluster 5 53 1.063 1.166
Cluster 6 27 -1.207 -0.474
Cluster 7 63 -2.231 -0.466
Cluster 8 8 N/A N/A
Cluster 9 4 1.851 1.665

With regards to clustering validity in general, the choice of a
number of clusters is not simply the point at which the chosen
metric gives the most favourable value. Instead, the application
must be considered and choosing a local minima/maxima
in a predetermined neighbourhood usually provides a good
compromise between minimising/maximising the metric and
an understandable number of clusters.

B. K-Means Clustering

After performing K-means clustering on the summer
representative load profiles, Fig. 4 shows the candidate
nine cluster centres and their cluster sizes in Table I. By
cross referencing with the work in [4] and using general
knowledge of load profiles, it is possible to attain a descriptive
reference for these clusters. Note that N/A in these tables
means there is no available customer data for these clusters
because none of the substations have associated customer data.

Clusters 1 and 2 follow a typical domestic type load
profile which peaks in the early evening around 6 p.m. and
has a fairly flat profile throughout the middle of the day.
In [4], profiles of this shape are said to have high domestic
dominance. In Table I, the PC1 values for clusters 1 and 2
are small and close to 0 showing that there is influence from
both domestic and commercial customers.

Clusters 3, 4, and 5 have a much earlier peak around
midday with a steady decrease afterwards. In [4], these types
of load profiles are said to have a high commercial/industrial

influence. Table I supports this since the PC1 values are more
skewed to the positive end indicating a greater influence from
commercial/industrial customers.

Cluster 7 is a mostly flat profile which is typically attributed
to commercial and industrial customers using the same level
of energy throughout the day. However, this is not supported
by the PCA as the value for PC1 is negative and indicates
a higher influence from domestic customers. This suggests
that either the PCA is not accurate enough or that for this
particular data set, these flat daily load profiles are attributed
to domestic customers even if it is not generally the case.

Clusters 6, 8 and 9 are anomalous load patterns with small
populations that do not fit into the other categories. Note that
in cluster 8 are substations on the network that are completely
generation.

One of the disadvantages of the K-means algorithm is its
sensitivity to outliers and noise. As the number of clusters
is increased, the probability of an outlier distorting a cluster
centroid decreases. Even in this example of nine clusters,
there are a couple of clusters (8 and 9) which are sparsely
populated and could be classified as outlier clusters. Therefore
for K-means, the choice of K and population of each cluster
is important when considering the effect of outliers. If only
a few clusters are chosen then it may become a concern for
the engineer.

The K-means algorithm mostly performed well here based
on the fact that these profile shapes are commonly seen in the
industry and that they can be supported by previous works
with regards to customer types.

C. Hierarchical Clustering

Hierarchical clustering with Ward’s linkage criteria is
applied for this example and nine prospective cluster
centroids are shown in Fig. 5. These are generated by
averaging the profiles of the substations in each cluster
after the selection of nine clusters are made. According to
[8], Ward’s method will tend to find clusters which are the
same size. The cluster populations shown in Table II do not
corroborate with this however as some of the clusters are not
well populated. Four of the nine clusters contain 95% of the
total population.

The load profiles that are well populated do show some of
the shapes given by other clustering methods. In particular,
clusters 1 and 2 show a load profile with two peaks. This
suggests that at least in part that these are clusters that contain
the prototypical domestic load profile with a peak around
midday, a slight decrease in the afternoon followed by the
daily peak in the evening. However, the two peaks are nearly
identical which suggests that these profiles were offset in time.
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Fig. 5. Clusters Gained By Hierarchical Clustering

TABLE II
HIERARCHICAL CLUSTERING POPULATIONS AND PRINCIPAL

COMPONENT VALUES

Population PC1 PC2
Cluster 1 172 -0.061 -0.238
Cluster 2 159 1.636 -0.076
Cluster 3 142 -1.268 -0.016
Cluster 4 73 1.047 1.354
Cluster 5 3 N/A N/A
Cluster 6 5 N/A N/A
Cluster 7 15 -1.066 -0.147
Cluster 8 6 -0.918 1.437
Cluster 9 1 -1.851 1.665

Another issue is that these profiles are extremely similar in
shape which is not desirable considering only nine clusters
out of a total 576 substations are considered. When checked
against the figures from the PCA analysis in Table II, it
suggests that cluster 1 contains more load profiles with a
domestic influence and cluster 2 contains more profiles with
an industrial/commercial influence. This is not made clear
in the shapes of the load profiles which makes this method
less useful for both future forecasting purposes and in a more
general sense for understanding.

The main issue with hierarchical clustering is that once
two items are grouped in the dendrogram, they are no longer
considered in future iterations of the algorithm. This is of
great importance here because distinct and populated clusters
are required for understanding. More linkage methods are
considered in subsection V-A.

D. Fuzzy C-means Clustering

Fuzzy C-means clustering is unique among these methods
in that substations do not have to belong to a single cluster.
Instead, they are given membership values in [0, 1] that denote
the degree to which the daily load profile shape matches the
centre point with a value of 0 being the weakest and 1 being
the strongest. Similarly to other methods used, the load profile
centres in Fig. 6 can be explained using general knowledge of
load profiles but also using the preliminary work done in [12].
By performing a summation across the membership matrix
U , Table III shows the number of substations belonging to
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Fig. 6. Clusters Gained By Fuzzy C-means Clustering

TABLE III
CLUSTERS GAINED BY FUZZY C-MEANS CLUSTERING

Population PC1 PC2
Cluster 1 48 34.523 -3.274
Cluster 2 68 -8.645 -8.588
Cluster 3 49 58.302 3.469
Cluster 4 65 21.579 -3.109
Cluster 5 72 12.539 -1.201
Cluster 6 75 9.090 -2.847
Cluster 7 63 -28.894 -5.132
Cluster 8 56 41.423 20.608
Cluster 9 35 15.092 22.458

Cluster 10 32 -31.580 -5.398
Cluster 11 7 0.213 0.191
Cluster 12 5 0.580 0.821

each cluster rounded to the nearest whole number.

The first principal component indicates the contribution
of commercial/industrial customers where a positive value
indicates a greater dominance of commercial/industrial
customers while a negative value indicates a greater
dominance of domestic customers. The clusters where this
value is the highest are in clusters 1, 3, 4, 5, 6, 8 and 9.
All except cluster 1 have no distinct second peak and are
consistent with industrial load profiles in industry and as
shown in [4]. The load profile in cluster 1 is more often
associated to more domestic load profiles so this result is
surprising. This could be due to the fuzzy clustering algorithm
itself since these substations could be outliers in the principal
component space which are then exacerbated by the matrix
multiplication.

The lowest PC1 values are in clusters 2, 7 and 10 where
cluster 2 does exhibit a domestic load profile but 7 and 10
do not. Again, this could be due to the allowance for partial
membership as 7 and 10 are much flatter profiles than what
is expected of a domestic load profile.

The second principal component indicates the contribution
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of rural (positive values) and urban (negative values) domestic
customers. The highest positive values in clusters 8 and 9
show load profiles with the earliest decrease in demand more
consistent with industrial load profiles. This follows naturally
as one would expect more rural housing in these areas.

Overall, it seems that although fuzzy clustering can be more
insightful because of relaxing the hard membership criteria,
it is less useful when attempting to gain a general overview
of substation behaviour. This is compounded by the fact
that PCA already loses information when reducing the high
dimensionality of the original space. For the analysis here,
fuzzy clustering of load profiles is not seen as appropriate.

E. Comparison between Methods

Analysing the crisp clustering techniques first, the main
difference that can immediately be seen is in the distribution
of the population between clusters. For K-means, the
population is well spread out with only two clusters (8 and
9) containing less than 10 substations. As noted earlier for
Ward’s linkage, 95% of the substations are grouped in four
out of nine clusters. This disparity can be attributed to the
way in which the algorithms group data. The methods both
use Euclidean distance as a metric for clustering but K-means
allows for substations to be reassigned after updating cluster
centres. This allows for more distinct cluster groups to be
formed. For example, clusters 3 and 4 are given as distinct
clusters in K-means but there is no analogous cluster for the
K-means cluster 3 in hierarchical clustering.

Fuzzy clustering does offer the potential for more insight
but the method offered the least corroboration with the
principal component analysis in [12]. The method produced
cluster centres of a similar nature to the crisp methods but
with inconsistent customer values. For the purposes here, the
partial membership proved to be more of a hindrance because
it made analysing the total cluster more difficult.

Regarding the clusters in general, it is desirable for each
cluster centroid to be unique in shape with the clusters gener-
ally having significant numbers in population size. Apart from
a good computational performance criteria, there is also a need
for human interpretation. If the clusters appear similar visually

or the population is mostly contained in a small number of n
clusters where n � K then the clustering has lost much of
its purpose. Arguably, if the initial data set contains many
instances in close proximity to each other then this cannot
be helped. However, here there is prior knowledge that on
a distribution network of this level that there will be unique
profiles each with a healthy population size. The load profiles
shown in [4] are evidence of this. Based on this reasoning and
the best support of the customer data, K-means is seen as the
most appropriate method.

VI. LINKS TO FORECASTING

The goal of developing these clustered groups is not only
to gain greater insight into the types of daily load profile
but also to assist with future forecasting methodology. The
literature supports the use of clustering prior to the use of a
clustering algorithm. The work in [13] clusters load curves
using K-means clustering for forecasting short-term daily
peak loads in a heat system. They state that the goal of the
clustering is to find characteristic patterns that determine
changes in demand peaks. Then a family of functional
regression models which helps forecasting can be obtained
based on the clusters.

The work in [14] also clusters peak load using self
organising maps and then forecasts daily peak loads using a
neural network model. Within each cluster, days of the week
and holidays are also separated as input data to the neural
network. Using standard error metrics such as mean absolute
error and mean squared error, it was shown that this hybrid
approach is more effective than forecasting on unclustered
data.

These papers and other works mostly are forecasting in the
short-term one day into the future. The aim of this research
is to develop a long-term annual forecast. For example,
this would involve using higher level data such as monthly
maximum peaks and then selecting the maximum among
them. The problem that must be addressed is the use of daily
load clusters in a long-term forecast. The key is that each
primary substation on the distribution network has a unique
annual load profile. If there is a correlation between the daily
load profile and annual load profile then improved results



such as in [14] would be expected because there are similar
characteristics between the load profiles within each cluster.
Further work could be done to establish this correlation
more concretely but based on engineering knowledge, this is
expected to exist.

The work here and in [4] shows that daily load profile
characteristics can mostly be attributed to the customers at
that substation. As a generalisation, substations which have
demand that is more flat throughout the day with a distinct
maximum are made up of mostly commercial customers and
those which vary around working/sleep cycles are attributed
to domestic customers.

The schematic of a hybrid long-term forecasting approach
is shown in Fig. 7. The forecasting algorithm will be trained
on each of the individual clustered groups so that an annual
maximum demand can be established for each substation.
Afterwards, a confidence metric will be introduced for the
forecast which will reflect the length of time the forecast is
made for.

VII. CONCLUSION

This paper analyses various clustering techniques on daily
load profiles for the purposes of understanding the impact of
these load profiles on the distribution network. Also, using the
work in [12], the customer make-up at these substations can be
attributed to the load profiles. Much of the work in this area
in the past has been done on an individual customer basis
which makes supporting the shape of the load profile with
engineering judgment a much easier task. At the distribution
level, a mixture of different customers can make analysis
more difficult but the preliminary work done in [12] generally
aided the analysis. Out of the algorithms considered here, K-
means proved to be best fit for purpose. The linkage methods
for hierarchical clustering that only compared one object in
one cluster to one in another did poorly in evenly populating
clusters. Fuzzy clustering did provide more insight than either
with fuzzy membership but did not corroborate as well as K-
means with the customer work done in [12].

Further research is needed to determine if this could have a
negative impact on forecasting. Overall, this clustering work
provides a good basis for general engineering understanding
and for future forecasting techniques.
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